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ABSTRACT
Wireless Sensor Networks (WSNs) have proven to be use-
ful in many applications, such as military surveillance and
environment monitoring. To meet the severe energy con-
straints in WSNs, some researchers have proposed to use
the in-network data aggregation technique (i.e., combining
partial results at intermediate nodes during message rout-
ing), which significantly reduces the communication over-
head. Given the lack of hardware support for tamper re-
sistance and the unattended nature of sensor nodes, sensor
network protocols need to be designed with security in mind.
Recently, researchers proposed algorithms for securely com-
puting a few aggregates, such as Sum (the sum of the sensed
values), Count (number of nodes) and Average. However,
to the best of our knowledge, there is no prior work which
securely computes the Median, although the Median is con-
sidered to be an important aggregate. The contribution of
this paper is twofold. We first propose a protocol to compute
an approximate Median and verify if it has been falsified by
an adversary. Then, we design an attack-resilient algorithm
to compute the Median even in the presence of a few com-
promised nodes. We evaluate the performance and cost of
our approach via both analysis and simulation. Our results
show that our approach is scalable and efficient.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General-
Security and protection; C.2.1 [Computer-Communication
Networks]: Network Architecture and Design-Wireless com-
munication; D.4.6 [Operating Systems]: Security and
Protection-Cryptographic controls; K.6.5 [Management of
Computing and Information Systems]: Security and
Protection
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1. INTRODUCTION
Wireless Sensor Networks (WSNs) are being used in many

applications [13, 11, 24], such as military surveillance, wildlife
habitat monitoring, forest fire prevention, etc. A WSN nor-
mally consists of a large number of sensor nodes which are
self-organized into a multi-hop network.

The simplest way to collect the sensed data is to let each
sensor node deliver its reading to the base station (BS).
This approach, however, is wasteful since it results in exces-
sive communication. A typical sensor node is severely con-
strained in communication bandwidth and energy reserve.
Hence, sensor network designers have advocated alternative
approaches for data collection.

An in-network aggregation algorithm combines partial re-
sults at intermediate nodes during message routing, which
significantly reduces the amount of communication and hence
the energy consumed. A typical data acquisition system [14,
8] constructs a spanning tree rooted at the BS and then per-
forms in-network aggregation along the tree. Partial results
propagate level by level up the tree, with each node awaiting
messages from all of its children before sending a new partial
result to its parent. Researchers [14, 8] have designed sev-
eral energy-efficient algorithms to compute aggregates such
as Count, Sum, Average, etc. However, an in-network aggre-
gation algorithm cannot cheaply compute the exact Median,
where the worst case communication overhead per node is
Ω(N), where N is the number of nodes in the network [14].
As a result, researchers have advocated computation of an
approximate Median. In-network aggregation algorithms to
compute an approximate Median are proposed in [10, 23].

Unfortunately, none of the above algorithms include any
provisions for security, and hence, they cannot be used in
security-sensitive applications. Given the lack of tamper-
resistance and the unattended nature of many networks, we
must consider the possibility that a few sensor nodes in the
network might become compromised.

A compromised node in the aggregation hierarchy may at-
tempt to change the aggregate value computed at the BS by
relaying a false sub-aggregate value to its parent. This at-



Node Latency Verification Attack-resilient
congestion (epochs) computation

Greenwald et al.’s protocol [10] O((log2N)/ε) 2 No No

GC approach (Section 4.1) O((log2N)/ε) 6 Yes No
Our basic protocol (Section 4.3) O((1/ε)∆logN) 6 w.h.p. Yes No

Our extended protocol (Section 6) O((1/ε)∆logN) 6 w.h.p. Yes Yes

Table 1: Median computation protocols: Comparing the performance and the security features

tack can be launched on most of the in-network aggregation
algorithms. For example, in Greenwald et al.’s approximate
Median computation algorithm [10], a compromised node in
the aggregation hierarchy can corrupt the quantile summary
to make the BS accept a false Median which might contain
a large amount of error.

A technique to compute and verify Sum and Count aggre-
gates has been recently proposed by Chan et al. [3]. Their
scheme [3] can also verify if a given value is the true Me-
dian, but they have not proposed any solution to compute
that value in the first place. To the best of our knowledge,
there is no prior work which securely computes the Median
using an in-network algorithm.

One might suggest an approach which runs Greenwald et
al.’s algorithm [10] to compute an approximate Median and
then employs Chan et al.’s verification protocol [3] to verify
if the computed value is indeed a valid estimate. We refer
this approach as GC in the rest of the paper.The communi-

cation cost per node in this approach is O( log2N
ε

), where ε
is the approximation error bound.

In this paper, we propose an alternative approach to com-
pute and verify an approximate Median, which proves to be
more efficient compared to the GC approach. Our approach
is based on sampling—an uniform sample of sensed values
is collected from the network to make a preliminary esti-
mate of the Median, which is verified and refined later. The
communication cost of our basic algorithm is O( 1

ε
∆ log N),

where ε is the error bound and ∆ is the maximum degree of
the aggregation tree used by the algorithm.

Like the GC approach, our basic algorithm guarantees
that an attacker cannot cause the BS to accept a Median es-
timate which contains an error more than the user-specified
bound, ε. However, neither of the above approaches can
guarantee the successful computation of the Median in the
presence of an attacker. To address this problem, we extend
the basic approach so that we can compute the Median even
in the presence of a few compromised nodes. The analysis
and simulation results show that our algorithms are effec-
tive and efficient. Further, our algorithms can be extended
to compute other quantiles.

Table 1 compares our approach with other solutions on the
basis of a few performance and security metrics. We report
node congestion as a metric for communication complexity,
which represents the worst case overhead on a single node.
We measure the latency of the protocols in epochs. Similarly
to the prior work [14], an epoch represents the amount of
time a message takes to traverse the distance between the
BS and the farthest node on the aggregation hierarchy. We
observe that the latency of our protocol might increase in
extreme cases; here we report the latency which our protocol
incurs in most cases (i.e., with high probability (w.h.p.)).
To measure the security of the protocols, we consider the
following properties. We say that a protocol has verification

property if the protocol enables the BS to verify whether the
computed Median is false or not. Observe that this property
does not guarantee the computation of the Median in the
presence of an attack. Finally, an attack-resilient protocol
is so if it guarantees the computation of the Median in the
presence of a few malicious nodes.

Organization The rest of the paper is organized as fol-
lows. In Section 2, we review the related work present in
the literature. Section 3 describes the problem and the as-
sumptions taken in this paper. In Section 4, we present our
basic protocol, whose security and performance analysis is
given in Section 5. Section 6 describes our attack-resilient
protocol. We present our simulation results in Section 7,
and finally, we conclude the paper in Section 8.

2. RELATED WORK
Several researchers [14, 8] have proposed in-network ag-

gregation algorithms which fuse the sensed information en
route to the BS to reduce the communication overhead. In
particular, these algorithms are designed to compute alge-
braic aggregates, such as Sum, Count, and Average. How-
ever, Madden et al. [14] showed that in-network aggregation
does not save any communication overhead in case of com-
puting holistic aggregates, such as the Median.

To limit the communication complexity, researchers have
advocated computing an approximate estimate instead of
the exact Median [10, 23]. In particular, Greenwald et al.
[10] proposed a quantile summary computation algorithm
that exploits a concept of delayed aggregation so that no
summary contains error more than ε bound. Also, Srivastava
et al. [23] presented another data summarization technique
called quantile digest to compute an approximate median,
where the main idea is to compute an equi-depth histogram
through in-network aggregation. There also exists a body
of data stream algorithms in the literature which computes
approximate quantiles [9, 15, 5]. In fact, Greenwald et al.’s
algorithm [10] is an extension of [9].

Our Median computation algorithm has a sampling phase
and a histogram computation phase. Sampling techniques
have been previously employed for data reduction in databases
[1, 20]; in particular, [1] uses a sample of a large database to
obtain an approximate answer. Another work, from Munro
and Paterson [16], analyzed the lower bound on storage
space and number of passes of a Median computation al-
gorithm. Jain et al. [12] proposed a centralized algorithm
to compute quantiles and histograms with limited storage
space. Recently, Patt-Shamir [18] designed an approximate
Median computation algorithm using the synopsis diffusion
framework [4, 17], which uses a multipath routing algorithm
to enhance robustness against communication loss. We note
that none of the above algorithms were designed with secu-
rity in mind, and an attacker can inject an arbitrary amount
of error in the final estimate.



Recently, a few researchers have examined security issues
in aggregation algorithms. Wagner [25] addressed the prob-
lem of resilient data aggregation in the presence of malicious
nodes and provided guidelines for selecting aggregation func-
tions in a sensor network. Yang et al. [26] proposed SDAP,
a secure hop-by-hop data aggregation protocol using a tree-
based topology to compute the Average in the presence of
a few compromised nodes. SDAP divides the network into
multiple groups and employs an outlier detection algorithm
to detect the corrupted groups. In our extended approach,
we also use a grouping technique but without any outlier de-
tection algorithm that would otherwise require the assump-
tion that groups have similar data distribution. Another
approach for the securely computing Count and Sum, pro-
posed by Roy et al. [22], is designed for the synopsis diffusion
framework [4, 17].

Chan et al. [3] designed a verification algorithm by which
the BS could detect if the computed aggregate was falsified.
However, the authors did not propose any algorithm to com-
pute the Median.Their verification algorithm is based on a
novel method of distributing the verification responsibility
onto the individual sensor nodes. An improvement on the
communication complexity of the above algorithm has been
recently proposed by Frikken et al. [7].

3. ASSUMPTIONS AND PROBLEM DESCRIP-
TION

The goal of this paper is to securely compute an approx-
imate Median of the sensor readings in a network where a
few nodes might be compromised. Given a specified error
bound, we return an approximate Median which is suffi-
ciently close to the exact Median. This section describes
our system model and design goals.
Network Assumptions We assume a general multihop
network with a set of N sensor nodes and a single BS. The
BS knows the IDs of the sensor nodes present in the net-
work. The network user controls the BS, initiates the query
and specifies the error bound ε. In the rest of the paper,
we consider the user and the BS as a single entity. We also
consider that sensor nodes are similar to the current gen-
eration of sensor nodes (e.g., Berkeley MICA2 motes [6])
in their computational and communication capabilities and
power resources, while the BS is a laptop-class device sup-
plied with long-lasting power.

We assume that the in-network aggregation is performed
over an aggregation tree which is constructed during the
query broadcast, similarly as in the TAG algorithm [14].
However, our approach does not rely on a specific tree con-
struction algorithm. The approximation error ε in the esti-
mated Median m̂ is determined by how many position m̂ is
away from the exact Median m in the sorted list of all the
sensed values. For ease of exposition, without loss of gener-
ality we assume that all the sensed values are distinct. Note
that we could relax this assumption by defining an order on
the nodes’ ID that have same sensed value. Also, for the
ease of exposition, we assume that there is an odd number
of sensed values in total so that the Median is one element
of the population.
Security Model We assume that the BS cannot be com-
promised. The BS uses a protocol such as µTesla [19] to
authenticate broadcast messages. We also assume that each
node X shares a pairwise key, KX with the BS, which is

used to authenticate the messages it sends to BS.
In this paper, we do not address outsider attacks – we can

easily prevent unauthorized nodes from launching attacks by
augmenting the aggregation framework with authentication
and encryption protocols [19, 27].

We consider that the adversary can compromise a few sen-
sor nodes (i.e., insiders) without being detected. If a node is
compromised, all the information it holds will also be com-
promised. We use a Byzantine fault model, where the adver-
sary can inject malicious messages into the network through
the compromised nodes. We observe that a compromised
node might launch multiple potential attacks against a tree-
based aggregation protocol, such as corrupting the underly-
ing routing protocol, selective dropping, or a Denial of Ser-
vice attack to prevent other nodes from receiving the mes-
sages from the BS. However, in this paper we address only
false data injection attacks where the goal of the attacker
is to cause the BS to accept a false aggregate. To achieve
this goal in an in-network Median computation algorithm
(e.g. [10]), a compromised node X could either attempt
to falsify its own sensed value, vX , or the sub-aggregate X
is supposed to forward to its parent. We note that as we
are computing Median, by falsifying the local value a com-
promised node can only deviate the final estimate by one
position, i.e., the impact of the falsified local value attack is
very limited. Moreover, it is impossible to detect the fal-
sified local value attack without domain knowledge about
what is an anomalous sensor reading. On the other hand,
the falsified sub-aggregate attack, in which a node X does
not correctly aggregate the values received from X’s child
nodes, poses a large threat to an in-network Median com-
putation algorithm; a compromised node X forwards to its
parent a corrupted aggregate which falsely summarizes X’s
descendants’ sensed values. We observe that by launching
this attack, a single compromised node, which is placed near
the root on the aggregation hierarchy, can deviate the final
estimate of the Median by a large amount (e.g., in [10]).
Problem Description We aim to compute an approximate
Median against the falsified sub-aggregate attack. In partic-
ular, our goal is to design the following two algorithms.

• Median computation and verification algorithm: This
algorithm either outputs a valid approximate Median
or it detects the presence of an attack. A value, m̂,
is considered to be a valid approximate Median if it is
close to the exact Median, m, within the bound spec-
ified by the user. In particular, if the user-specified
relative error bound is ε, the BS accepts an estimate
m̂ which satisfies the following constraint:

|rank(m̂)− N + 1

2
| ≤ εN (1)

where rank(x) denotes the position of the value x in
the sorted list of all the sensed values (the population
elements), and N is the size of the population.

• Attack-resilient Median computation algorithm: If the
above verification fails, our further aim is to compute
an approximate Median in the presence of the attack.

We finally note that by launching a falsified local value
attack, w compromised nodes can deviate rank(m̂) in con-
straint (1) above by w positions, which makes the error
bound of the final estimate of the Median to be (ε + w/N).



However, given an upper bound on w, the user could adjust
his input ε to finally meet the required bound.
Notation A list of notations used in this paper is given in
Table 2.

Symbol Meaning

N total number of nodes
(or total number of sensed values)

S sample size
Ei value of i-th item in the sorted sample
KX symmetric key shared between

node X and the BS
ε error bound for the approximate Median
qi bucket boundary in histogram

Bi ≡ [qi, qi+1] i-th bucket of the histogram
ci count of i-th bucket
vX sensed value of node X

MAC(KX , M) message authentication code of
message M computed using key KX

VX = (X, vX , MAC(KX , vX))
X → Y X sends a message to Y
X → ∗ X broadcasts a message

X =⇒ Y X sends a message to Y
via multiple paths

a1 || a2 concatenation of string a1 and a2

∆ the maximum degree
of the aggregation tree

g number of groups in
the attack-resilient algorithms

w number of compromised nodes

Table 2: Notations

4. COMPUTING AND VERIFYING AN AP-
PROXIMATE MEDIAN

The key elements of our approach are to compute a his-
togram of the sensor readings and then derive an approxi-
mate Median from the histogram. We collect a sample of
sensed values from the network which is used to construct
the histogram bucket boundaries. Before we present our
scheme, we first discuss an approach to securely compute
an approximation Median whose performance will be later
compared with that of our scheme. Then, we present a his-
togram verification algorithm and finally describe our basic
scheme.

4.1 GC Approach
One can suggest a scheme to securely compute an ap-

proximate Median using Greenwald et al.’s Median com-
putation algorithm [10] in conjunction with Chan et al.’s
verification algorithm [3]. A brief description of these al-
gorithms can also be found in [21]. In the first phase of
GC approach, given the approximation error bound ε, we
can run Greenwald et al.’s algorithm to compute a quan-
tile summary. From the quantile summary we can derive an
approximate Median m̂ which is supposed to satisfy ε error
bound. In the next phase, we can verify the actual error
present in the estimate, m̂, which might have been falsified
by an attacker in the previous phase. To verify the error,
Chan et al.’s verification algorithm can be applied to count

the number of nodes in the network whose value is no more
than m̂.

The communication cost per node in this approach comes

from the original protocols: that is O( log2N
ε

) for Greenwald
et al.’s Median computation algorithm and O(∆ log N) for
Chan et al.’s verification scheme (considering Frikken et al.’s
recent improvement [7]), where N is the number of nodes in
the network, ε is the approximation error bound and ∆ is
the number of neighbors of a node.

4.2 A Histogram Verification Algorithm
We now present an algorithm for computing and verifying

a histogram of sensed values, which is adapted from Chan
et al.’s scheme [3] to compute and verify Sum aggregate.

Formally speaking, a histogram is a list of ordered values,
{q0, q1, . . . , qi, . . .}, where each pair of consecutive values
(qi, qi+1) is associated with a count ci which represents the
number of population elements, vj , such that qi < vj ≤ qi+1.
We refer such an interval, (qi, qi+1) as bucket Bi with bound-
aries qi and qi+1.

As noted in [3], the Sum scheme can be adapted to count
the cardinality of a subset of nodes. Here, we apply Sum
aggregate to count how many sensor readings belong to each
histogram bucket. To do so, we require each node X to
contribute 1 to the count of its corresponding bucket (the
bucket X’s sensed value, vX , lies within) in the histogram
while we compute the total count for each bucket. Like
Chan et el.’s scheme, the histogram verification scheme takes
four epochs to complete: query dissemination, aggregation-
commit, commitment-dissemination, and result-checking.

After an aggregation tree is constructed in the query broad-
cast epoch, each node X’s message in the aggregation-commit
epoch looks like < β, c1, c2, ..., cb, h >, where β is the num-
ber of nodes in X’s subtree, b is the number of buckets in the
histogram, each ci represents the count for the bucket Bi,
i.e β =

P
i ci, and h is an authentication field. Note that for

each bucket count cj all of the other bucket counts together
act as a complement, i.e. cj +

P
i6=j ci = β. A leaf node X

whose sensed value, vX , lies within the bucket Bj sets the
fields in its message as follows: β = 1, cj = 1, ci = 0 for all
i 6= j, and h = X. If an internal node X whose value vX

lies within the bucket Bj receives messages u1, u2, ..., ut from
its t child nodes, where uk =< βk, ck

1 , ck
2 , ..., ck

b , hk >, then
X’s message < β, c1, c2, ..., cb, h > is generated as follows:
β =

P
βk + 1, c1 =

P
ck
1 , c2 =

P
ck
2 , ..., cj =

P
ck

j + 1, ...,

cb =
P

ck
b , and h = H[β||c1||c2||...||cb||u1||u2||...||ut], where

H is a hash function. The above messages along the aggre-
gation hierarchy logically build a commitment tree which en-
ables the authentication operation in the next phase. Once
the base station receives the final commitment, it verifies the
coherence of the final counts, c1, c2,..., cb, with the number
of nodes in the network, N . In particular, the BS performs
the following sanity check:

P
ci = N . A simplified version

of the aggregation-commit phase is illustrated in Figure 1
with an example of a small network.

Both the commitment-dissemination epoch and the result-
checking epoch are straightforward extensions of those in
Chan et al.’s Sum scheme. During commitment-dissemination
epoch, the final commitment is broadcast by the BS to the
network. In addition, each node X receives from its par-
ent node all of the off-path values up to the root relative
to X’s position on the commitment tree. The aim of the
commitment dissemination phase is to let each single node



Figure 1: The aggregation-commit phase in his-
togram verification: In this example, vX lies in
bucket B2, vY lies in bucket B1, and vZ lies in the
last bucket Bb.

know that its own value has been considered in the final his-
togram. The message containing the off-path values received
by a node is bigger compared to that in the Sum scheme be-
cause each off-path value contains b counts when a histogram
with b buckets is computed. In the result-checking epoch,
the BS receives a compressed authentication code from all
of the nodes which enables to verify if each node confirmed
that its value has been considered in the final histogram.

As in Chan et al.’s Sum scheme, the main cost of this
protocol is due to the dissemination of the off-path values
to individual nodes. To reduce this overhead, following the
recent improvement proposed by Frikken et al. [7], we use
a balanced commitment tree as an overlay on the physical
aggregation tree. Due to space constraint, we do not discuss
the details in this paper. If a histogram with b buckets
is considered, each off-path message is b times bigger than
that in the Sum scheme, which makes the worst case node
congestion in this protocol to be O(b∆ log N).

4.3 Our Basic Protocol
We now describe our basic protocol to compute and verify

an approximate Median. The basic protocol has two phases:
sampling phase, and histogram computation and verification
phase. Below we discuss these phases in detail.

While collecting a sample of population values is highly
energy-efficient compared to collecting all the values, we will
later show that a sample can act as a good representative
of the whole population. Also, we will show that only the
sample size determines the performance of our algorithm,
irrespective of the size of the population.

4.3.1 Sampling
In this phase, the BS collects a uniform sample of the

sensed values from the network. To do so, the BS broadcasts
the following message:

BS → ∗ : 〈SAMPLE, seed〉.

The sample request coming from the BS is broadcast in a
hop-by-hop fashion and the nodes arrange themselves in a
ring topology; nodes at the first hop from the BS belong to
the first ring and so on. A node X considers the previous
hop nodes as parents from which X has received the query

message. Note that in the sampling phase, we do not use
a tree topology, which is, however, used in the histogram
computation and verification phase.

We assume that there is a public hash function F : {ID, seed} →
{0, 1, ..., t− 1}, where ID represents the node id, seed is the
nonce broadcast during the query, and t is a positive in-
teger which acts as a design parameter as discussed later.
Each node, say X, hearing the query message applies the
hash function F (X, seed). If the resulting value is 0, then
its sensed value, vX , is considered to be one element in the
sample. In that case, X computes MAC(KX , vX) and sends
the message VX = (X, vX , MAC(KX , vX)) to its parents. In
addition to that, if X has child nodes, X also forwards the
sample values and corresponding MACs received from the
child nodes, say VZ1 , ..., VZc . The whole message from X
looks as follows:

X → Parents(X) : 〈VX , VZ1 , ..., VZc〉.

When the BS receives all these messages, it verifies the
corresponding MACs and outputs the list of values that are
legal items of the sample. Note that the seed is used in
order to have different samples in different runs. Basically,
the hash function is used to uniformly divide all of the nodes
among t groups; the nodes belonging to the first group (i.e.,
output of the hash function is 0) are considered to constitute
the sample. If the required sample size is S, one might set
t = N/S. It is expected that this hash function uniformly
maps N elements into t groups. To increase the chance that
finally a sample of size no less than S will be collected, we
could increase the number of groups from t to kt, and output
the sample from more than k groups (e.g., k + 1 groups).

4.3.2 Histogram computation and verification
Once the BS obtains the sample, it sorts the items in as-

cending order. Then, the following steps are performed: (i)
computing histogram boundaries, (ii) computing and veri-
fying the buckets’ count, and (iii) estimating the Median.

i) Computing Histogram Boundaries
We consider the number of buckets, b, as a parameter. In

Section 5.2 we discuss how to choose this parameter. In this
step, we equally divide the sample items into b buckets. We
denote the buckets as Bi = [qi, qi+1], 0 ≤ i ≤ b − 1, where
q0 = −∞, qi = EdS

b
ei and qb = +∞, as shown in Figure

2. Ej represents the value of j-th item in the sample sorted
according to the value, with j varying from 1 to S.

Figure 2: Computing histogram boundaries: The
histogram boundaries are computed using the sam-
ple collected in the previous phase.

ii) Computing and verifying the buckets’ counts
To compute the bucket counts, the BS and the sensor

nodes run the histogram verification protocol described in
Section 4.2. If there is no attack present in the network,



Figure 3: Splitting the bucket: If the bucket j, which
contains the Median has more than 2εN elements,
the bucket is split in order to meet ε approximation
error bound.

at the end of this step the BS knows the number of nodes
that belong to each bucket in the histogram. However, an
attacker node can cause this verification to fail, and in that
case, the protocol terminates returning a message, “attack
detected”. We discuss an attack-resilient solution in Section
6.

iii) Estimating the Median
Assuming that the verification in the previous step suc-

ceeds, we have the bucket counts c0, . . . , cb−1 for the corre-
sponding buckets. Our aim is now to find the bucket which
contains the Median. In particular, we find j such that the
following three constraints are satisfied:

el + c0 + c1 + . . . + cj−1 < (N + 1)/2 (2)

c0 + c1 + . . . + cj ≥ (N + 1)/2 (3)

cj ≤ 2εN (4)

where el is equal to 0 in the first iteration and updated as
follows in other cases. We first find j such that the first two
in-equalities are satisfied. Then, we check if the above j also
satisfies in-equality (4). Note that if in-equality (4) is satis-
fied, then it is guaranteed that either qj or qj+1 is εN away
from the exact Median, which is reported as our final esti-
mate. If the in-equality (4) is not satisfied, we further split
j-th bucket equally into b sub-buckets. The new boundaries

are updated as follows: q′0 = q0, q
′
1 = qj , . . ., q

′
b−1 = qj+1,

and q′b = qb. Bucket splitting is illustrated in Figure 3. The
variable el is updated as el = el +

Pj−1
i=0 ci. We iterate steps

(ii) and (iii) until the in-equality (4) is satisfied. During the
above iteration, if we reach a point where bucket j does not
contain any sample items to split further, we stop returning
a message, “more sample items to be collected”. We note
that modifying the above inequalities any other quantiles
can be computed.

5. SECURITY AND PERFORMANCE ANAL-
YSIS OF OUR BASIC PROTOCOL

5.1 Security Analysis
A node X which is selected in the sample sends an au-

thentication code, MAC(KX , vX), to the BS so that the BS
can authenticate the sensed value vX , where KX is the pair-
wise key of X shared with the BS. An attacker node that
is not legally selected by the hash function cannot inject a
false value in the sample without being detected.

Moreover, because multipath routing scheme is used in

the sampling phase, it is highly likely that we will be able
to collect a sample, even if a few compromised nodes do not
forward any messages. To establish the above observation,
we consider a simplistic scenario. Let us assume that there
are w compromised nodes in total and they are randomly
distributed in the network. So, the probability of a randomly
selected node to be compromised is w/N , where N is the
total number of nodes. We also assume that each node has
at least θ number of parents and the farthest node is d hops
away from the BS. We assume that unless all of the parents
of a node X are not compromised, X’s message will reach
the next hop – the probability that this happens is (1 −
(w/N)θ). So, in the presence of the dropping attack by
the compromised nodes, the probability that a sample item
finally reaches the BS is at least (1 − (w/N)θ)d. As an
example, with N = 1000, w = 50, θ = 3, and d = 15, this
probability is 0.998.

Like Chan et al’s scheme, our histogram computation pro-
tocol is able to detect the falsified sub-aggregate attack, i.e.,
the attacker cannot modify the count of any bucket in the
histogram without being detected. So, given that the veri-
fication succeeds, it is guaranteed that the final estimate is
an ε-approximate Median.

5.2 Performance Analysis
In this section, we analyze the communication complexity

of our basic protocol. In the first phase (i.e. during the sam-
pling phase), the worst case node congestion occurs when a
node (e.g. a node close to the BS) is required to forward all
of the S samples coming from the network. So, the maxi-
mum node congestion in the sampling phase is O(S). The
cost of the second phase, which computes and verifies the
histogram is O(b∆logN), where b is the number of buckets,
∆ is the degree of the aggregation tree, and N is number of
nodes in the network. Note that our protocol iterates the
second phase until the required approximation error bound
is met. Our goal is to minimize the total cost of all itera-
tions.

The second phase goes to the next iteration if the bucket bj

in which the Median lies contains more than 2εN population
elements. We then further divide j-th bucket into b sub-
buckets. We observe that further division is not possible if
bucket j no longer contains a sample item, which is bound
to happen within at most logb S iterations. If bucket j still
contains more than 2εN population elements, we cannot do
anything further but collect more sample items.

To make an estimate of the sample size, S, so that we do
not need to perform an extra sampling phase in most of the
cases, we present the following lemma whose proof can be
found in [21]

Lemma 5.1. The probability that more than pN popula-
tion elements lie between two consecutive items of a sorted
uniform sample of size S is φ(S, p) = (1 − p)S−1, where N
is the population size.

As an example, from Lemma 5.1, we see that φ(S, 2ε) <
2.95 × 10−5 for S ≥ 100 and ε ≥ 0.05. This implies that if
the user requires ε ≥ 0.05 and we use b = 10 buckets with
S = 100, we require at most logb(S) = 2 iterations to report
the Median with probability (1 − 2.95 × 10−5) ≈ 1. It is
interesting to note that this result does not depend on the
population size, N .



Now, to measure the trade-off between the number of
buckets, b, and the number of iterations, which together
determine the total cost of the algorithm, we present the
following lemma whose proof can be found in [21]

Lemma 5.2. The probability that more than γpN (γ > 1,
0 < p < 1, γp < 1) population elements lie between the
minimum and the maximum of pS consecutive sample items
of a sorted sample of size S is

ξ(S, p, γ) =

pSX
i=0

 
S − 1

i

!
(γp)i(1− γp)S−1−i (5)

where N is the population size.

5.2.1 Number of buckets vs. number of iterations
If we use b = γ

2ε
buckets, which is of O( 1

ε
), where γ is a

constant greater than 1 and ε is the required error bound,
then each bucket contains 2ε

γ
S sample items during the first

iteration. So, the expected number of population elements
in one bucket is 2ε

γ
N . In Lemma 5.2, putting p = 2ε

γ
, we

can compute the probability that more than γ · 2ε
γ
·N = 2εN

population elements fall in a bucket. As Expression (5) is
a decreasing function of γ, by choosing the appropriate γ,
we can make the above probability close to zero. As an
example, for γ = 2, we observe that with sample size S such
that εS ≥ 5, (i.e., each bucket contains no less than 5 sample
items in the first iteration) the above probability is less than
0.02 for all ε. That means, in this setting, our protocol ends
in one iteration in 98% cases. Finally, considering the cost of
the histogram verification scheme, we see that the total cost
of all iterations per node, when b = O( 1

ε
), is O( 1

ε
∆ log N),

where ∆ is the degree of the aggregation tree.
On the other hand, if we use b = O(1) buckets and equally

divide the sample items in b buckets in each iteration, then,
after logb ( γ

2ε
) iterations, each bucket will contain no more

than 2ε
γ

S sample items. So, as shown above, with the appro-
priate γ chosen, it is almost certain that our algorithm will
end at this point. Thus, considering the cost to compute
and verify the histogram in each iteration, the total cost of
all iterations, when b = O(1), is O(logb

1
ε
·b ·∆ log N), where

∆ is the degree of the aggregation tree.

6. ATTACK-RESILIENT MEDIAN COMPU-
TATION

Although our basic protocol, discussed in Section 4.3, de-
tects falsified sub-aggregate attack, it fails to output an esti-
mate of the Median in the presence of the attack. To address
this problem, here we propose an extended approach so that
we can compute an approximate Median even in the pres-
ence of a few compromised nodes.

We design the new approach based on the divide and con-
quer principle. We divide the network into several groups
of nodes, which introduces resilience against the above at-
tack. We run the verification algorithm individually for each
group, which we call intra-group verification. Basically, we
localize the attacker nodes to specific groups, i.e. we detect
which groups are corrupted and which are not. Even if a
few groups are corrupted, we still compute an estimate of
the Median considering the valid groups. We do not assume
that the groups have similar data distribution, which is the
assumption exploited in other existing approaches such as
SDAP [26] or RANBAR [2] .

Figure 4: Geographical grouping: In each region the
group leader, GLi, sends the region aggregate to the
BS by multiple paths.

We may employ different grouping techniques based on
node’s geographic location or node IDs. We may also use
grouping technique which is based on the nodes’ positions on
the aggregation tree. Once the group aggregate is computed,
the group leader send it directly to the BS; to avoid having
any node in the middle to drop group aggregates, we use
a multipath routing mechanism. Due to space constraint,
only geographical grouping technique is discussed here.

Also, we may exploit the robustness property of the Me-
dian computation to determine the maximum amount of er-
ror that can be injected by a given number of corrupted
nodes, even if we do not perform the intra-group verifica-
tion. In [21] we estimate this error while we leave it to the
network user to fix the tradeoff between the error bound and
the overhead due to intra-group verification.

6.1 Geographical Grouping
We assume that the BS has knowledge of the location

of the nodes and each node knows its own location. The
network is divided into several rectangular regions, where
each region is identified by a pair of geographical points.
The number of regions, g, and the location of the regions
are selected considering a few factors. As one criterion, the
regions might be chosen in such a way that an equal number
of nodes belong to each group – if a region has lower node
density, it is likely that it will be of larger geographical size.
In addition, if the BS expects that a part of the network
is more likely to be under attack, it may prefer to form
smaller regions in that area to better localize the attacker.
Finally, The g rectangular regions are specified by g pairs
of diametrically opposite points, (x1i, y1i), (x2i, y2i), where
1 ≤ i ≤ g. For each group i, BS also selects a node to be the
group leader, GLi. An example of this grouping is shown in
Figure 4.

Once the histogram boundaries are computed using the
collected sample (as in our basic protocol), the BS initiates
the histogram verification procedure. The BS sends a re-
quest to the corresponding group leaders with the necessary
information to identify the regions. Receiving the request, a
local aggregation tree is constructed which comprises of all
of the nodes in the region with GLi as the root. Then, the
group histogram is computed locally and sent to the BS. If
compromised nodes are present in a few groups, the BS will
be able to identify the corrupted groups. The BS accepts



aggregates from only those regions, which passed the verifi-
cation. The BS may further split the region which contains
an attacker node and run the protocol again in the sub-
regions. Eventually, this splitting can be iterated until the
attacker node is identified or the percentage of verified values
satisfies the BS (e.g., when the verified groups correspond to
the 95% of the nodes). Below we discuss the attack-resilient
histogram computation and verification algorithm.

6.1.1 Algorithm description
The nodes in each region locally perform the histogram

computation and verification protocol described in Section 4.2
with the group leader acting as an agent of the BS in the cor-
responding group. To make the group leader GLi an eligible
agent of BS for group i, we need a few additional commu-
nication between GLi and the BS. Below we focus on these
additional messages skipping the detailed description of rest
of the protocol, which can be found in Section 4.2. The mes-
sages exchanged between GLi and the BS are authenticated
using their pairwise key. To improve readability, we do not
show these authentication fields in the messages below.

Query dissemination.
BS initiates the query by sending to each group leader GLi

via multiple paths the following message which contains the
coordinates of the corresponding region:

BS =⇒ GLi : 〈(x1i, y1i), (x2i, y2i), GLi〉.

In each region, the group leader, GLi, broadcasts the re-
ceived query message to its neighbor nodes, which again
broadcast the same message, and so on. It is a scoped
broadcast, i.e., if a node whose coordinate is outside of the
corresponding region receives the message, it simply drops
the message. During the query broadcast, a regional aggre-
gation tree is formed with GLi as the root, similarly as in
the TAG [14] algorithm. The query message also contains
required µTESLA information (not shown above) so that
each node in the region can authenticate the query.

After the query is disseminated, the nodes in each region
locally perform the histogram computation and verification
protocol described in Section 4.2.

Aggregation-commit phase.
After the group leader GLi receives the aggregated value

from the nodes in group i, it forwards the following message
to the BS:

GLi =⇒ BS : 〈GLi, aggi, commiti〉,

where aggi represents the computed histogram of group i,
and commiti is the root of the commitment tree of region i.

Commitment-dissemination phase.
The BS checks if the number of nodes in the computed

histogram of the group is same as the total number of nodes
in that group. If yes, it sends to GLi the µTESLA authenti-
cation information, µT (commiti). So, when GLi broadcasts
commiti in group i, each node can authenticate the message:

BS =⇒ GLi : 〈GLi, µT (commiti)〉.

Result-checking phase.
Each node checks if its value is incorporated in the com-

puted histogram. If yes, node X sends a MAC over an “OK”

message, MAC(KX , OK), which gets XOR-ed with other
nodes’ similar messages on their way to the group leader.
Once GLi receives the compressed OK message, say OKi,
from the nodes in its group, it forwards this message to the
BS via multiple paths:

GLi =⇒ BS : 〈GLi, OKi〉.

As the BS knows which nodes belong to which group, it
can verify OKi messages and hence can identify valid group
aggregates.

6.1.2 Security analysis
We recall from Section that the histogram computation

and verification protocol, when executed on the whole net-
work, can detect if there is any falsified sub-aggregate attack.
That means, if a malicious node X fabricates the histogram
of its sub-tree or if X simply does not participate in the
protocol, the BS can detect the attack and flags that the
computed histogram is corrupted. Our intra-group verifi-
cation protocol is different from the basic one only in the
following aspects: (i) the histogram of the whole network
is considered as the aggregate of the group histograms and
each group histogram is computed and verified individually,
(ii) the group leader, GLi exchanges a few messages with
the BS, discussed in Section 6.1.1, which enable GLi to play
the role of BS in group i.

The messages exchanged between GLi and the BS are
routed via multi-paths so that they reach the destination
even if an attacker node in the middle drops these messages.
The communication between GLi and the BS is also authen-
ticated with their pairwise key. Moreover, GLi receives from
the BS the µTesla authentication information for the mes-
sages which are to be broadcast in the group, e.g., the query
message and the commiti message. So, assuming a node X
knows its location, X can securely determine to which group
it belongs and the ID of the group leader, and X can also
authenticate the query and the commiti message endorsed
by the BS.

After the BS receives the group histogram from group i,
(i.e., the aggi message) the BS verifies if the number of nodes
reflected in the group histogram is same as the number of
nodes in the group. Also, after receiving the OKi message
from group i, the BS verifies if this message correctly repre-
sents, in compressed form, the OK message of all the nodes
in group i. The above two checks enable the BS to correctly
identify the corrupted groups, if any.

6.1.3 Performance analysis
On average, the number of nodes in one group is N ′ =

N
g

, where the network is divided into g groups. So, the
worst case node congestion inside one group for running the
histogram verification algorithm is O(b·∆·log N ′), where b is
the number of buckets in the histogram and ∆ is the number
of neighbors of a node on the aggregation tree. Considering
the analysis given in Section 5.2.1, with b = O( 1

ε
), the worst

case communication overhead per node is O( 1
ε
·∆·log N ′). In

addition, a node needs to forward the messages exchanged
between the group leaders and the BS, which is of O(g)
communication overhead in the worst case.

7. SIMULATION RESULTS
In this section, we report on a simulation study that ex-

amined the performance of our basic protocol discussed in



Section 4. Recall that, in the first phase, we collect a sample
of sensed values from the network, and the performance of
the rest of the protocol depends on the quality of this sam-
ple. The goal of the simulation experiments reported below
is to study the impact of the sample on the overall perfor-
mance of the Median computation protocol. In particular,
we verify the results we obtained via analysis, in Section 5.2,
about the inter-relationship among parameters, such as er-
ror bound ε, sample size S, and the number of buckets b in
the histogram.

Through simulation we do not evaluate the overhead of
in-network communications in our protocol. The analyti-
cal results on the communication overhead of the sampling
phase and the histogram computation and verification phase
are discussed in Section 5.2.

7.1 Simulation Environment
In our basic setup, the network size is 1,000 nodes. We

also vary the network size to show that it does not have a
significant impact on our sampling-based approach. In our
simulation, the typical value we take for the ε error bound
varies from 5% to 15%. Each node has one sensed value,
while our goal is to compute an approximate Median. We
use the method of independent replications as our simulation
methodology. Each simulation experiment was repeated no
less than 1000 times with different seeds.

Figure 5: Computing the chance that we need to
collect more sample items: Given an ε, we choose a
sample size so that the probability that we need to
redo the sampling is close to zero.

7.2 Results and Discussion
Here, we discuss the results obtained in our simulations.

We observe that 95% confidence interval of all the quantities
on the following plots are within 5% of the reported value.

What is the chance that one sampling phase is
not enough? In Lemma 5.1, we analytically computes this
probability which we evaluate via simulation here. For each
pair (S, ε), we collect a sample of size S and we compute
the number of time, τ there are more than 2εN elements
between the two consecutive sample items containing the
Median. The total number of runs performed is 1,000,000.
The resulting φ′(S, 2ε), which is the observed approximation
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Figure 6: The number of iterations vs. the number
of buckets: if the number of buckets is O( 1

ε
), it is

highly likely that our algorithm ends in one itera-
tion.

of φ(S, 2ε), is plotted in Figure 5. It is worth noticing that
the value of φ′(S, 2ε) is less than 4× 10−5 for ε > 0.05 when
the sample size S is more than 95. In fact, as expected, for
a given ε, an increase of the value of S decreases φ′(S, 2ε).
Finally, we verify that φ′(S, 2ε) does not change significantly
(not shown in the figure) even if the population size, N , is
bigger.

Number of buckets vs. Number of iterations. In
Section 5.2, we analyzed the dependence of the number of
iterations of our algorithm on the number of buckets chosen,
which we validate here via simulations. First, we estimate
the number of buckets required to end our protocol in one
iteration in most cases. Figure 6(a) illustrates the % of cases
our protocol ends in the first iteration. The figure confirms
our analysis that, for considering γ = 2, if we use more than
1
ε

buckets (i.e., 20, 10, 7 buckets for ε = 0.05, 0.10, 0.15, re-
spectively), it is highly likely that we need just one iteration.
Finally, Figure 6(b) shows the average number of iterations
required using different number of buckets, where ε = 0.05
and S = 100. This validates our analysis that the average
number of iterations is O(logb(

1
ε
)) when b buckets are used.



8. CONCLUSION
While researchers already addressed the problem of se-

curely computing aggregates such as Sum, Count, and Av-
erage, to the best of our knowledge, there is no prior work
on secure computation of the Median. However, it is widely
considered that the Median is an important aggregate. In
this paper, we proposed a protocol to compute an approxi-
mate Median and verify if it is falsified by an attack. Once
the protocol is executed, the base station either possesses a
valid approximate Median or it has detected an attack. Fur-
ther, we proposed an attack-resilient algorithm to compute
the Median even in the presence of a few compromised nodes.
The evaluation via both analysis and simulation shows that
our approach is efficient and secure.
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