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Abstract— This paper presents McTorrent and McSynch, two
multichannel sensor network protocols for data dissemination.
Both protocols are designed to take advantage of the spatial
multiplexing properties of the half-duplex radio transceivers
available on the current generation of sensor nodes. McTorrent
is used for reliable end-to-end dissemination of a large data
object. Compared to existing protocols, we show that McTorrent
significantly reduces the amount of time required to propagate
a large data object throughout a sensor network. McSynch is
used to achieve data object synchronization within a local cluster
of nodes. By using a scheduled channel access approach and
an appropriate number of transmission channels, McSynch can
significantly reduce the amount of time required to update a

local cluster. We also describe our experiences implementing a
multichannel system, and report on lessons learned for channel
and frequency settings.

I. INTRODUCTION

An essential feature of most sensor networking protocols is

the ability to minimize and carefully manage communication

in order to achieve energy savings. One attractive approach to

the design of sensor network protocols and algorithms is the

use of multiple communication channels. Such an approach

can achieve both a higher level of effective throughput and

better energy savings by using multiple communication paths,

since transmissions on different channels do not interfere with

each other. This paper explores the use of multiple channels

in sensor network protocols for data dissemination.

Multichannel communication radios have been in existence

for several decades. However, most multichannel network

protocols that have been proposed and implemented to date are

designed for mobile cellular telephony or for more traditional

mobile ad hoc networking architectures such as might be found

in an 802.11 environment [1]. The current generation of wire-

less sensor motes provides multiple channels available for use.

For instance, the Crossbow MICA2 MPR400 comes equipped

with a Chipcon CC1000 radio that has 240 channels [2]. To

our knowledge, this work is one of the first to explore the use

of multiple channels in sensor network protocols.

In order to effectively exploit the multichannel capability

of a sensor node, it is necessary to define a new class of

networking protocols that can take advantage of multiple

channels. This problem is exacerbated by the fact that many

currently available radios for sensor nodes are equipped with

one half-duplex transceiver. Although the transceiver can

be programmed on the fly to switch channels, each node

can only transmit or listen on one channel at a time. The

practical impact of this hardware feature is that multichannel

networking protocols must be carefully designed to efficiently

coordinate channel sending and receiving assignments. Thus,

it is necessary for senders and receivers to coordinate both

which channel they are assigned to and whether they are in a

sending or receiving state.

The traditional approach to network protocol stack design is

to completely decouple a multichannel MAC layer from upper

level protocols. However, our approach is to use upper layer

protocols to coordinate channel and sending and receiving

assignments. Cross layer techniques are typical of much recent

work in sensor networking [3]. The motivation for this arises

from the resource constrained nature of sensor nodes. By

exposing channel and transceiver mode selection to the higher

layers, we achieve better communication performance and

avoid the need to duplicate data and control code in multiple

layers.

We present and discuss two protocols. The first is McTor-

rent, a protocol for multihop reliable data dissemination. The

McTorrent protocol can be used for distributing a large data

object to all the nodes in the network, e.g., distributing a new

code image to sensor nodes for network reprogramming [4],

[5], [6]. It uses a contention-based approach to channel access,

and does not require time synchronization. As compared to

a single channel approach, McTorrent significantly reduces

the total latency for reliably disseminating a large data object

from a sink. Our second protocol is McSynch, a cluster-level

protocol for localized data synchronization and coordination.

McSynch uses a distributed scheduling approach for channel

access, and is designed for situations where nodes might be

asleep for extended periods of time and when new sensors

are added to the network. We show that by using McSynch

and the appropriate number of channels it is possible to

substantially reduce the time required to achieve cluster-wide

synchronization. Note that both protocols use the prefix Mc,

for multichannel.

We also report on the implementation and analysis of

multichannel communication within a sensor node testbed. Our

results indicate that, although it is necessary to pay careful
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attention to the control of frequency settings and channel

separation, the current generation of sensor nodes can readily

support multichannel communication.

II. RELATED WORK

This section describes related work on the use of multi-

channel wireless networking, along with some recent reports

on data dissemination in a sensor network.

A. Multichannel wireless systems and sensor networks

There are many papers that have dealt with the benefits of

using multiple channels as a means to achieve higher through-

put, often by also dealing with hidden terminal problems.

One way of characterizing multichannel wireless networking

research is by the number of transceivers and the assumed

data link protocol. Examples of protocols that require multiple

transceivers in a CSMA environment include Nasipuri and

Das [7]. The works of Wu et al. and Jain et al. also discuss

protocols that dynamically assign channels, although they

differ as to how the channels are assigned [8][9]. Examples of

single transceiver approaches are presented in [10] and [11].

Both use a handshaking approach in a frequency-hopping

spread spectrum system (FHSS) to improve throughput by

avoiding hidden terminal problems. The drawback to these

efforts is that they can only work in an FHSS environment. So

and Vaidya describe a MAC layer protocol that also requires

only one transceiver per host, and solves the hidden terminal

problem using temporal synchronization [12]. There has also

been some work done in data striping using multiple channels,

which requires a separate radio interface for each channel [13].

All of the above research focuses on the 802.11 protocol, or

suggests enhancements to that protocol. In contrast, our paper

deals with multichannel sensor networking. The major issues

in this environment are effective cross-layer and application-

aware design, along with communication management that

minimizes the number of messages and collisions.

One critical issue is how well the current generation of

sensor radios will actually perform in a real environment. For

instance, the impact of radio irregularity on packet reception

has extensively been studied in single channel sensor environ-

ments [14]. To our knowledge, the work here represents the

first reported results on the use of multichannel radios from a

real testbed.

B. Data dissemination

Protocols for data dissemination in sensor networks can be

divided into two categories based on the size of the data objects

that are being disseminated. The first category of protocols is

designed to exchange a relatively small amount of data among

neighboring nodes, whereas the second class of protocols is

intended for disseminating very large data objects.

Protocols in the first category include the SPIN family of

data dissemination protocols [15]. The SPIN protocols take

advantage of the broadcast nature of the wireless medium, and

use various communication suppression mechanisms to reduce

latency. SPIN uses a three-phase (advertisement-request-data)

handshaking protocol between nodes to disseminate data.

The Trickle [16] protocol proposes mechanisms for dynamic

broadcast rate adjustment with the goal of quickly propagating

updates while reducing communication between nodes when

there are no updates. Unlike SPIN and Trickle, our protocol,

McSynch, takes advantage of multiple channels.

The second category includes several protocols such as

MOAP [4], Deluge [5], and MNP [6], that have been proposed

for multihop network reprogramming in a sensor network.

Network reprogramming is an important application of re-

liable data dissemination protocols for sensor networks. All

these protocols share some basic characteristics. First, these

protocols are used for entire code image delivery as opposed

to difference-based application adjustment [17]. Second, these

protocols extend the three-phase handshaking protocol pro-

posed in SPIN-BL [15] for handling large data objects. Third,

the protocols all borrow ideas such as the use of selective

NACKs and hop-by-hop error recovery from prior work in

reliable data transfer protocols[18]. Deluge and MNP differ

from MOAP in that a node does not need to receive the

entire code image before it can rebroadcast it. By breaking

the code image up into pages, and allowing pipelined page

delivery, Deluge and MNP take advantage of spatial multiplex-

ing to reduce the latency of network reprogramming. Deluge

leverages the Trickle protocol [16] to limit transmissions

between neighboring nodes. Our protocol for large object

dissemination, McTorrent, resembles Deluge and MNP in its

design with the crucial difference that McTorrent exploits

multiple communication channels for data dissemination.

III. MULTICHANNEL SENSOR NETWORKING

Effective use of multichannel sensor networking is compli-

cated, due to the need for channel selection and specification.

Here we briefly discuss some multichannel architectural con-

siderations and present our approach to reliable data dissemi-

nation.

A. Architectural Considerations

There are several current examples of low-cost multichannel

radio technology. One typical example of current multichannel

technology is the CC1000 radio, manufactured by Chipcon.

The CC1000 radio on a MICA2 MPR400 node is set to operate

in the frequency region between 902MHz and 928MHz. The

radio cannot tune to an arbitrary frequency. Rather, it relies

on a digital frequency synthesizer to select from 240 discrete

channels at an approximate channel spacing of 100KHz.

However, as shown experimentally in Section VI, this channel

spacing is insufficient to prevent adjacent channel interference.

We have developed an API that extends basic TinyOS func-

tionality for accessing different channels. TinyOS provides a

control interface to the CC1000 radio. The interface is used

to alter transmit power, select a channel, or set the radio to

either transmit mode or receive mode. The channel selection

function computes the discrete channel having the closest base

frequency to a desired value, allowing a node to theoretically

change its channel on demand. At the time of this writing,



inconsistencies between the code and the hardware still require

the radio to be turned off during channel selection, which adds

approximately 30ms of downtime.

We expect that the above API is generalizable to multiple

radio types. One important issue is whether or not the data

link can use time synchronization to achieve transmission

collision freedom, using a TDMA-like approach. To account

for this case the API allows the link-level scheduling function

to specify a parameter indicating which time slot to use.

B. Data dissemination

A central focus of our work is to describe multichannel

protocols for reliable data dissemination of some data object

OBJ. The size of this data object may be large, as in the case

of new code for node reprogramming, or small, as in the case

of maintaining shared state for local decision making. The data

object is of size Sobj , and is divided into fixed size packets of

size Spkt. In order to facilitate efficient communication control

and data management, the size of the packets is the same as

the size of the data link transfer unit.

By dividing OBJ into a series of packets, it is possible for

each node to represent the complete object as a bit vector

BV 〈OBJ〉 of the packets that make up the object. However,

it is possible that Sobj might be so large that the size of

BV 〈OBJ〉〉 might consume too much storage space within

a resource constrained node. Under these circumstances, we

adopt the approach taken by [5]. The data object OBJ is

fragmented into P pages where each page has a fixed number

of packets of size Spkt, and each node only needs to maintain

a bit vector for the current page being transferred.

IV. THE MCTORRENT PROTOCOL

In this section, we describe the McTorrent protocol for re-

liable bulk data distribution in sensor networks. This protocol

is designed to use multiple communication channels while

reliably distributing a large data object to all the nodes in

the network.

A. Overview

The design of McTorrent shares many ideas with Deluge

and MNP. The object to be disseminated is divided into pages,

and each page in turn consists of a fixed number of packets.

The object is disseminated in a pipelined hop-by-hop fashion,

whereby a node that has received an entire page becomes a

source node for propagating the page to its neighbors. The

pages of an object are transferred in sequential order. Nodes

send periodic advertisements that include the version number

of the object and the number of pages it has available for

transfer. A node that receives an advertisement for a page that

it does not possess responds with a request that includes a bit

vector indicating which packets in the page it needs. Nodes

receiving requests then broadcast the requested data.

The key difference between McTorrent and its predecessors

is in the use of multiple communication channels. The motiva-

tion for using multiple channels is twofold. First, by enabling

different nodes to use different channels for transmitting data
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Fig. 1. Pipelining in Deluge
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Fig. 2. Pipelining in McTorrent

packets, we can reduce the number of collisions and reduce the

latency of data propagation. Second, to ensure that transfers of

different pages do not interfere with each other, Deluge takes

special care to ensure that nodes sending simultaneously are

at least three hops apart (see Figure 1). However, by using

different data channels, senders only two hops apart can send

packets at the same time in McTorrent as shown in Figure 2,

thus enabling more effective spatial multiplexing.

Two issues need to be addressed in a data dissemination

protocol that uses multiple channels. First, nodes need to

advertise and request data from each other. Protocols such as

Deluge exploit passive listening, whereby nodes suppress their

own advertisements or requests on overhearing transmissions

from neighboring nodes; this is also desirable for McTorrent.

Second, the availability of multiple channels implies that nodes

exchanging data need to agree on the channel used for a

particular exchange, as well as the timing of the exchange.

We address these issues by extending the basic advertisement-

request-data approach. To benefit from passive listening, all

nodes send their advertisements and requests on a common

channel. However, data packets are sent on different channels.

B. Protocol Description

In a multichannel sensor network, each node is able to

switch to any of a fixed number of available channels, and

send and receive packets on that channel. For convenience, we

use Γ to denote the number of available channels including

the shared common channel γ0. McTorrent uses four types

of messages: advertisement (ADV), request (REQ), channel

(CHANNEL), and data (DATA). The first three types of

messages (control messages) are always sent on γ0, while

DATA messages are sent on a prespecified channel.

McTorrent adopts a four-phase ADV-REQ-CHANNEL-

DATA exchange to propagate bulk data. In each four-phase

exchange, a node who has new pages to send (called a sender)

sends an ADV packet, and CHANNEL and DATA packets

upon request. Nodes who need the pages (called receivers)

send a REQ packet on reception of the ADV packet. The

ADV packet contains the source address of the advertiser,

summary information of the objects, and the channel (γ j) on

which it will send the DATA packets. γj is selected such that

collisions of data packets are minimized. The channel selection

algorithm is presented in IV-C. The REQ packet contains

the destination address, the requested page number, and a bit

vector of requested packets of that page. The channel number

received from the ADV packet is echoed in the REQ packet.



The CHANNEL packet contains the same source address

and channel number as the corresponding ADV packet, and

additionally the page number and the bit vector of packets of

the page the sender is going to send.

The McTorrent protocol can be described in terms of a set

of local rules executed by nodes. Nodes can be in one of

three states with respect to the operation of the protocol: idle,

transmit, or receive state. Idle nodes, i.e., nodes that are neither

senders nor receivers, periodically broadcast advertisements.

We adopt the rules used by a node in Deluge [5] for dynami-

cally adjusting the rate at which a node sends advertisements.

A node transitions to the transmit state if it receives a request

for one of the pages it possesses. It returns to the idle state

after having broadcast all the requested packets.

Rules for a sender S:

1) On reception of the first request, S broadcasts a CHAN-

NEL message containing the number of the requested

page, the bit vector of requested packets and the channel

number γj . After sending the message, S tunes its radio

to γj .

2) S broadcasts all of the requested data packets on γj and

tunes back to γ0.

A node in the idle state transitions to the receive state if (i)

it receives an advertisement for a page that it needs, or (ii) it

receives a CHANNEL message with a page number and bit

vector indicating that the sender will be transmitting packets

that the node needs. The second scenario can occur if the node

has missed the advertisement message.

A node in the receive state transitions back to the idle state

if (i) if it has received the entire page being transmitted, or

(ii) it has not received any packets for a time interval which

is equal to the transmission time of k packets. The second

scenario can occur if packets are repeatedly lost because of

poor connectivity. (In our experiments, we set k = 8.)

Rules for a receiver R:

1) On receiving an advertisement from S for a page that

it needs, R waits for a random time interval, T , which

is uniformly distributed in the range (0, Tadv/2) where

Tadv/2 is the minimum interval between advertisements.

During time interval T , if it does not overhear a request

sent to S, it sends a request containing the page number,

a bit vector of desired packets and γj . After sending

the request, R tunes to γj and starts a timer T1. The

duration of T1 is set to the total transmission time of k

data packets.

2) During time interval T , if R overhears a request sent to

S, it tunes to channel γj and starts the timer T1.

3) If a node receives a CHANNEL message from S, and its

packets-to-receive bit vector intersects with the packets-

to-send bit vector in the message, it becomes a receiver

of S if it is not one already. The node then tunes to γ j

and starts the timer T1.

4) If a receiver R receives a data packet from S, but the

data is for a page that it does not need, R tunes to γ0

and returns to the idle state.

5) If R receives from S a data packet of the page it needs,

it restarts T1.

6) When timer T1 expires, or R has received the entire

page, it tunes to γ0 and returns to the idle state.

C. Channel Monitoring and Selection

In McTorrent, before sending an advertisement, the sender

must select a channel for the imminent data transmission.

Ideally, the sender should select a channel that does not

conflict with the channels being used by senders one or two

hops away. We use a contention-based approach in which a

node monitors the ADV and CHANNEL messages broadcast

by nodes in its neighborhood to keep track of the channels

in use. It then attempts to select an unused channel for its

own transmissions, or if there is no such channel, to use the

channel that was used least recently by another node. We

use a sliding window scheme to monitor the channel use

in a locality and to select the least recently used channel.

Although this approach does not guarantee that there will

be no channel conflicts between nodes that are transmitting

data, it is simple and works well if the number of senders

in a network neighborhood is small relative to the number of

receivers, which is typically the case for a data dissemination

protocol.

More specifically, the channel monitoring and selection

scheme is described below:

1) Every node maintains a counter for each possible chan-

nel [1..Γ-1] that is initialized to 0.

2) When a node X overhears a request containing channel

γj , if the request is not destined to X, nor to X’s source

if X is in the receive state, the counter of γj is set to l,

where l ≥ 2.

3) When X overhears a channel message from S containing

channel γj , if X is not a receiver of S, the counter of

γj is set to l, where l ≥ 2.

4) The counters are periodically decremented by 1 if they

are greater than 0.

5) When choosing a channel, X randomly selects one from

among the channels whose counters are 0.

The interval to refresh the counters is set to the time length

of transmitting a whole page. Thus, a channel marked as being

in use by another node will be cleared in at most l refresh

intervals (in our experiments, we used l = 2).

D. McTorrent Evaluation

We used the TOSSIM simulator [19] to evaluate the perfor-

mance of McTorrent. For our experiments, we modified the

radio model in TOSSIM to support multichannel functionality.

We used two metrics to evaluate the performance of McTor-

rent. The first metric is completion time, which is the time

taken to reliably distribute the data object to all the nodes in

the network. The second metric is the total number of packets

transmitted while propagating the object. This metric reflects

the energy consumption for data propagation.

In our simulation experiments, we evaluated these metrics

for propagating a data object divided into five pages, where



each page consists of 24 packets and each data packet has

a 23 byte data payload. We considered several networks of

different sizes where nodes are deployed in a grid topology.

We varied the spacing between nodes to examine the effect

of node density on our results. We assume that initially only

the base station, which is the node at the lower left corner

of the grid, has the data object. The network scenarios and

parameters considered in our simulations are identical to those

used for some of the simulation experiments reported in [5].

To evaluate the impact of multiple communication channels,

we considered various configurations of McTorrent with differ-

ent numbers of available channels. Specifically, we considered

configurations with the number of available channels Γ equal

to 1, 4, and 16 (denoted as McTorrent-Γ). We also considered

a channel configuration (denoted by Γ = x) in which each

node was statically assigned a unique data channel. This

configuration represents an ideal case in which there is no

contention between nodes for channels. We also simulated the

Deluge protocol for comparison purposes, and in the results

below we report on the performance of both McTorrent and

Deluge. Each simulation experiment was run multiple times

with different random number seeds. 95% confidence intervals

were obtained for the average values reported and are shown

in the figures, except in the case of 25x25 and 30x30 grid

networks, where the long simulation time did not give us a

sufficient number of runs to obtain confidence intervals.

In our first experiment, we report on the time taken to

disseminate five pages over a 10x10 grid network, where nodes

are spaced 10 feet apart. Figure 3 shows the time for each

node to receive all of the five pages, averaged over nine runs

with different seeds. We see that the completion time at each

node for McTorrent (with four or more channels) is lower

than that for Deluge and McTorrent with a single channel. The

completion time for Deluge and McTorrent-1 are comparable,

reflecting the fact that they are essentially the same protocol.

McTorrent-4 and McTorrent-16 have a larger completion time

than McTorrent-x, showing the impact of contention between

nodes for communication channels.

Next, Figure 4 shows the average number of packet trans-

missions over the nine runs. In comparison to Deluge, although

McTorrent introduces about 1000 CHANNEL packets, for

configurations with more than 4 channels, the number of

advertisements, requests and data packets is reduced by more

than 1000 packets each.

The savings in transmissions become more significant when

the network size increases, as shown in Figure 5. In this figure,

we plot the number of control and data packets for Deluge and

McTorrent-16 for different network sizes. The control packets

in the figure include all of the advertisements, requests, and

channel packets. For a network of 400 nodes, the total number

of data packets transmitted is 60% lower for McTorrent-16

than Deluge, and this trend continues for larger networks.

Figures 6 and 7 show the completion time and packet

transmissions of Deluge and McTorrent for 20x20 networks

with different densities (different grid spacings). As expected,

the advantages of multichannel functionality decrease when
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networks get sparser, since the number of collisions is reduced.

For Deluge, the completion time is lower when the nodes are

spaced 15 feet apart than it is when the nodes are spaced

10 feet or 20 feet apart. This is because for the number

of packet collisions is reduced as the spacing is increased

from 10 to 15 feet. As the spacing is increased further to 20

feet, the number of packet retransmissions needed increases

since the packet loss rate increases with distance between

nodes. For McTorrent-16, the completion time increases as

the spacing increases, reflecting the fact that packet collisions

play a smaller role in its performance.

Overall, our simulation results show that the McTorrent

approach leads to a significant reduction in the time taken

to reliably propagate a large data object through a multihop

network, and reduces the number of transmitted packets. There

are two reasons for this improvement in performance. First,

the number of collisions is reduced. Second, the multichannel

capability leads to more effective spatial multiplexing and

pipelining as shown in Figures 1 and 2.

V. MCSYNCH

The McSynch protocol is designed to provide efficient

local data synchronization and dissemination. In contrast to

McTorrent, which provides reliable end-to-end data dissemi-

nation within the network, McSynch is used for cases where

nodes within a few hops of each other have inconsistent

or out-of-date data. This situation may arise under several

circumstances, such as when sleep scheduling prevents nodes

from receiving timely updates, when new nodes are added

to an area, or when an initial end-to-end data dissemination

phase failed to synchronize the entire network. During these

situations, sensor nodes should be able to coordinate in a

localized fashion to achieve data synchronization. We assume

that such a synchronization decision can be made either by an

external base station, or by the nodes themselves.

The advantage of the local synchronization approach used in

McSynch is twofold. First, McSynch local recovery operations

are performed without adding any significant communication

overhead to the rest of the network. Second, McSynch uses

a time-synchronized scheduling mechanism for time-bounded

and collision-free data dissemination, thus minimizing the

amount of time required for local synchronization.

A. Cluster formation

The McSynch protocol assumes that the network can be

organized into a series of clusters, each with a designated

clusterhead. After McSynch executes, all cluster nodes have

a consistent and synchronized view of a common data object

or value. During cluster formation the clusterhead also per-

forms a time synchronization step. Notice that this step only

requires local, cluster-wide time synchronization, and need

not be maintained once the protocol executes. Any one of

a number of proposed time synchronization protocols can be

used, including [20].

McSynch forms two-hop clusters, with the clusterhead in

communication range of all nodes. In order to prevent trans-

mission interference from adjacent clusters we assume that

clusterhead-to-clusterhead coordination is possible. Efficient

clusterhead selection and clusterhead to clusterhead commu-

nication can be performed using one of several proposed

approaches, such as [21]. The majority of packet transmissions

do not involve the clusterhead which therefore does not

become a bottleneck.

The outcome of the cluster formation step is that every node

obtains from the clusterhead a unique local number between

1 and N . Further, during cluster formation, we require that all

nodes obtain bit vectors from all the other nodes in the cluster.

Since the bit vectors need only propagate within the cluster,

this step does not require excessive overhead or time. We

also assume that each node learns about its one-hop neighbors

during the process of cluster formation.

B. McSynch Synchronization

After the cluster is formed, each cluster node has the

bit vector BV 〈OBJ〉 from every other node. At this point,

McSynch shifts operation and performs collision-free spatial

multiplexing by assigning specific packets to particular time

slots and channels. The scheduling algorithm assures that each



data packet needed by a node in the cluster has a winning node

assigned to transmit that packet.

McSynch uses a round-based approach. At the end of

each round, all packets required by other nodes have been

transmitted once. This does not ensure that all nodes will

have received all the packets that they need, since each node

can only send or receive one packet at a time. In each round

the packets associated with the data object are assigned to

unique channels and time slots. Assume that the data object

has Z packets associated with it, indexed by 0 ≤ i < Z. This

also means that the bit vector BV has a length of Z bits.

Further, assume that there are Γ channels. Write the packet

associated with the ith portion of the data object as b i. Packet

bi will be transmitted during the jth timeslot of that round,

where j = ⌊ i
Γ
⌋. Further, packet bi is transmitted on channel

γk, where k = i mod Γ. Each node determines, without any

more data exchange, which node win(b i) is to transmit bi. The

packet will be transmitted only if it is needed by at least one

of win(bi)’s one-hop neighbors.

Figure 8 shows the algorithm. Upon receiving an initiation

code from the clusterhead, each node independently executes

the algorithm. As shown in line 2, each round lasts for T

time slots, where T =
⌈

Z
Γ

⌉

. Note that the final round may

have some channels with no assigned packets. NEED(b i),

HAVE(bi), and NODES are sets containing nodes. In each

time slot, a total of Γ simultaneous transmissions can take

place, one packet per channel. This is the meaning of the loop

starting at line 4. In line 13 the function HASH(BV j,j, k) is

a hash function that takes as input the bit vector for node j

(treated as a string), the identifier j and the channel number

k.

This fully distributed algorithm produces collision-free

scheduling, because only one node per channel can be des-

ignated to the variable win(bi) at line 12. The node assigned

to win(bi) is the only node allowed to transmit on channel

i mod Γ for that timeslot. At the end of each round it may be

the case that a node still does not have some required packets.

This case can arise because none of its one-hop neighbors had

the packet, or because it was either transmitting or receiving

another packet on a different channel during the time slot that

the packet was assigned, or simply because of packet loss. To

account for this, the McSynch protocol reruns the bit vector

exchange portion of the cluster formation step followed by

another iteration, if required.

C. McSynch Evaluation

We performed an extensive experimental evaluation of Mc-

Synch. The purpose was to evaluate the speedup due to our

spatial multiplexing approach. Our method was to focus on

the number of slots required for complete synchronization.

Since McSynch uses time-synchronized scheduling, packet

collisions do not occur. Therefore, in order to focus on the time

effectiveness of the algorithm, we used a custom simulator that

assumed a perfect physical layer.

The experiments examined a number of different cluster

scenarios. All clusters had a diameter of two hops. We ran

Algorithm McSynch Scheduling

1. Repeat until object synchronized

2. For t = 0 to (T − 1)
3. NODES ⇐ all nodes in the cluster

4. For i =
(⌈

t

Γ

⌉

× Γ
)

to
((⌈

t

Γ

⌉

× Γ
)

+ (Γ − 1)
)

5. Assign packet bi to channel γk, where k = i mod Γ
6. NEED(bi), HAVE(bi) ⇐ null

7. NEED(bi) ⇐ all nodes ∈ NODES that need bi

8. If NEED(bi) == null then skip to next i

9. HAVE(bi) ⇐ all nodes ∈ NODES that have bi and
are 1-hop neighbors to at least one node in NEED(bi)

10. If HAVE(bi) == null then skip to next i

11. For all nodes j in HAVE(bi)

12. Assign prio(j) to node j where
prio(j) = HASH(BVj,j, k)

13. Assign the node j with the highest prio(j) to
win(bi)

14. Node j transmits bi on channel γk

15. NODES = NODES – (win(bi)
⋃

NEED(bi))

16. END for i

17. END for t

Fig. 8. The McSynch Protocol, simultaneously executed at each node

experiments for 10, 15, 20, 25, and 30 nodes. The experiments

evaluated clusters with sparse and dense connectivity. A cluster

is considered sparse if each node has, on average, 35% of the

nodes as one-hop neighbors. A cluster is considered dense

if each node has, on average, 75% of the nodes as one-hop

neighbors.

We tested objects of various lengths, but for space reasons

only report on the results for a 96 packet object. However,

our reported results are consistent across object size. We

considered two different patterns of data availability. The first

assumed that all nodes had a uniform likelihood of having a

particular packet. The second type assumed that some nodes

had a much higher likelihood of having packets than other

nodes. The uniform pattern can be used to represent clusters

where nodes have relatively similar sleep cycles that might

cause them to miss packets, or where previous transmission

impairments were uniform. The second pattern type, which we

call uneven sleep, can represent clusters that have unbalanced

sleep patterns (perhaps for energy conservation) or the case

where some nodes are added to the network after other nodes.

The uneven sleep scenarios had 25% of the nodes having on

average 90% of the packets, while the remainder of the nodes

had on average 20% of the packets.

Because of the way McSynch uses time synchronization,

it can not be directly compared to other protocols such as

McTorrent, Deluge or SPIN-BL. However, as a point of ref-

erence, we propose and evaluate a single channel time-slotted

request-reply protocol, abbreviated TS-RR, which is similar to



Trickle [16]. Trickle is designed to use suppression timers to

reduce the number of advertisements, requests, and replies. For

purposes of our evaluation, we assume that all advertisements,

requests and replies can occur with no collisions. Likewise,

we assume that the time to perform McSynch cluster-wide

bit vector exchange is constant. We therefore do not factor in

the cost of advertising or re-advertising the bit vectors into

our evaluation. This puts TS-RR at an advantage compared to

McSynch, since McSynch does not require per packet requests.

Each scenario was run 100 times using a different random

number generator seed. The results shown are the average time

to complete with 95% confidence intervals. The requests are

spread reliably throughout the cluster. The first two results

show the latency to completion for the case of a 96 packet

object size with a uniform sleep pattern for sparse (Figure

9) and dense networks (Figure 10). Increasing the number of

nodes increases the time to complete, since more transmissions

are required. We also see that increasing the number of

channels available to McSynch decreases the total time to

complete. The time to complete for 16 channels stays roughly

the same for all network densities and number of nodes. This

shows that with the appropriate number of channels McSynch

significantly reduces the time to perform local synchronization.
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Fig. 9. Time slots required for object synchronization for different network
sizes, with sparse network connectivity and uniform node sleep patterns

Figures 11 and 12 show the time to complete for the case

of a sparse network and a dense network with nodes having

uneven sleep patterns. Compared to the uniform sleep patterns

in the first set of results, the uneven sleeping patterns increase

the time to complete for all scenarios. Despite this fact, note

that the 16 channel case still produces a roughly constant

time to completion, independent of the network density and

number of nodes. These experiments allow us to conclude that

the multichannel McSynch approach significantly outperforms

single channel request-reply approaches. Further, by using a

sufficient number of channels the time to complete is constant

for two-hop clusters up to at least 30 nodes.

VI. MULTICHANNEL IMPLEMENTATION STUDY

We implemented a multichannel test environment within

a Crossbow MICA2 MPR400 network. The testbed software
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 0

 200

 400

 600

 800

 1000

 10  15  20  25  30

T
o

ta
l 
T

im
e

 S
lo

ts

Network Size

TS-RR
McSynch (2 channels)
McSynch (4 channels)

McSynch (16 channels)

Fig. 11. Time slots required for object synchronization for different network
sizes, with sparse network connectivity and uneven node sleep patterns
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uses a node-resident API that can adjust operational aspects

of a CC1000 radio. In addition to basic operations like

altering transmit power and reporting signal strength, the API

implements complex operations by extending CC1000 code.

These operations include toggling sender backoff, reporting

partial packet receptions, and extracting RF noise levels. In

addition, the API triggers transceiver power cycling to allow

for realtime radio channel selection.

The nature of wireless communication introduces radio

irregularities that affect packet reception and protocol per-

formance [14]. These irregularities are caused by factors

including antennae orientation, multipath effects, location, and

power disparity. Unfortunately, the introduction of multichan-

nel communication adds adjacent channel interference as yet

another cause of radio irregularity. In order to measure the

influence of channel interference on packet reception, we used

the test environment we developed to measure interference at

different channel spacings. Our results enable us to determine

the minimum channel spacing that prevents interference, and

thereby maximize the number of available channels for radios

with bounded frequency regions like the CC1000.

A line experiment consisting of two senders and a receiver

is configured as follows. A sender is instructed to send p

packets on channel frequency F. The other sender is instructed

to synchronously send p packets on a channel frequency F ′

= F - 1MHz. A receiver is placed equidistant from the two

senders and instructed to receive packets from one of them.

The experiment is repeated n times, where frequency F ′ is

incremented by 2

n MHz each time. The set of experiments is

then repeated with the receiver instructed to listen to the other

sender.
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Fig. 13. Adjacent channel interference

In the figures that follow, reception rate and signal strength

do not share the same scale, but are shown in the same graph to

illustrate the correlation between them. The graph in Figure 13

depicts the packet reception rate and received signal strength

for an experiment with a 909.98MHz center frequency. A data

point represents the packet reception rate for a 200 packet set.

As expected, interference occurs for small channel spacings.

The solid line indicates that no packets were received when
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Fig. 14. Minimal interference
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Fig. 15. Interference anomaly after moving weaker sender

the two data channels were up to 400KHz of one another, as

portrayed by the trough from -200KHz to 400KHz. Further

experiments showed the minimum channel separation that

avoids collisions to be 500KHz. Given the 26MHz frequency

region of the MPR400, this limits the number of contention-

free radio channels to around 50. The graph also shows a

dashed line representing normalized values for the received

signal strength recorded by the radio. A data point is the

average of the normalized signal strength for any of the 200

packets received. If no packets are received, however, the

signal strength is interpolated. In Figure 13, the known signal

strength is relatively constant.

The graph in Figure 14 shows the identical experiment, but

with the receiver counting transmissions from the other sender.

Although the first experiment confirmed that adjacent channel

interference occurs for small separations, this second graph

shows near perfect reception for any channel spacing. The

reason lies in the signal strength disparity between the two

senders. The second sender has a stronger signal than the first.

As a result, its data packets are unaffected by the interference

from its weaker counterpart.

The graphs in Figures 15 and 16 plot packet reception when

the received signal strength from the two senders is more
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Fig. 16. Interference anomaly after further moving weaker sender

comparable. As compared to the experiments shown in Figure

13, the signal strength difference is reduced by moving the

weaker node closer to the receiver. These graphs are similar

to the first two, except for an anomaly which occurs when

the channel separation is about 100KHz. The graphs show a

moderate increase in reception from the weaker node, and an

equivalent drop in reception from the stronger node. The cause

of this anomaly is not obvious, but the unusual signal strengths

at 100KHz and 200KHz in Figure 15 are indicative of irregular

radio effects. These effects are a combined result of the

reflection, refraction, and diffraction a signal experiences as it

propagates from a transceiver. The effects can be constructive

or destructive depending on the specific locations of the sender

and receiver in a given environment. If constructive effects are

the cause of the anomaly, the received signal strength should

be greater than its normal level when the anomaly occurs.

Indeed, in Figure 16 we see that this effect becomes even

more pronounced as the weaker sender is moved even close

to the receiver.

VII. CONCLUSIONS

In this paper, we described McTorrent, a protocol for

multihop data dissemination, and McSynch, a cluster-level

protocol for localized data synchronization and coordination.

McTorrent is similar to Deluge in its approach to data man-

agement. The major difference, and the reason why McTorrent

outperforms Deluge, is the way it uses multiple communi-

cation channels. Our simulation results show that McTorrent

achieves end-to-end data dissemination in less time than the

single channel protocols. McSynch operates on a cluster-wide

basis and uses a distributed scheduling approach for channel

access. Once cluster information is exchanged between the

cluster nodes, all protocol actions are entirely distributed.

Our simulation results showed that by using an appropriate

number of channels McSynch can substantially reduce the time

required cluster-wide synchronization.

We also report on the implementation and analysis of a mul-

tichannel prototype within a sensor node testbed. Our results

indicate that a primary factor in determining performance in

a multichannel setting is channel separation, in addition to

the signal strength. We also observed several physical layer

anomalies due to constructive multipath effects.
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