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Abstract. We introduce an alternative to the smoothing technique approach for constrained optimization. As
it turns out for any given smoothing function there exists a modification with particular properties. We use the
modification for Nonlinear Rescaling (NR) the constraints of a given constrained optimization problem into
an equivalent set of constraints.

The constraints transformation is scaled by a vector of positive parameters. The Lagrangian for the
equivalent problems is to the correspondent Smoothing Penalty functions as Augmented Lagrangian to the
Classical Penalty function or MBFs to the Barrier Functions. Moreover the Lagrangians for the equivalent
problems combine the best properties of Quadratic and Nonquadratic Augmented Lagrangians and at the
same time are free from their main drawbacks.

Sequential unconstrained minimization of the Lagrangian for the equivalent problem in primal space
followed by both Lagrange multipliers and scaling parameters update leads to a new class of NR multipliers
methods, which are equivalent to the Interior Quadratic Prox methods for the dual problem.

We proved convergence and estimate the rate of convergence of the NR multipliers method under very
mild assumptions on the input data. We also estimate the rate of convergence under various assumptions on
the input data.

In particular, under the standard second order optimality conditions the NR method converges with Q-
linear rate without unbounded increase of the scaling parameters, which correspond to the active constraints.

We also established global quadratic convergence of the NR methods for Linear Programming with
unique dual solution.

We provide numerical results, which strongly support the theory.

Key words. smoothing technique – nonlinear rescaling – multipliers method – Interior Prox method –
Log-Sigmoid transformation – duality – Fermi-Dirac Entropy function

1. Introduction

The smoothing technique for constrained optimization employs a smooth approximation
of x+ = max{0, x} to transform a constrained optimization problem into a sequence of
unconstrained optimization problems. The sequence of the unconstrained minimizers
converges to the primal solution due to the unbounded increase of the scaling parameter.
Therefore the smoothing technique is in fact a penalty type method with a smooth
penalty function.

There are few well-known difficulties associated with penalty type approach: rather
slow convergence, the Hessian of the penalty function becomes ill conditioned and
the area where Newton method is “well defined” shrinks to a point when the scaling
parameter infinitely grows.
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It motivates an alternative approach. It turns out that for any given smoothing
function there exists a modification with particular properties. We use the modification
to transform the constraints of a given convex optimization problem into an equivalent
set of constraints. The constraints are scaled by a vector of positive scaling parameters.

Sequential unconstrained minimization of the Lagrangians for the equivalent prob-
lem in primal space followed by explicit formulas for both the Lagrange multipliers and
the scaling parameters update leads to NR multipliers methods.

For the scaling parameters update we use the formula suggested by P. Tseng and
D. Bertsekas in [37] for exponential multipliers method. We will show that NR multipli-
ers methods with such “dynamic” scaling parameters update combine the best properties
of Quadratic and Nonquadratic multipliers method and at the same time they are free
from their most essential drawbacks.

In the first part of the paper we introduced the Log-Sigmoid Transformation (LST)

ψ(t) = 2 ln 2S(t, 1),

where S(t, 1) = (1 + exp(−t))−1 is the Sigmoid Function, which is often used, in
neural network literature, see e.g., [18]. We used LST to illustrate the basic ideas and
techniques.

The transformation ψ(t) is a modification of the Log-Sigmoid smoothing function,
which has been recently used by C. Chen and O. Mangasarian [8] for solving convex
inequalities and Linear Complementarity problems and by A. Auslender et al. [1] for
constrained optimization.

The Lagrangian for the equivalent problem – Log-Sigmoid Lagrangian (LSL) is our
main instrument in the first part of the paper.

There are four basic reasons for using LS transformation and the corresponding
Lagrangian:

1) ψ ∈ C∞ on (−∞,∞),
2) the LSL is a C∞ function assuming the data possesses similar smoothing properties,
3) ψ′′ are bounded on (−∞,∞),
4) due to the properties of ψ and its Fenchel conjugate ψ∗ the LSL enjoys the best

qualities of both Quadratic and Nonquadratic Augmented Lagrangians and at the
same time is free from their most essential drawbacks.

The convergenceanalysis for multipliers method with “dynamic” scaling parameters
update has proven to be surprisingly difficult (see [37], p. 3). Just recently in [3]
was proven that for a particular class of transformations ψ the correspondent method
generates bounded primal and dual sequences that each of their limit points is a pair of
optimal primal and dual solutions. The results in [3] was extended in [2] establishing that
inexact proximal version of the multipliers method with “dynamic” scaling parameters
update generates a bounded sequence with every limit point being an optimal solution.
Moreover, in [2] the convergence of the Dual Interior Prox method with the second
order ϕ-divergence kernel was proven and the rate of convergence was estimated for the
regularized dual MBF kernel.

Our first contribution is a new convergence proof and estimation of the rate of
convergence of the LS multipliers method with “dynamic” scaling parameters update
under very mild assumptions on the input data.
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The second contribution is the estimation of the rate of convergence under the strict
complementarity condition. As it turns out LS method is equivalent to the Quadratic
Prox method in the truncated rescaled dual space, which is defined by the dual variables
that correspond to the active constraints. Therefore the Interior Prox method for the
Dual problem has all the best qualities of the Quadratic Prox method [11], [20], [22],
[24], [31], [32] and on the top of it keeps positive the Lagrange multipliers.

Under the standard second order optimality condition the LS multipliers method
converges with Q-linear rate without unbounded increase of the scaling parameters
which correspond to the active constraints.

The key ingredients of the convergence proof and the rate of convergence estimation
are the equivalence of the LS multipliers method to the Interior Prox method with the
second order Entropy-like ϕ–divergence distance function for the dual problem and the
properties of the dual kernel ϕ = −ψ∗, where ψ∗ is the Fenchel conjugate of the Log-
Sigmoid functionψ, which happened to be Fermi-Dirac Entropy function. In particular,
the strong concavity of the Fermi-Dirac Entropy function ψ∗ is critical for both the
convergence and the rate of convergence.

We show in this paper that the convergence and the rate of convergence under
minimum assumptions on the input data for a wide class of constraints transformations
including exponential, logarithmic, hyperbolic and parabolic MBF can be obtained by
using the same considerations we used to prove the convergence of the LS multipliers
method.

In the second part of the paper we extend our analysis on a broad class of smoothing
functions. In particular, we introduce the modification of the Chen–Harker–Kanzow–
Smale (CHKS) smoothing function and show that the basic LS results remain true for
the CHKS’s modification as well as for modifications of the exponential and barrier
transformations, which lead to logarithmic, hyperbolic and parabolic MBFs.

Finally, we show that LS method for LP has global quadratic convergence if the dual
LP has a unique solution.

The paper is organized as follows:
The problem formulation and the basic assumptions are given in the next section.
The LS transformation and its modification we consider in Sect. 3.
The Log-Sigmoid Lagrangian and its properties both global and local we consider

in Sect. 4.
We prove the equivalence of the LS multipliers method to the Interior Prox method

for the dual problem in Sect. 5.
In Sect. 6 we consider the convergence of the LS multipliers method and its dual

equivalent.
In Sect. 7 we estimate the rate of convergence under different assumptions on the

input data.
In Sect. 8 we extend the LS results for a general class of smoothing functions. In

particular, we specify the results for the transformation, which corresponds to CHKS
interior smoothing function.

In Sect. 9 we apply LS method for LP and prove global quadratic rate of convergence.
In the Sect. 10 we provide some numerical results, which strongly corroborate the

theory.
We conclude the paper with some remarks related to the future research.
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2. Statement of the problem and basic assumptions

Let f : Rn → R
1 be convex and all ci : Rn → R

1, i = 1, . . . , p be concave and
smooth functions. We consider a convex set � = {x ∈ Rn+ : ci(x) ≥ 0, i = 1, . . . , p}
and the following convex optimization problem

x∗ ∈ X∗ = Argmin{ f(x)|x ∈ �}(P)

We assume that:

A. The optimal set X∗ is not empty and bounded.
B. The Slater’s condition holds, i.e. there exists x̂ ∈ Rn++ : ci(x̂) > 0, i = 1, . . . , p.

To simplify consideration we will include the nonnegativity constraints xi ≥ 0,
i = 1, . . . , n into a set ci(x) ≥ 0, i.e.

� = {
x ∈ Rn : ci(x) ≥ 0, i = 1, . . . , p,

cp+1(x) = x1 ≥ 0, . . . , cp+n(x) = xn ≥ 0
}

= {
x ∈ Rn : ci(x) ≥ 0, i = 1, . . . ,m

}
,

where m = p + n.
If B holds, then the Karush-Kuhn-Tucker’s (K-K-T’s) conditions hold true, i.e. there

exists vector λ∗ = (λ∗
1, ..., λ

∗
m) ∈ Rm+ such that

∇x L(x∗, λ∗) = ∇ f(x∗)−
m∑

i=1

λ∗
i ∇ci(x

∗) = 0 (1)

λ∗
i ci(x

∗) = 0, i = 1, . . . ,m, (2)

where L(x, λ) = f(x)−∑m
i=1 λici(x) is the Lagrangian for the primal problem P. Also

due to B, the K-K-T’s set

L∗ = {
λ ∈ Rm+ : ∇ f(x∗)−

m∑
i=1

λi∇ci(x
∗) = 0, x∗ ∈ X∗} (3)

is bounded.
Let’s assume that the active constraint set at x∗ is I∗ = {i : ci(x∗) = 0} =

{1, . . . , r}. We consider the vectors functions cT (x) = (c1(x), . . . , cm(x)), cT
(r)(x) =

(c1(x), . . . , cr(x)), and their Jacobians ∇c(x) = J(c(x)) and ∇c(r)(x) = J(c(r)(x)).
The sufficient regularity conditions

rank∇c(r)(x
∗) = r, λ∗

i > 0, i ∈ I∗ (4)

together with the sufficient conditions for the minimum x∗ to be isolated(∇2
xx L(x∗, λ∗)y, y

) ≥ ρ(y, y), ρ > 0,∀y �= 0 : c(r)(x
∗)y = 0 (5)

comprise the standard second order optimality conditions.
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3. Log-Sigmoid transformation and its modification

The Log-Sigmoid transformation (LST) ψ : R→ (−∞, 2 ln 2) we define by formula

ψ(t) = 2 ln 2S(t, 1) = 2 ln 2(1 + e−t)−1 = 2(ln 2 + t − ln(1 + et)). (6)

The following proposition states the basic LST properties (see Fig. 1)

ψ(t)�

t
�

2 ln 2

�
�
�

�
�

�
�

�
�

��

Fig. 1.

Proposition 1. The LST ψ has the following properties:

A1. ψ(0) = 0,
A2. ψ′(t) > 0,∀t ∈ (−∞,+∞) and ψ′(0) = 1,
A3. ψ′′(t) < 0,∀t ∈ (−∞,+∞),
A4. limt→∞ ψ′(t) = 0.
A5. a) 0 < ψ′(t) < 2; b) −0.5 ≤ ψ′′(t) < 0,−∞ < t < +∞.

The substantial difference between ψ(t) and the barrier or shifted barrier transform-
ation (see [25]) is that ψ(t) is defined on (−∞,+∞) together with its derivatives of any
order.

Property A5 distinguishesψ(t) from exponential see e.g. [6], [17], [37], barrier [21],
[25], [27] and other transformations, which lead to classes of Nonquadratic Augmented
Lagrangians PI and P̂I (see [6], p. 309) as well as transformations considered lately
(see [3], [14], [27], [34], [35] and bibliography therein).

Also the LST possesses an extra important property.
To describe it we consider Fenchel conjugate ψ∗(s). Due to A3 for any s ∈ (0, 2)

the equation (st − ψ(t))′t = 0 can be solved for t, i.e. the inverse function ψ′−1 exists
and ψ′−1(s) = t(s) = ln(2s−1 − 1). The LS conjugate

ψ∗(s) = st(s)− ψ(t(s)) = (s − 2) ln(2 − s)− s ln s

is the Fermi-Dirac type Entropy type function [19].
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Assuming that t ln t = 0 for t = 0 we obtain that −2 ln 2 ≤ ψ∗(s) ≤ 0 for 0 ≤ s ≤ 2,
and since ψ∗(1) = 0, we have max{ψ∗(s) | 0 ≤ s ≤ 2} = ψ∗(1) = 0. Also we have
(see [33], Sect. 24)

(0, 2) = ridom ψ∗ ⊂ rangeψ′ ⊂ dom ψ∗ = [0, 2].
Keeping in mind t(s) = ψ′−1(s) = ψ∗′

(s) we obtain the following identity

s = ψ′(t) ≡ ψ′(ψ∗′
(s)). (7)

By differentiating the identity (7) we obtain 1 = ψ′′(ψ∗′
(s))ψ∗′′

(s) and again using
t = ψ∗′

(s) we have

ψ∗′′
(s) = 1

ψ′′(ψ∗′
(s))

= 1

ψ′′(t)
.

From A5, b) we obtain ψ∗′′
(s) ≤ ψ∗′′(1) = −2, ∀s ∈ (0, 2), or

A6. −ψ∗′′
(s) ≥ 2, ∀s ∈ (0, 2).

Let ϕ : [0, 2] → [0, 2 ln 2] be defined by formula

ϕ(s) = −ψ∗(s) = (2 − s) ln(2 − s)+ s ln s. (8)

We will call ϕ the Fermi-Dirac (FD) kernel (see Fig. 2).

ϕ(s)�

s
�

21

2 ln 2

Fig. 2.

The correspondent ϕ–divergence distance function, which will be introduced later,
we will call Fermi-Dirac distance.

Proposition 2. The FD kernel has the following properties.

B1. ϕ(s) is nonnegative and strongly convex on (0,2);
B2. ϕ(1) = ϕ′(1) = 0;
B3. ϕ′(s) = ln s − ln(2 − s), lims→0+ ϕ′(s) = −∞, lims→2− ϕ′(s) = +∞;
B4. ϕ′′(s) = s−1 + (2 − s)−1 ≥ 2, ∀s ∈ (0, 2);
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The properties of the FD kernel can be verified directly.
We conclude the section by introducing a modification of LST ψ. There are two

main reasons for it. First of all from A2 we have

1 < ψ′(t) < 2, ∀t ∈ (−∞, 0) (9)

The critical element in the NR multipliers method, which we describe in Sect. 6 is the
formulas for the Lagrange multipliers update λs+1

i = λs
iψ

′ (ks
i ci(xs+1)

)
, i = 1, . . . ,m.

From (9) we have λs
i < λ

s+1
i < 2λs

i . It means that none of the Lagrange multipliers can
be increased more that twice independent on the constraint violation and the value of
the scaling parameter.

On the other hand due to A2 for any i : ci(xs+1) > 0 the Lagrange multiplier λs
i can

be reduced practically to zero if ci(xs+1) or ks
i or both are large enough. Such asymmetry

can potentially compromise the convergence.
The second reason is also related to (9). We have s = ψ′(t) → 2− ⇒ ψ′′(t) → 0

and ψ′′(t) < 0, so s → 2− ⇒ ψ∗′′
(s) = (

ψ′′(t)
)−1 → −∞ or

s → 2− ⇒ ϕ′′(s) → ∞. (10)

The property (10) can potentially compromise the convergence of the Dual Interior Prox
method, which is equivalent to the NR multipliers method.

Therefore along with LST (6) we consider the following modification ψ̄ : R →
(−∞, 2 ln 2), see Fig. 3, which is defined by formula

ψ̄(t) =
{
ψ(t) = 2 ln 2S(t, 1), t ≥ − ln 2
q(t) = at2 + bt + c, t ≤ − ln 2,

(11)

ψ̄(t)
�

t
�

2 ln 2

�
�
�

�
�

�
�
�

|

Fig. 3.

We find the parameters of the parabolic branch from ψ(− ln 2) = q(− ln 2),
ψ′(− ln 2) = q′(− ln 2) and ψ′′(− ln 2) = q′′(− ln 2), to ensure that ψ̄ ∈ C2. By
direct calculation we obtain a = −2/9, b = 4

3 (1− 1
3 ln 2), c = 10

3 ln 2− 2
9 ln2 2−2 ln 3.

So the properties A1–A4 and A5 b) remain true for the modification ψ̄. At the same
time

lim
t→−∞ ψ̄

′(t) = ∞ (12)
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The Fenchel conjugate ψ̄∗ : (0,∞) → (−∞, 0) is defined as follows

ψ̄∗(s) =
{
ψ∗(s), 0 < s ≤ 4/3 = ψ′(− ln 2)
q∗(s) = (4a)−1(s − b)2 − c, 4/3 ≤ s < ∞.

Then instead of A6 we have

−ψ̄∗′′
(s) ≥ 2, ∀s ∈ (0,∞). (13)

We define the modified Fermi-Dirac kernel ϕ̄ : (0,∞) → (0,∞) by formula

ϕ̄(s) =
{−ψ∗(s), 0 < s ≤ 4/3

−q∗(s), 4/3 ≤ s < ∞
and assume that ϕ̄(s) = +∞, for s ∈ (−∞, 0).

The modified FD kernel ϕ̄ has the following properties, which correspond to B1–B4
(see Fig. 4):

B̄1. ϕ̄(s) ≥ 0, s ∈ (0,∞) is nonnegative and strongly convex on (0,∞);
B̄2. ϕ̄(1) = ϕ̄′(1) = 0;
B̄3. lims→0+ ϕ̄′(s) = −∞, lims→∞ ϕ′(s) = +∞;
B̄4. ϕ̄′′(s) ≥ 2, ∀s ∈ (0,∞).

ϕ̄(s)�

s
�

21

2 ln 2

|
4
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Fig. 4.

Also for ϕ̄(s) we have

ϕ̄′′(s) =
{
ϕ′′(s), 0 < s ≤ 4/3
−(2a)−1 = 2.25, 4/3 ≤ s < ∞.

So along with B̄1–B̄4 the modified FD kernel ϕ̄ possesses the following extra property

ϕ̄′′(s) = −ψ̄∗′′ ≤ 2.25, ∀s ∈ [1,∞).(B̄5)

The transformation ψ̄ relates to ψ as Penalty-Barrier [3] relates to the MBF transform-
ation ψ(t) = ln(t + 1). However the motivations for MBF and LS modifications are
fundamentally different.
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We shall see later that in LS multipliers methods the parabolic branch of ψ̄ can be
used only a finite number of steps. In fact for the scaling parameter k > 0 large enough
it can happen only once. Hence from some point on only LS transformation governs the
computational process in primal space and only FD kernel ϕ = −ψ∗ does it in the dual
space.

Therefore we will retain ψ and ϕ as our notation in the rest of the paper keeping
in mind that ψ possesses properties A1–A4 and A5(b) but instead of A5(a) has the
property (12) and at the same time, ϕ along with the properties B̄1–B̄4 has the extra
property B̄5, i.e.

ψ(t) ≡
{
ψ(t), t ≥ − ln 2
q(t), t ≤ − ln 2,

ϕ(s) ≡
{−ψ∗(s), 0 < s ≤ 4/3

−q∗(s), 4/3 ≤ s < ∞ .

4. Equivalent problem and Log-Sigmoid Lagrangian

For any given vector k = (k1, . . . , km) ∈ Rm++ due to A1–A2 we have

ci(x) ≥ 0 ⇔ k−1
i ψ(kici(x)) ≥ 0, i = 1, . . . ,m. (14)

Therefore the problem

x∗ ∈ X∗ = Argmin
{

f(x)
∣∣k−1

i ψ(kici(x)) ≥ 0, i = 1, . . . ,m
}

(15)

is equivalent to the original problem P .
The Lagrangian L : Rn × Rm++ × Rm++ → R for the equivalent problem (15) –

Log-Sigmoid Lagrangian (LSL) is given by formula

L(x, λ,k) = f(x)−
m∑

i=1

λi k
−1
i ψ(kici(x)) (16)

The following lemma establishes the basic LSL properties at any K-K-T’s pair
(x∗, λ∗).

Lemma 1. For any k ∈ Rm++ any K-K-T’s pair (x∗, λ∗) the following properties hold
true.

1. L(x∗, λ∗,k) = L(x∗, λ∗)+ 2
m∑

i=1
k−1

i λ∗
i ln cosh(0.5kici(x∗)) = L(x∗, λ∗) = f(x∗)

2. ∇xL(x∗, λ∗,k) = ∇x L(x∗, λ∗) = ∇ f(x∗)−∑m
i=1 λ

∗
i ∇ci(x∗) = 0

3. ∇2
xxL(x

∗, λ∗,k)=∇2
xx L(x∗, λ∗)+0.5∇c(x∗)T K�∗∇c(x∗), where K =diag(ki)

m
i=1,

�∗ = diag(λ∗
i )

m
i=1.

Proof. Property 1 follows from A1 and the complementary condition (2). The Property 2
follows from A2 and (2). Property 3 follows from A2 and A3.
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Remark 1. In view of λ∗
i = 0, i = r + 1, . . . ,m Property 3 can be rewritten as follows

∇2
xxL(x

∗, λ∗,k) = ∇2
xx L(x∗, λ∗)+ 0.5∇c(r)(x

∗)T Kr�
∗
r ∇c(r)(x

∗),

where Kr = diag(ki)
r
i=1, �∗

r = diag(λi)
m
i=1. Let k > 0 and Kr = k�∗−1

r , then

∇2
xxL(x

∗, λ∗,k) = ∇2
xx L(x∗, λ∗)+ 0.5k∇c(r)(x

∗)T ∇c(r)(x
∗),

which is exactly the Hessian of the Quadratic Augmented Lagrangian [12], [29].

The similarity between LSL and Quadratic Augmented Lagrangian will play an
important role in our future considerations.

If ki = . . . = km = k, then

L(x, λ,k) ≡ L(x, λ, k) = f(x)− k−1
m∑

i=1

λiψ(kci(x)). (17)

Lemma 2. If f(x) and all ci(x) ∈ C2 then for any given pair (λ,k) ∈ Rm++ ×Rm++ the
LSL Hessian is positive definite for any x ∈ Rn, i.e. L(x, λ,k) is strictly convex in Rn

and strongly convex on any bounded set in Rn.

Proof. The proof follows directly from the formula for the LSL Hessian.

∇2
xxL(x, λ,k) =∇2

xx L(x, λ̂)− ∇cT
(p)(x)K p�p�

′′(k(p)c(p)(x)
)∇c(p)(x)

− Kn�n�
′′(k(n)c(n)(x)),

where λ̂ = �′(k(p)c(p)(x)))λ,�′(k(p)c(p)(x)) = diag(ψ′(kici(x)))
p
i=1,�′′(k(p)c(p)(x))

= diag(ψ′′(kici(x)))
p
i=1, �′′(k(n)c(n)(x)) = diag(ψ′′(ki xi))

n
i=1, K p = diag(ki)

p
i=1,

Kn = diag(kp+ j)
n
j=1,�p = diag(λi)

p
i=1,�n = diag(λi)

n
i=1, and the convexity of f(x)

and all −ci(x).

Lemma 3. If X∗ is bounded then for any pair (λ,k) ∈ Rm++ × Rm++ there exists

x̂ = x̂(λ,k) = argmin{L(x, λ,k) |x ∈ Rn}
Proof. From boundness of X∗ follows (see [1])

f∞(d) ≤ 0
(−ci)∞(d) ≤ 0, i = 1, . . . ,m

⇒ d = 0, (18)

where f∞ and (−ci)∞ are recession functions of f and −ci . Using considerations
similar to those in [1] or [6] and keeping in mind the convexity of f , concavity of ci the
property (12) and (18) we obtain that for any fixed λ ∈ Rm++ and k ∈ Rm++. the LSL
L(x, λ,k) has no direction of recession in x, i.e. for any nontrivial direction z ∈ Rn we
have

lim
t→∞L(x + tz, λ,k) = ∞.
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Therefore the set

X̂(λ,k) = {x̂ |L(x̂, λ,k) = inf
x∈Rn
L(x, λ,k)}

is not empty and bounded ([33], Theorem 27.1d).
Moreover for (λ,k) ∈ Rm++ × Rm++ due to Lemma 2 the set X̂(λ,k) contains only

one point x̂ = x̂(λ,k) = argmin{L(x, λ,k) |x ∈ Rn}. The uniqueness of the minimizer
x̂(λ,k) means that in contrast to the dual function d(λ) = inf{L(x, λ) | x ∈ Rn}, which
is based on the Lagrangian for the initial problem (P), the dual function dk(λ) =
min{L(x, λ,k) |x ∈ Rn} is smooth if f and ci are smooth.

Besides, keeping in mind that x(·) = x(λ,k) = argmin{L(x, λ,k) | x ∈ Rn}, i.e.
∇xL(x(·), ·) = 0 we obtain for the gradient of the dual function the following formula:

∇dk(λ) = ∇xL(x(·), ·)∇λx(·)+ ∇λL(x(·), ·) = ∇λL(x(·), ·)
= −(k−1

1 ψ(k1c1(x(·))), . . . , k−1
m ψ(kmcm(x(·)))

)
.

5. Log-Sigmoid multipliers methods – Interior Prox methods with Fermi-Dirac
Entropy distance

In this section we consider the multipliers method, where along with the Lagrange
multipliers the scaling vector k ∈ Rm++ will be updated from step to step by formulas,
which have been suggested by P. Tseng and D. Bertsekas in [37] for the exponential
multipliers method.

Let (λ,k) ∈ Rm++×Rm++, λ0 = e = (1, . . . , 1), k0 = (k0
1, . . . , k0

m), k0
i = k/λ0

i = k,
i = 1, . . . ,m and k > 0. The LS multipliers method generates three sequences {xs},
{λs} and {ks} by formulas

xs+1 = argmin{L(x, λs,ks) | x ∈ Rn} (19)

λs+1
i = λs

iψ
′(ks

i ci(x
s+1)

)
, i = 1, . . . ,m (20)

ks+1
i = k

(
λs+1

i

)−1
, i = 1, . . . ,m. (21)

From (20), ψ′(0) = 1 and the mean value formula we obtain

λs+1
i − λs

i = λs
i

(
ψ′(ks

i ci(x
s+1)

)− ψ′(0)
) = λs

i ks
iψ

′′(θs
i ks

i ci(x
s+1)

)
ci(x

s+1),

where 0 < θs
i < 1. Using (21) we can rewrite the multiplicative formula (20) for the

Lagrange multipliers update in an additive form

λs+1
i = λs

i + kψ′′(·)i,sci(x
s+1), i = 1, . . . ,m.

So the method (19)–(21) one can view as an implicit rescaled subgradient method for
dual problem, which guarantees λs ∈ Rm++ independent on k > 0.

It is equivalent to the following quadratic prox method for the dual problem in the
rescaled dual space.

λs+1 = argmax
{
d(λ)− 0.5k−1

m∑
i=1

(−ψ′′(·)i,s)−1(λi − λs
i

)2 ∣∣λ ∈ Rm}.
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Now we will show that (19)–(21) is equivalent to an Interior Prox method with
second order ϕ–divergence distance function, which are based on FD kernel ϕ.

The dual problem associated with P consists in finding

λ∗ ∈ L∗ = Argmax
{
d(λ)

∣∣λ ∈ Rm+
}
.(D)

The vector xs+1 is an unconstrained minimizer of LSL in x, i.e.

∇xL(x
s+1, λs,ks) = ∇ f(xs+1)−

m∑
i=1

λs
iψ

′(ks
i ci(x

s+1)
)∇ci(x

s+1) = 0. (22)

Using the formula (20) we can rewrite (22) as follows:

∇xL(x
s+1, λs,ks) = ∇ f(xs+1)−

m∑
i=1

λs+1
i ∇ci(x

s+1) = ∇x L(xs+1, λs+1) = 0. (23)

It means that d(λs+1) = L(xs+1, λs+1) = min
x∈Rn

L(x, λs+1) and λs+1 ∈ Rm++.

In other words λs+1 is an interior point for the dual problem (D), while the primal
approximation xs+1 might be infeasible.

From the definition of the dual function we have(− c1(x
s+1), . . . ,−cm(x

s+1)
)T ∈ ∂d(λs+1), (24)

where ∂d(λs+1) denotes the subdifferential of d(λ) at λs+1. We can rewrite (24) in the
following way

0 ∈ ∂d(λs+1)+ (
c1(x

s+1), . . . , cm(x
s+1)

)T
. (25)

Now let’s consider the formula for the Lagrange multipliers update

λs+1
i = λs

iψ
′(ks

i ci(x
s+1)

)
, i = 1, . . . ,m,

we obtain

ci(x
s+1) = (

ks
i

)−1
ψ′−1(

λs+1
i /λs

i

)
, i = 1, . . . ,m (26)

The existence of ψ′−1 is guaranteed by A3.
The inclusion (25) one can rewrite as follows:

0 ∈ ∂d(λs+1)+
((

ks
1

)−1
ψ′−1(

λs+1
1 /λs

1

)
, . . . ,

(
ks

m

)−1
ψ′−1(

λs+1
m /λs

m

))T
. (27)

Using again the formula ψ′−1 = ψ∗′ we can rewrite (26) as

ci(x
s+1) = (

ks
i

)−1
ψ∗′(

λs+1
i /λs

i

)
, i = 1, . . . ,m (28)

and (27) as

0 ∈ ∂d(λs+1)+
((

ks
1

)−1
ψ∗′(

λs+1
1 /λs

1

)
, . . . ,

(
ks

m

)−1
ψ∗′(

λs+1
m /λs

m

))T
. (29)
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Using ϕ(t) = −ψ∗(t) we can rewrite (29) as follows

0 ∈ ∂d(λs+1)−
((

ks
1

)−1
ϕ′(λs+1

1 /λs
1

)
, . . . ,

(
ks

m

)−1
ϕ′(λs+1

m /λs
m

))T
. (30)

From B1, concavity of d(λ) and (21) it follows that the inclusion (30) is the optimality
criteria for λs+1 = (λs+1

1 , . . . , λs+1
m ) to be a positive unconstrained maximizer in λ of

the following function

H(λ, λs,ks) = d(λ)−
m∑

i=1

(
ks

i

)−1
λs

iϕ
(
λi/λ

s
i

) = d(λ)− k−1
m∑

i=1

(
λs

i

)2
ϕ
(
λi/λ

s
i

)
. (31)

The function H(λ, λs,ks) is strongly concave in λ, so the unconstrained maximizer
λs+1 is unique.

The function D2 : R+m × Rm++ ×Rm++ → R+, which is defined by formula

D2(u, v) =
m∑

i=1

v2
i ϕ(ui/vi) (32)

is the second order ϕ–divergence distance function, which is based on FD kernel ϕ(t).
We will call D2(u, v) the second order Fermi-Dirac (FD) Entropy distance function.

Due to ϕ(t) = +∞, t ∈ (−∞, 0) and keeping in mind (30) we obtain

λs+1 = argmax
{
d(λ)− k−1

m∑
i=1

(
λs

i

)2
ϕ
(
λi/λ

s
i

) ∣∣ λ ∈ Rm}
= argmax

{
d(λ)− k−1 D2(λ, λ

s)
∣∣λ ∈ Rm} (33)

We proved the following theorem.

Theorem 1. If P is a convex programming problem and the assumption A and B are
satisfied, then for any k > 0 and (λ0,k0) ∈ Rm++ × Rm++:

1) the LS method (19)–(21) is executable;
2) the LS method (19)–(21) is equivalent to the Interior Prox method (33) for the dual

problem with the second order FD distance function.
3) both the primal {xs}∞s=0 and the dual {λs}∞s=0 sequences are unique.

If ks
1 = · · · = ks

m = k then the method (19)–(21) turns into the following multipliers
method

xs+1 = argmin{L(x, λs, k) | x ∈ Rn} (34)

λs+1
i = λs

iψ
′(kci(x

s+1)
)
, i = 1, . . . ,m. (35)

By repeating the arguments of Theorem 1 it is easy to see that the multipliers method
(34)–(35) is equivalent to the following Interior Prox method

λs+1 = argmax
{
d(λ)− k−1

m∑
i=1

λs
iϕ
(
λi/λ

s
i

) ∣∣ λ ∈ Rm}
= argmax

{
d(λ)− k−1 D1(λ, λ

s)
∣∣ λ ∈ Rm}, (36)

where D1(u, v) = ∑m
i=1 viϕ(ui/vi) is the first order FD distance.
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Note that the first and the second order FD distance functions have all the charac-
teristics of a distance function:

1. For any pair (u, v) such that u ∈ Rm+ and v ∈ Rm++ due to Property B1 from Assertion
3.2 we have

Di(u, v) ≥ 0

and due to Properties B2 and B4 we have

2. Di(u, v) = 0 ⇔ u = v, i = 1, 2

Aboutϕ–divergence functions and their applications see [34] and references therein.
A number of ϕ–divergence distance functions associated with exponential, barrier

transformations as well as transformations that are based on quadratic extrapolation
technique have been considered lately, see e.g. [2], [3], [14], [27], [35], [37], and
references therein.

Unfortunately the FD kernel does not possess the properties, which were critical for
the convergence proofs of the multipliers method (34)–(35), which leads to the Interior
Prox Method with the first order ϕ divergence distance (see [14], [27], [35]).

On the other hand transformation ψ̄ has an extra important property (13), which
leads to strong convexity property B̄4 for the modified FD kernel ϕ̄ on the top to the
standard properties of a dual kernel (see [3]).

The lack of strong convexity of the dual kernels, is one of the reasons for regular-
ization of the dual kernels (see formula (2.12) in [2]). We will discuss the consequences
of such regularization later. Now we would like to emphasize that the properties B̄4 and
B̄5 make the second order FD distance D2(u, v) close to the Quadratic distance in the
truncated dual space, which corresponds to the primal active constraints.

Also it makes the Interior Prox Method (33) close to the Martinet’s Quadratic Prox
method [20] and the mapping v → Jk(v) = max{H(u, v,k) | u ∈ Rm} close to Moreau
proximal mapping [22] in the truncated dual space.

On the other hand, as we will see later, the parabolic branch of ψ̄ can be used only
a finite number of steps. For k > 0 large enough it can happen just once, therefore
the multipliers method (19)–(21) has all the advantages of Nonquadratic Augmented
Lagrangians for inequality constraints, namely the LSL remains as smooth as the initial
functions and LS multipliers methods keep the Lagrange multipliers positive without
any particular care.

So we are dealing with a new class of Nonquadratic Augmented Lagrangians and
corresponding Prox methods, which combine the best properties of the Quadratic Prox
and Interior Prox and at the same time are free from their drawbacks.

6. Convergence of the Log-Sigmoid multipliers method

The convergence analysis of exponential, barrier and other multipliers methods asso-
ciated with Nonquadratic Augmented Lagrangians has proved surprisingly difficult. In
particular, the exponential multipliers method was introduced as early as 1973, see [17].
Only in 1993 it was proven the ergodic convergence [37]. For the exponential multipliers



Nonlinear rescaling vs. smoothing technique in convex optimization 211

method with “dynamic” scaling parameters update by (21) even ergodic convergence
was problematic (see [37], p. 3).

Partially the difficulties were overcome in [3] within more general interaction scheme
between the scaling parameters and Lagrange multipliers. The main results in [3] are
the boundness of the primal-dual sequence and that any limit point of the primal-dual
sequence is the primal-dual solution. These results were extended and improved in [2],
establishing that inexact proximal version generates bounded sequence with every limit
point being an optimal solution.

Moreover in [2] the convergence results were strengthened for a particular second
order dual Prox method type (33) with a regularized MBF kernel. By adding the quadratic
term to the dual kernel, which corresponds to logarithmic MBF, the authors in [2]
proved the global convergence of the dual sequence and established under assumptions
A and B that the rate of convergence is O(ks)−1. Unfortunately such modification of
the dual kernel leads to substantial difficulties, when it comes to finding the primal
transformation, which is the Fenchel conjugate for the dual kernel. For example, in case
of exponential transformation it leads to solving a transcendent equation. In case of
the kernel, which corresponds to the Logarithmic MBF transformation the closed form
solution of the corresponding equation is available but the primal transformation (see
Sect. 7 in [2]) is substantially different from the original MBF transformation, which is
proven to be very efficient numerically (see [4], [5], [23]).

So it seems that considering alternative ways for proving convergence and espe-
cially to estimate the rate of convergence of the NR method (19)–(21) for the original
transformations under minimum assumption on the input data still remains an important
issue.

In this section we present a new convergence proof and estimate the convergence
rate of the LS multipliers method (19)–(21) and its dual equivalent (33) under very mild
assumptions A and B on the input data.

The basic ingredients of the convergence proof are the equivalence of the LS multi-
pliers method (19)–(21) to the Prox-method (33) with second order FD distance function
and the properties B̄4 and B̄5.

Let a = d(λ∗)−d(λ0),�0 = {
λ ∈ Rm+ : d(λ) ≥ d(λ0)

}
is bounded due to concavity

of d(λ) and boundness of L∗ (see Corollary 20 in [10]), L0 = max

{
max

1≤i≤m
λi : λ ∈ �0

}
,

I−
l+1 = {i : ci(xl+1) < 0}. We consider the maximum constraints violation

vl = max
{
−ci(x

l) | i ∈ I−
l

}

and the estimation for the duality gap

dl =
m∑

i=1

λl
i |ci(x

l)| ≥
m∑

i=1

λl
i ci(x

l).

Let v̄s = min
1≤l≤s

vl and d̄s = min
1≤l≤s

dl.
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Theorem 2. If the assumption A and B are satisfied then

1) the dual sequence {λs} is bounded and the following estimation

d(λs+1)− d(λs) ≥ 2k−1‖λs+1 − λs‖2

holds true,
2) the primal sequence {xs} is bounded and asymptotically feasible and the following

estimation holds

d(λs+1)− d(λs) ≥ 32

81
k
∑

i∈I−
s+1

c2
i (x

s+1);

3) v̄s ≤ 9
√

a
4
√

2
(sk)−0.5, d̄s ≤ 2.25L0

√
am/2(ks)−0.5

4) every limit point of the primal-dual sequence {xs, λs} is the primal-dual solution and

f(x∗) = lim
s→∞ f(xs) = lim

s→∞ d(λs) = d(λ∗).

Also lims→∞ ρ(xs, X∗) = 0, lims→∞ ρ(λs, L∗) = 0, where ρ(x,Y ) = miny∈Y ‖x − y‖.

Proof. 1) We start by establishing the dual monotonicity. It follows immediately from
(33) and D2(λ

s, λs) = 0, i.e.

d(λs+1)− k−1 D2(λ
s+1, λs) ≥ d(λs)− k−1 D2(λ

s, λs) = d(λs). (37)

Taking into account D(λs+1, λs) > 0 for λs+1 �= λs , we obtain

d(λs+1) ≥ d(λs)+ k−1 D2(λ
s+1, λs) > d(λs). (38)

If d(λs+1) = d(λs) ⇒ D2(λ
s+1, λs) = 0 ⇒ λs+1 = λs. Due to the formula (20)

for the Lagrange multipliers update the equality λs+1
i = λs

i leads to ci(xs+1) = 0,
i = 1, . . . ,m. So if λs+1 = λs ∈ Rm++ then c(xs+1) = 0 and for the pair (xs+1, λs+1)

the K-K-T’s conditions hold, therefore xs+1 = x∗ ∈ X∗, λs+1 = λ∗ ∈ L∗.
In other words we can either have d(λs+1) > d(λs) or λs+1 = λs = λ∗ and

xs+1 = x∗.
Let’s find the lower bound for d(λs+1) − d(λs). From the concavity of d(λ) and

−c(xs+1) ∈ ∂d(λs+1) we obtain

d(λ)− d(λs+1) ≤ (−c(xs+1), λ− λs+1)

or

d(λs+1)− d(λ) ≥ (c(xs+1), λ− λs+1). (39)

Keeping in mind A3 we conclude that ψ′−1 exists. Using the formula for the Lagrange
multipliers update we have

ci(x
s+1) = (

ks
i

)−1
ψ′−1(

λs+1
i /λs

i

)
,
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then using ψ′−1 = ψ∗′, we obtain

ci(x
s+1) = (

ks
i

)−1
ψ∗′(

λs+1
i /λs

i

)
, i = 1, . . . ,m.

Using ψ∗′(1) = ψ∗′(λs
i /λ

s
i ) = 0 and (39) we obtain

d(λs+1)− d(λ) ≥
m∑

i=1

(
ks

i

)−1

(
ψ∗′

(
λs+1

i

λs
i

)
− ψ∗′

(
λs

i

λs
i

)) (
λi − λs+1

i

)
. (40)

Using the mean value formula

ψ∗′
(
λs+1

i

λs
i

)
− ψ∗′

(
λs

i

λs
i

)
= −ψ∗′′

(·)(λs
i

)−1(
λs

i − λs+1
i

)
,

the update formula (21), inequality (40) and (13) we obtain for λ = λs the following
inequality

d(λs+1)− d(λs) ≥ 2k−1‖λs − λs+1‖2, (41)

which is typical for the Quadratic Prox method (see [11], [20], [24]).

2) We remind that the set �0 = {λ : d(λ) ≥ d(λ0)} is bounded and so is the sequence
{λs} ⊂ �0.

Let I−
s+1 = {i : ci(xs+1) < 0} be the set of indices of the constraints, which were

violated at the step s + 1. Using ψ∗′(1) = ψ∗′(λs
i /λ

s
i ) = 0, the mean value formula and

(28) we obtain

−ci(x
s+1) = (

ks
i

)−1

[
ψ∗′

(
λs

i

λs
i

)
− ψ∗′

(
λs+1

i

λs
i

)]

= k−1 (−ψ∗′′
(·)) (λs+1

i − λs
i

) ≤ k−1ϕ′′(·)∣∣λs+1
i − λs

i

∣∣.
Using B̄5 we have ∣∣λs+1

i − λs
i

∣∣ ≥ (2.25)−1k
(− ci(x

s+1)
)
, i ∈ I−

s+1.

Combining the last estimation with (41) we obtain

d(λs+1)− d(λs) ≥ 32

81
k
∑

i∈I−
s+1

c2
i (x

s+1). (42)

3) Let’s consider vl+1 = max
i∈I−

l+1

(−ci(xl+1)
)− the maximum constraints violation at the

step l + 1, then from (42) we have

d(λl+1)− d(λl) ≥ 32

81
kv2

l+1. (43)
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Summing up (43) from l = 1 to l = s we obtain

a = d(λ∗)− d(λ0) ≥ d(λs+1)− d(λ0) ≥ 32

81
k

s∑
l=0

v2
l+1,

therefore vs → 0. Let v̄s = min{vl | 1 ≤ l ≤ s}, then

v̄s ≤ 9
√

a

4
√

2
(ks)−0.5 = O((ks)−0.5). (44)

The primal asymptotic feasibility follows from vs → 0.
Now we will prove that similar to (44) estimation is taking place for the duality gap.
Using (20) and (21) we have

λs+1
i − λs

i = ψ′(ks
i ci(x

s+1)
)
λs

i − ψ′(0)λs
i = ks

iλ
s
iψ

′′(·)ci(x
s+1)

= kψ′′(·)ci(x
s+1) = kψ′′(·)λs+1

i ci(xs+1)

λs+1
i

.

Hence

∣∣λs+1
i − λs

i

∣∣ = k|ψ′′(·)| ∣∣λs+1
i ci(xs+1)

∣∣
λs+1

i

, i = 1, . . . ,m. (45)

We remind that L0 = max

{
max

1≤i≤m
λi : λ ∈ �0

}
, therefore λs

i ≤ L0, i = 1, . . . ,m;

s ≥ 1. In view ofψ′′′(t) = −2et(1−et)(1+et)−3 < 0, ∀t ∈ [− ln 2, 0],ψ′′(0) = −0.5
and ψ′′(t) = − 4

9 , ∀t ∈ (−∞,− ln 2) we have |ψ′′(t)| ≥ 4
9 , ∀t < 0. Therefore from

(45) we have

∣∣λl+1
i − λl

i

∣∣ ≥ 4k

9L0

∣∣λl+1
i ci(x

l+1)
∣∣, i ∈ I−

l+1 = {
i : ci(x

l+1) < 0
}
. (46)

Now we consider the set I+
l+1 = {i : ci(xl+1) ≥ 0}. Using (20) from (45) we obtain

∣∣λl+1
i − λl

i

∣∣ = k
∣∣ψ′′ (θ l

i k
l
ici(xl+1)

)∣∣ λl+1
i ci(xl+1)

λl
iψ

′ (kl
ici(xl+1)

) , i ∈ I+
l+1, (47)

where 0 < θ l
i < 1.

For 0 < θ < 1 and t ≥ 0 we have

|ψ′′(θt)|
ψ′(t)

= eθt(1 + et)

(1 + eθt)2
≥ eθt(1 + eθt)

(1 + eθt)2
≥ eθt

1 + eθt
≥ (1 + e−θt)−1 ≥ 1

2
.

Hence

∣∣λl+1
i − λl

i

∣∣ ≥ k

2L0
λl+1

i ci(x
l+1), i ∈ I+

l+1. (48)
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Combining (46) and (48) we obtain the inequalities

∣∣λl+1
i − λl

i

∣∣ ≥ 4

9

k

L0

∣∣λl+1
i ci(x

l+1)
∣∣, i = 1, . . . ,m; l ≥ 0. (49)

Using (41) and (49) we obtain

d(λl+1)− d(λl) ≥ 2k−1
m∑

i=1

(
λl+1

i − λl
i

)2 ≥ 32k

81L2
0

m∑
i=1

(
λl+1

i ci(x
l+1)

)2
. (50)

Summing up (50) from l = 0 to l = s we obtain

s∑
l=0

m∑
i=1

(
λl+1

i ci(x
l+1)

)2 ≤ 81L2
0

32k
(d(λs)− d(λ0))

≤ 81L2
0

32k
(d(λ∗)− d(λ0)) ≤ 81L2

0a

32k
. (51)

Using the well known inequality

1

m

(
m∑

i=1

ti

)2

≤
m∑

i=1

t2
i

from (51) we obtain

1

m

s∑
l=0

(
m∑

i=1

λl+1
i ci(x

l+1)

)2

≤
s∑

l=0

m∑
i=1

(
λl+1

i ci(x
l+1)

)2 ≤ 81L2
0a

32k

or

s∑
l=0

(
m∑

i=1

λl+1
i ci(x

l+1)

)2

≤ 81mL2
0a

32k
.

So for the “best” in s steps duality gap

d̄2
s = min

1≤l≤s

(
m∑

i=1

λl+1
i ci(x

l+1)

)2

we obtain

d̄2
s ≤ 81mL2

0a

32ks
.

Or for the “best” in s steps duality gap we have the following estimation

d̄s ≤ 2.25
√

am/2L0(ks)−0.5 = O((ks)−0.5).

The boundness of {xs} follows from vs → 0 and boundness of �. The boundness
of� one can assume without restricting the generality. It follows from the Corollary 20
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in [10] and boundness of X∗, by adding one extra constraint c0(x) = M − f(x) ≥ 0 for
M > 0 large enough.

4) Summing up (38) for s = 1, . . . , N we obtain

k−1
N∑

s=1

m∑
i=1

(λs
i )

2
ϕ

(
λs+1

i

λs
i

)
≤ d(λN+1)− d(λ0) ≤ d(λ∗)− d(λ0)

or

lim
s→∞

m∑
i=1

(λs
i )

2
ϕ

(
λs+1

i

λs
i

)
= 0.

Keeping in mind λs
i > 0 and ϕ

(
λs+1

i
λs

i

)
≥ 0 we obtain

lim
s→∞

(
λs

i

)2
ϕ

(
λs+1

i

λs
i

)
= 0, i = 1, . . . ,m. (52)

The bounded dual sequence {λs} has a converging subsequence. Without restricting the
generality let’s assume that

lim
s→∞λ

s = λ̄.

We will consider two sets of indices I0 = {i : λ̄i = 0} and I+ = {i : λ̄i > 0}. For
i ∈ I+ from (52) we have

lim
s→∞ϕ

(
λs+1

i

λs
i

)
= 0 ⇒ lim

s→∞
λs+1

i

λs
i

= 1.

Then using (20) we have

lim
s→∞ψ

′ (ks
i ci(x

s+1)
)

= 1, i ∈ I+. (53)

In view of lim
s→∞ λs

i = λ̄i > 0, i ∈ I+ we have ks
i ≥ 0.5kλ̄−1

i > 0, therefore from (46)

we obtain lims→∞ ci(xs+1) = 0, i ∈ I+.
For i ∈ I0 due to the primal asymptotic feasibility, which follows from vs → 0, we

obtain lims→∞ λs
i ci(xs) = 0, i ∈ I0. Therefore,

lim
s→∞ λs

i ci(x
s) = 0 , i = 1, . . . ,m .

So we proved the asymptotic complementarity condition.

4) Passing to the limit in (23) we obtain

∇x L(x̄, λ̄) = ∇ f(x̄)−
m∑

i=1

λ̄i∇ci(x̄) = 0
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for any limit point (x̄, λ̄) of {xs, λs}, which together with

ci(x̄) ≥ 0, λ̄i ≥ 0, λ̄i ci(x̄) = 0, i = 1, . . . ,m

allow to conclude that x̄ = x∗, λ̄ = λ∗.
From the dual monotonicity we obtain

lim
s→∞ d(λs) = d(λ∗).

Invoking the asymptotic complementarity we obtain

d(λ∗) = lim
s→∞ d(λs) = lim

s→∞ L(xs, λs) = lim
s→∞ f(xs) = f(x∗). (54)

Keeping in mind that X∗ = {x ∈ � : f(x) ≤ f(x∗)} from primal asymptotic feasibility
and (54) we obtain lims→∞ ρ(xs, X∗) = 0 (see [24] Lemma 11, Chap. 9, §1).

On the other hand, taking into account L∗ = {λ ∈ Rr++ : d(λ) ≥ d(λ∗)} and (54)
we obtain as a consequence of the same Lemma 11 that lims→∞ ρ(λs, L∗) = 0.

Remark 2. It follows from (44) that for any given α > 0 and any i = 1, . . . ,m the
inequality ci(xs) ≤ −α is possible only for a finite number of steps. So the quadratic
branch (ci(xs) ≤ − ln 2) in the modification (12) can be used only a finite number of
times, in fact, for k > 0 large enough, just once. Therefore in the asymptotic analysis
we can assume that only the FD kernel is used in (33).

To the best of our knowledge the strongest so far result under the assumptions A and
B for Interior Prox Method (33) was obtained in [2]. It was proven that for the regularized
MBF kernel ϕ(t) = 0.5ν(t − 1)2 + µ(t − ln t − 1), µ > 0, ν > 0 the method (33)
produces a convergent sequence {λs} and the rate of convergence in value is O(ks)−1.

In the next section we show that this estimation can be strengthened under some
extra assumptions on input data by using the similarity between the Interior Prox method
(33) and Quadratic Prox for the dual problem in the truncated rescaled dual space.

7. Rate of convergence

In this section we establish the rate of convergence for the LS multipliers method
(19)–(21) and its dual equivalent (33) under some extra assumptions on the input data.

We will say that for the converging to (x∗, λ∗) primal-dual sequence {xs, λs}∞s=0 the
complementarity condition is satisfied in the strict form if

max
{
λ∗

i , ci(x
∗)
}
> 0, i = 1, . . . ,m. (55)

Theorem 3. If for the primal-dual sequence generated by (19)–(21) the complemen-
tarity condition is satisfied in strict form (55) then for any fixed k > 0 the following
estimation holds true

d(λ∗)− d(λs) = o(ks)−1.
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Proof. We remind that I∗ = {i : ci(x∗) = 0} = {1, . . . , r} is the active constraint set,
then min{ci(x∗)|i∈̄I∗} = σ > 0. Therefore there is such a number s0 that ci(xs) ≥ σ/2,
s ≥ s0, i∈̄I∗. From (20) we have

a) λs+1
i ≤ 2λs

i (1 + e0.5ks
i σ )−1 ≤ λs

i e−0.5ks
i σ → 0 and b) ks

i = k(λs
i )

−1 → ∞, i∈̄I∗.
(56)

On the other hand,

L(x, λs,ks) = f(x)− k−1
r∑

i=1

(
λs

i

)2
ψ
(
ks

i ci(x)
)− k−1

m∑
i=r+1

(
λs

i

)2
ψ
(
ks

i ci(x)
)
.

Keeping in mind ψ(t) ≤ 2 ln 2 and (56) for s > s0 the last term of L(x, λs,ks) can
be estimated by O(

∑m
i=r+1 λ

s0
i exp(−0.5σ

∑s−s0
j=0 ks0+ j

i )). So for s0 large enough and
any s > s0 this term is negligibly small, and instead of L(x, λ,k) we can consider the
truncated LSL L(x, λ,k) := f(x)−∑r

i=1(k
s
i )

−1(λs
i )ψ

(
ks

i ci(x)
)

and the correspondent
truncated Lagrangian L(x, λ) := f(x) − ∑r

i=1 λi ci(x). Accordingly, instead of the
original dual function and the second order FD distance we consider the dual function
d(λ) := inf

x∈Rr
L(x, λ) and the second order FD distance D2(u, v) := ∑r

i=1 v
2
i ϕ(ui/vi)

in the truncated dual space Rr .
For simplicity we retain the previous notations for the truncated LSL, truncated

Lagrangian, correspondent dual function and FD distance.
Below we will assume that {λs}∞s=1, is the truncated dual sequence, i.e. λs =

(λs
1, . . . , λ

s
r ).

Let’s consider the optimality criteria for the truncated Interior Prox method

λs+1 = argmax
{
d(λ)− k−1

r∑
i=1

(
λs

i

)2
ϕ
(
λi/λ

s
i

) ∣∣ λ ∈ Rr}.
We have

c(xs+1)+ k−1
r∑

i=1

λs
iϕ

′(λs+1
i /λs

i

)
ei = 0, (57)

where ei = (0, . . . , 1, . . . , 0) ∈ Rr .
Using ψ∗′(1) = ψ∗′(λs

i /λ
s
i ) = 0 we can rewrite (57) as follows

c(xs+1)+ k−1
r∑

i=1

λs
i

(
ϕ′(λs+1

i /λs
i

)− ϕ′(λs
i /λ

s
i

))
ei = 0.

Using the mean value formula we obtain

c(xs+1)+ k−1
r∑

i=1

ϕ′′
(

1 +
(
λs+1

i

λs
i

− 1

)
θs

i

)(
λs+1

i − λs
i

)
ei = 0, (58)

where 0 < θs
i < 1.
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We remind that −c(xs+1) ∈ ∂d(λs+1), so (58) is the optimality criteria for the
following problem in the truncated dual space

λs+1 = argmax
{
d(λ)− 0.5k−1‖λ− λs‖2

Rs

∣∣ λ ∈ Rr}, (59)

where ‖x‖R = xT Rx, Rs = diag(rs
i )

r
i=1 and rs

i = ϕ′′
(

1 + (
λs+1

i
λs

i
− 1)θs

i

)
= ϕ′′(·), i =

1, . . . , r.
Due to λs

i → λ∗
i > 0 we have lims→∞ λs+1

i /λs
i = 1, i = 1, . . . , r. Keeping in mind

the continuity of ϕ′′(·) and A6, we have

lim
s→∞ rs

i = lim
s→∞ϕ

′′
(

1 +
(
λs+1

i

λs
i

− 1

)
θs

i

)
= ϕ′′(1) = min

0<s<∞ϕ
′′(s) = 2.

Therefore for s0 > 0 large enough and any s > s0 we have 2 ≤ ϕ′′(·) ≤ 3.
It means that for the active constraints the Interior Prox Method (33) is equivalent

to the Quadratic Prox method in the rescaled truncated dual space.
We will show now that the convergence analysis, which is typical for Quadratic Prox

method (see [11], [24], [35] and references therein) can be extended for the Interior Prox
Method (33) in the truncated dual space.

From (41) we have

d(λ∗)− d(λs)− (d(λ∗)− d(λs+1)) ≥ 2k−1‖λs − λs+1‖2

or

vs − vs+1 ≥ 2k−1‖λs − λs+1‖2, (60)

where vs = d(λ∗)− d(λs) > 0. Using the concavity of d(λ) we obtain

d(λ)− d(λs+1) ≤ (−c(xs+1), λ− λs+1)

or

d(λs+1)− d(λ) ≥ (c(xs+1), λ− λs+1).

Using (58) we obtain

d(λs+1)− d(λ) ≥ −k−1(Rs(λ
s+1 − λs), λ− λs+1).

So for λ = λ∗ we have

k−1(Rs(λ
s+1 − λs), λ∗ − λs+1) ≥ d(λ∗)− d(λs+1) = vs+1

or

k−1(Rs(λ
s+1 − λs), λ∗ − λs)− k−1‖λs+1 − λs‖2

Rs
≥ vs+1.

Hence

‖Rs‖ · ‖λs+1 − λs‖ · ‖λ∗ − λs‖ ≥ kvs+1
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or

‖λs+1 − λs‖ ≥ 1

3
kvs+1‖λs − λ∗‖−1. (61)

From (60) and (61) it follows

vs − vs+1 ≥ 2

9
kv2

s+1‖λs − λ∗‖−2

or

vs ≥ vs+1

(
1 + 2

9
kvs+1‖λs − λ∗‖−2

)
.

By inverting the last inequality we obtain

v−1
s ≤ v−1

s+1

(
1 + 2

9
kvs+1‖λs − λ∗‖−2

)−1

. (62)

Further,

d(λs+1) ≥ d(λs+1)− k−1
r∑

i=1

(
λs

i

)2
ϕ
(
λs+1

i /λs
i

) ≥ d(λ∗)− k−1
r∑

i=1

(
λs

i

)2
ϕ
(
λ∗

i /λ
s
i

)
or

k−1
r∑

i=1

(
λs

i

)2
ϕ
(
λ∗

i /λ
s
i

) ≥ vs+1.

Keeping in mind ϕ(1) = ϕ(vs
i /v

s
i ) = ϕ′(1) = ϕ′(vs

i /v
s
i ) = 0 and using twice the mean

value formula from the last inequality we obtain

k−1
r∑

i=1

ϕ′′(·)(λ∗
i − λs

i

)2 = k−1
r∑

i=1

ϕ′′ (1 + θ ′
iθ

′′
i

(
λ∗

i − λs
i

)(
λs

i

)−1
) (
λ∗

i − λs
i

)2

≥ k−1
r∑

i=1

ϕ′′ (1 + θ ′
iθ

′′
i

(
λ∗

i − λs
i

)(
λs

i

)−1
)
θ ′

i

(
λ∗

i − λs
i

)2

= k−1
r∑

i=1

(
λs

i

)2
ϕ
(
λ∗

i /λ
s
i

) ≥ vs+1

where 0 < θ ′
i < 1, 0 < θ ′′

i < 1. Taking into account lims→∞ λs
i = λ∗

i > 0, i = 1, . . . , r
we obtain ϕ′′(·) ≤ 3, s ≥ s0. Therefore 3‖λs − λ∗‖2 ≥ kvs+1, i.e.

2

9
kvs+1‖λs − λ∗‖−2 ≤ 2

3
.

Considering the function (1 + t)−1 it is easy to see that (1 + t)−1 ≤ − 3
5 t + 1,

0 ≤ t ≤ 2
3 .
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Using the last inequality for t = 2
9 kvs+1‖λs − λ∗‖−2 from (62) we obtain

v−1
s ≤ v−1

s+1

(
1 − 3

5
· 2

9
kvs+1‖λs − λ∗‖−2

)
or

v−1
i ≤ v−1

i+1 − 2

15
k‖λi+1 − λ∗‖−2, i = 0, . . . , s − 1. (63)

Summing (62) for i = 0, . . . , s − 1 we obtain

v−1
s ≥ v−1

s − v−1
0 ≥ 2

15
k

s−1∑
i=0

‖λi − λ∗‖−2

By inverting the last inequality we obtain

vs = d(λ∗)− d(λs) ≤ 15

2k
∑s−1

i=0 ‖λi − λ∗‖−2

or

ksvs = 15
2
s

∑s−1
i=0 ‖λi − λ∗‖−2

From ‖λs − λ∗‖ → 0 follows ‖λs − λ∗‖−2 → ∞.

Using the Silverman–Toeplitz theorem [16] we have lims→∞ s−1∑s
i=1 ‖λi −λ∗‖−2

= ∞. Therefore there exists αs → 0 that

vs = 15

2
αs

1

ks
= o

(
(ks)−1). (64)

Remark 3. Although the assumption (55) looks restrictive it is always true for classes
of Interior Point Methods and MBF in LP (see [30], [38]). In convex optimization it is
true, for example, when the Lagrange multipliers for the active constraints are positive
and the gradients are independent.

The estimation (64) can be strengthened. Under the standard second order optimality
conditions the method (19)–(21) converges with Q-linear rate if k > 0 is fixed but large
enough.

First of all due to the standard second order optimality conditions the primal–dual
solution is unique, therefore the primal {xs} and dual {λs} sequences converge to the
primal–dual solution, for which the complementarity conditions are satisfied in a strict
form (55).

From (20) we have λs+1
i ≤ λs

i (1 + e0.5ks
i σ )−1 ≤ λs

i e−0.5ks
i σ . Using ex ≥ x + 1

and ks
i = kλs

i
−1, i∈̄I∗ we obtain λs+1

i ≤ λs
i (0.5ks

iσ + 1)−1 ≤ 2
kσ λ

s
i
2, i∈̄I∗, i.e. the

Lagrange multipliers for the passive constraints converge to zero quadratically.
From (21) we have lims→∞ ks

i = k(λ∗
i )

−1, i = 1, . . . , r, i.e. the scaling parameters,
which correspond to the active constraints, grow linearly with k > 0.

Therefore the methodology [25], [26] can be applied for the asymptotic analysis of
the method (19)–(21).
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For a given small enough δ > 0 we define the extended neighborhood of λ∗ as
follows

D(λ∗,k, δ) = {
(λ,k) ∈ Rm+ ×Rm+ : λi ≥ δ, |λi − λ∗

i | ≤ δki, i = 1, . . . , r; k ≥ k0.

0 ≤ λi ≤ kiδ, i = r + 1, . . . ,m
}
.

Theorem 4. It f(x) and all ci(x) ∈ C2 and the standard second order optimality
conditions hold, then there exists such a small δ > 0 and large k0 > 0 that for any
(λ,k) ∈ D(·)
1. there exists x̂ = x̂(λ,k) = argmin{L(x, λ,k) | x ∈ Rn} such that

∇xL(x̂, λ,k) = 0

and

λ̂i = λiψ
′ (kici(x̂)

)
, k̂i = kλ̂−1

i , i = 1, . . . ,m.

2. for the pair (x̂, λ̂) the estimate

max{‖x̂ − x∗‖, ‖λ̂− λ∗‖} ≤ ck−1‖λ− λ∗‖. (65)

holds and c > 0 is independent on k ≥ k0.
3. the LSL L(x, λ,k) is strongly convex in the neighborhood of x̂.

Theorem 4 can be proven by slight modification of the correspondent proof in [25]
(see also [26]).

Corollary. If the conditions of Theorem 4 are satisfied then for the primal-dual se-
quence {xs, λs} the following estimation is true

max{‖xs+1 − x∗‖, ‖λs+1 − λ∗‖} ≤ c

k
‖λs − λ∗‖ ≤

(c

k

)s+1 ‖λ0 − λ∗‖ (66)

and c > 0 is independent on k ≥ k0.

The numerical realization of the LS multipliers method requires to replace the
unconstrained minimizer by its approximation. It leads to Newton LS method (see [28])
or to the Primal-Dual LS method [26]. In Sect. 10 we provide numerical results obtained
by Newton LS and Primal-Dual LS multipliers method.

8. Generalization and extension

The results obtained for LS remain true for any smoothing function θ : R → R− =
{t : t ≤ 0}, which is twice continuously differentiable, strictly increasing, strictly
concave and satisfies

a) lim
t→∞ θ(t) = 0, b) lim

t→−∞(θ(t)− t) = 0. (67)
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Let σ = (θ ′(0))−1 > 0, we consider a function ψ : R → (−∞,−σθ(0)) given by
formula

ψ(t) = σ(θ(t)− θ(0)). (68)

Along with ψ(t) we consider the conjugate function ψ∗(s) = inft{st − ψ(t)}.
To find ψ∗(s) we have to solve the equation s − σθ ′(t) = 0 for t. Due to θ ′′(t) < 0

the inverse θ ′−1 exists and t = θ ′−1(s/σ) = θ∗′(s/σ).
By differentiating the identity s = σθ ′ (θ∗′(s/σ)

)
in s we obtain

σθ ′′ (θ∗′
(s/σ)

)
θ∗′′

(s/σ)σ−1 = 1.

Using again t = θ∗′(s/σ) we have

θ∗′′
(s/σ) = (

θ ′′(t)
)−1

. (69)

Further, for the Fenchel conjugate ψ∗(s) we obtain

ψ∗(s) = sθ∗′
(s/σ)− ψ

(
θ∗′
(s/σ)

)
.

Then

ψ∗′
(s) = θ∗′ ( s

σ

)
+ s

σ
θ∗′′ ( s

σ

)
− 1

σ
ψ′ (θ∗′ ( s

σ

))
θ∗′′ ( s

σ

)
.

Keeping in mind t = θ∗′(s/σ) and ψ′(t) = s we obtain

ψ∗′
(s) = θ∗′ ( s

σ

)
.

Then using (69) we have

ψ∗′′
(s) = σ−1θ∗′′ ( s

σ

)
= 1

σθ ′′(t)
. (70)

Let θ ′′(t0) = min{θ ′′(t) | −∞ < t < ∞}, such minimum exists due to the continuity
of θ ′′(t) and because limt→−∞ θ ′′(t) = limt→∞ θ ′′(t) = 0, which follows from (67).

The following assertion states the basic properties of the transformationψ.

Proposition 3. Let θ ∈ C2 be a strictly increasing and strictly concave function, which
satisfies (67), then

C1. ψ(0) = 0,
C2. a) 0 < ψ′(t) < σ, ∀t ∈ (−∞,∞) and b) ψ′(0) = 1,
C3. limt→−∞ψ′(t) = σ; limt→∞ψ′(t) = 0,
C4. τ = σθ ′′(t0) < ψ′′(t) < 0, ∀t ∈ (−∞,∞),
C5. ψ∗′′(s) ≤ τ−1, ∀s ∈ (0, σ).
The properties C1–C3 one can verify directly, properties C4–C5 follow from (70).
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Now we consider the kernel ϕ = −ψ∗.

Proposition 4. The kernel ϕ possesses the following properties.

D1. ϕ(s) is nonnegative and strongly convex on (0, σ),
D2. ϕ(1) = ϕ′(1) = 0,
D3. lims→0+ ϕ′(s) = −∞,
D4. ϕ′′(s) ≥ − (σθ ′′(t0)

)−1
, ∀s ∈ (0, σ).

Therefore for each smoothing function θ(t), which satisfies the conditions of Propo-
sition 3, one can find a constrained transformation with properties A1–A6.

However due to limt→−∞ψ′(t) = σ we have limt→−∞ψ′′(t) = 0, therefore
lims→σ− ψ∗′′(s) = −∞ and lims→σ− ϕ′′(s) = ∞.

To avoid the complications, which we discussed in Sect. 4, we have to modify ψ(t).
We will illustrate it using Chen-Harker-Kanzow-Smale (CHKS) smoothing function,

which along with Log-Sigmoid function has been widely used for solving complemen-
tarity problems, see e.g. [7], [15] and references therein.

For a given η > 0 the following equation z2 − tz − η = 0 has two roots θ−(t) =
0.5

(
t −√

t2 + 4η
)

and θ+(t) = 0.5
(

t +√
t2 + 4η

)
. The function θ− : (−∞,∞) →

(−∞, 0) is CHKS interior smoothing function (see [7],[15]). We consider smooth-
ing CHKS function θ ≡ θ− : (−∞,∞) → (−∞, 0) given by formula θ(t) =
0.5

(
t −√

t2 + 4η
)

, then

θ ′′(0) = min{θ ′′(t) = −4η(t2 + 4η)−3/2 | − ∞ < t < ∞} = −0.5η−0.5,

σ = (θ ′(0))−1 = 2, and θ(0) = −√
η. The transformation ψ : (−∞,∞), which is

given by formula

ψ(t) = t −
√

t2 + 4η+ 2
√
η

we call the CHKS transformation.
It is easy to see that C1–C5 from Assertion 8.1 hold true forψ(t) given by the above

formula with σ = 2 and τ = mint ψ
′′(t) = − maxt 4η(t2 + 4η)− 3

2 = −(2√
η)−1.

The Fenchel conjugate ψ∗ : (0, 2) → [0,−2
√
η] is defined by formula

ψ∗(s) = inf
t

{st − ψ(t)} = 2
√
η
(√
(2 − s)s − 1

)
.

Then ψ∗(0) = ψ∗(2) = −2
√
η and

(0, 2) = ridom ψ∗ ⊂ rangeψ′ ⊂ dom ψ∗ = [0, 2].
The function ϕ : [0, 2] → [0, 2

√
η], which is given by formula ϕ(s) = −ψ∗(s) =

2
√
η
(
1 − √

(2 − s)s
)
, we will call CHKS kernel.

The second order CHKS ϕ–divergence distance D : Rm+ × Rm++ → R+ we define
by formula

D(u, v) =
m∑

i=1

v2
i ϕ(ui/vi).
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The properties of the CHKS kernel ϕ(t) = 2
√
η
(
1 − √

(2 − t)t
)

are similar to those
of the FD kernel ϕ:

E1. ϕ(t) ≥ 0, t ∈ [0, 2], ϕ is strongly convex on (0,2),
E2. ϕ(1) = ϕ′(1) = 0,
E3. ϕ′(t) = 2

√
η(t − 1) (t(2 − t))−0.5 , lim

t→0+ ϕ
′(t) = −∞, limt→2− ϕ′(t) = ∞,

E4. ϕ′′(t) = 2
√
η (t(2 − t))−1.5 ≥ 2

√
η, ∀t ∈ (0, 2).

To avoid complications, which we discussed in Sect. 4 CHKS transformation ψ(t)
and the corresponding kernel ϕ(t) can be modified the same way it was done for LS
transformation in Sect. 4.

The modified CHKS transformation ψ̄ : (−∞,∞) → (−∞, 2
√
η) we define by

formula

ψ̄(t) =
{
ψ(t) = t −√

t2 + 4η+ 2
√
η, t ≥ −√

η

q(t) = at2 + bt + c, −∞ < t ≤ −√
η.

(71)

Parameters a, b and c we find from the system ψ(−√
η) = q(−√

η), ψ′(−√
η) =

q′(−√
η), ψ′′(−√

η) = 2a to ensure ψ̄ ∈ C2. Then instead of C2 a) we obtain

0 < ψ̄′(t) < ∞. (72)

The Fenchel conjugate ψ̄∗ is defined by

ψ̄∗(s) =
{
ψ∗(s) = 2

√
η
(√
(2 − s)s − 1

)
, 0 < s ≤ ψ′(−η) = 1 + 1√

5
q∗(s) = (4a)−1(s − b)2 − c, 1 + 1√

5
< s < ∞.

The modified CHKS kernel ϕ̄ : (0,∞) → (0,∞) we define by formula

ϕ̄(t) =
{−ψ∗(s), 0 < s ≤ ψ′(−η) = 1 + 1√

5
−q∗(s), 1 + 1√

5
< s < ∞.

(73)

The following proposition states the properties of the modified CHKS kernel ϕ̄.

Proposition 5. The modified CHKS kernel ϕ̄ possesses the following properties

F1. ϕ̄(t) ≥ 0, t ∈ (0,∞),
F2. ϕ̄(1) = ϕ̄′(1) = 0,
F3. lim

s→0+ ϕ̄
′(s) = −∞, lims→∞ ϕ̄′(t) = ∞,

F4. ϕ̄′′(s) ≥ 2
√
η, s ∈ (0,∞).

F5. ϕ̄′′(s) ≤ 1.25(5η)0.5, 1 ≤ s < ∞.

The multipliers method (19)–(21) with CHKS transformation is equivalent to the
Interior Prox method (33) with the second order distance function, which is based on
the CHKS kernel. By repeating the arguments from Sects. 6 and 7 it is easy to see
that Theorems 2, 3, 4 remain true for methods (19)–(21) and (33) when modified LS is
replaced by modified CHKS transformation.

In other words the following theorem holds.
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Theorem 5. For the primal-dual sequence {xs, λs}, which is generated by method (19)–
(21) with modified CHKS transformation given by (71), the following is true.

1. If A and B is satisfied then

f(x∗) = lim
s→∞ f(xs) = lim

s→∞ d(λs) = d(λ∗), x∗ ∈ X∗, λ∗ ∈ L∗,

and lims→∞ ρ(xs, X∗) = 0, lims→∞ ρ(λs, L∗) = 0.
2. If (55) is satisfied then

d(λ∗)− d(λs) = o
(
(ks)−1).

3. If (4)–(5) is satisfied, then for the primal-dual sequence generated by NR method
with modified CHKS transformation the estimation (65) holds.

For any transformationψgiven by (68) the corresponding modification with quadratic
extrapolation at the point t0 < 0 is given by the following formula

ψ̄(t) =
{
ψ(t), t ≥ t0,
q(t), t ≤ t0,

where q(t) = at2 + bt + c and a = 0.5ψ′′(t0), b = ψ′(t0) − t0ψ′′(t0), c = ψ(t0) −
t0ψ′(t0)+ 0.5t2

0ψ
′′(t0).

Before concluding this section we would like to make a few comments about ex-
ponential multipliers method with “dynamic” scaling parameters update, which was
introduced in [37].

As we mentioned already it was proven in [37] that for the exponential multipliers
method with a fixed scaling parameter the ergodic convergence takes place.

At the same time the authors in [37] emphasized that the analysis for the “dynamic”
scaling parameter update turns out to be very difficult: “we have been unable to show
a correspondent result, . . . even though the method in practice seems equally reliable”
(see [37], p. 3).

It turns out that all results of the Theorem 2, 3 and 4 remain true for exponential
multipliers method with a slightly modified exponential transformationψ(t) = 1 − e−t .

First of all let’s consider the conjugate functionψ∗(s) = inft{st −ψ(t)} = −s ln s +
s − 1. The kernel of the correspondent second order Entropy-like distance function is
ϕ(t) = t ln t − t + 1, then ϕ′(t) = ln t, ϕ′′(t) = t−1 and limt→∞ ϕ′′(t) = 0. Therefore
the kernel ϕ does not satisfy the property B̄4, which plays the key role in Theorem 2
and 3.

We modify the exponential transformationψ(t) = 1 − e−t the same way it has been
done for LS transformation. Let’s consider

ψ̄(t) =
{
ψ(t), t ≥ −1
q(t) = at2 + bt + c, t ≤ −1.

The parameters a, b and c we find from ψ(−1) = q(−1), ψ′(−1) = q′(−1) and
ψ′′(−1) = q′′(−1) to ensure that ψ̄ ∈ C2. So a = −0.5e, b = 0, c = 1 − 0.5e and

ψ̄(t) =
{

1 − e−t , t ≥ −1
q(t) = −0.5et2 + 1 − 0.5e, t ≤ −1,

(74)
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then

ψ̄∗(s) =
{
ψ∗(s) = −s ln s + s − 1, s ≤ e
q∗(s) = (4a)−1(s − b)2 − c = (−2e)−1s2 − 1 + 0.5e, s ≥ e.

Now the kernel ϕ̄ : (0,∞) → (0,∞) of the second order ϕ–divergence distance, which
corresponds to the exponential multipliers method with “dynamic” scaling parameters
update is given by formula

ϕ̄(t) =
{

t ln t − t + 1, 0 ≤ t ≤ e
−q∗(s) = (2e)−1t2 + 1 − 0.5e, t ≥ e.

Then

ϕ̄′′(t) =
{

t−1, 0 < t ≤ e
e−1, t ≥ e.

So min{ϕ′′(t) | t > 0} = e−1, i.e. for the modified exponential transformation the
property type B̄4 holds. At the same time ϕ̄′′(t) ≤ 1, ∀t ∈ [1,∞], i.e. the property type
B̄5 holds as well. Therefore all results from Theorems 2, 3 and 4 remain true for this
transformation. In other words the following proposition is taking place.

Proposition 6. For the primal–dual sequence {xs, λs}, which is generated by (19)–(21)
with the modified exponential transformation (74) all statements of Theorem 5 remain
true.

Keeping in mind Remark 2 which remains true for the modified exponential trans-
formation, we can conclude that only exponential branch of transformation ψ̄ controls
the computational process from some point on. Therefore the exponential multipliers
method with dynamic scaling parameter update (see [37]) converges under very mild
assumptions A and B. Under the strict complementarity conditions (55) it converges
with o

(
(ks−1)

)
rate and under the standard second order optimality condition (4)–(5) it

converges with Q-linear rate if k > 0 is fixed but large enough.
It confirms the observation in [37] that exponential method with fixed and “dynamic”

scaling parameters update are equally reliable. It is worth to mention that the modification
(71) prevents the exponential transformation and its derivatives from the exponential
growth in case of constraints violation, which contributes to the numerical stability.

Remark 4. The logarithmic ψ1(t) = ln(t + 1), hyperbolic ψ2(t) = t(t + 1)−1 and
parabolic ψ3(t) = 2

(√
t + 1 − 1

)
transformations, which lead to the correspondent

Modified Barrier Functions [25] can be modified the way it was done with the expo-
nential transformation. Then all results of Theorems 2, 3, and 4 will remain true for the
correspondent multipliers method with “dynamic” scaling parameter update.

In the next section we apply the LS method for Linear Programming. The conver-
gence under very mild assumption follows from Theorem 2. Under the dual uniqueness
we prove the global quadratic convergence. The key ingredients of the proof are the
A. Hoffman type Lemma (see [13]), Theorem 1 and the properties of the FD kernel.
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9. Log-Sigmoid Multipliers method for Linear Programming

Let A : Rn → R
m , a ∈ Rn , b ∈ Rm . We assume that

X∗ = Argmin{(a, x) | ci(x) = (Ax − b)i = (ai, x)− bi ≥ 0, i = 1, . . . ,m} (75)

and

L∗ = Argmax
{
(b, λ)

∣∣ATλ− a = 0, λi ≥ 0, i = 1, . . . ,m
}

(76)

are nonempty and bounded.
The LS method (19)–(21) being applied to (75) produces three sequences {xs}, {λs},

and {ks}:

xs+1 : ∇xL(x
s+1, λs,ks) = a −

m∑
i=1

λs
iψ

′(ks
i ci(x

s+1)
)
ai = 0, (77)

λs+1 : λs+1
i = λs

iψ
′(ks

i ci(x
s+1)

)
, i = 1, . . . ,m. (78)

ks+1 : ks+1
i = k

(
λs+1

i

)−1
, i = 1, . . . ,m. (79)

If X∗ and L∗ are bounded then all statements of Theorem 2 are taking place for the
primal-dual sequence {xs, λs} generated by (77)–(79). In particular

lim
s→∞(a, xs) = (a, x∗) = lim

s→∞(b, λ
s) = (b, λ∗).

Using Lemma 5 (see [24], Chap. 10, §1) we can find such α > 0 that

(b, λ∗)− (b, λs) ≥ αρ(λs, L∗). (80)

Therefore lims→∞ ρ(λs, L∗) = 0.
If λ∗ is a unique dual solution then the same Lemma 5 guarantees the existence of

such α > 0 that

(b, λ∗)− (b, λ) = α‖λ− λ∗‖. (81)

holds true for ∀λ ∈ L = {λ : ATλ = a, λ ∈ Rm+}.

Theorem 6. If the dual problem (76) has a unique solution, then the dual sequence
{λs} converges in value quadratically, i.e. there is c > 0 independent on k > 0 that the
following estimation

(b, λ∗)− (b, λs+1) ≤ ck−1 [(b, λ∗)− (b, λs)
]2
. (82)

holds true.
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Proof. It follows from (77)–(79) that

∇xL(x
s+1, λs, ks) = a −

m∑
i=1

λs+1
i ai = a − ATλs+1 = 0 (83)

and λs+1 ∈ Rm++. In other words the LS method generates dual interior point sequence
{λs}∞s=0.

From (83) we obtain

0 = (a − ATλs+1, xs+1) = (a, xs+1)−
m∑

i=1

λs+1
i ci(x

s+1)− (b, λs+1)

or

(b, λs+1) = L(xs+1, λs+1).

From Theorem 1 we obtain the equivalence of the multipliers method (77)–(79) to
the following Interior Prox for the dual problem

λs+1 = argmax

{
(b, λ)− k−1

m∑
i=1

(
λs

i

)2
ϕ

(
λi

λs
i

) ∣∣∣∣ ATλ− a = 0

}
. (84)

Keeping in mind Remark 2 we can assume without restricting the generality that only
the Fermi-Dirac kernel ϕ(t) = (2 − t) ln(2 − t)+ t ln t is used in the method (84).

From (84) taking into account λ∗ ∈ Rm+ and ATλ∗ = a we obtain

(b, λs+1)− k−1
m∑

i=1

(
λs

i

)2
ϕ

(
λs+1

i

λs
i

)
≥ (b, λ∗)− k−1

m∑
i=1

(
λs

i

)2
ϕ

(
λ∗

i

λs
i

)
.

Keeping in mind k−1∑m
i=1(λ

s
i )

2ϕ

(
λs+1

i
λs

i

)
≥ 0 we have

k−1
m∑

i=1

(
λs

i

)2
ϕ

(
λ∗

i

λs
i

)
≥ (b, λ∗)− (b, λs+1). (85)

Let’s assume λ∗
i > 0, i = 1, . . . , r; λ∗

i = 0, i = r + 1, . . . ,m. Then ϕ
(
λ∗

i
λs

i

)
=

2 ln 2, i = r + 1, . . . ,m. Taking into account ϕ(1) = ϕ′(1) = ϕ
(
λs

i
λs

i

)
= ϕ′

(
λs

i
λs

i

)
= 0

and using the mean value formula twice we obtain

k−1
m∑

i=1

(
λs

i

)2
ϕ

(
λ∗

i

λs
i

)
= k−1

[ r∑
i=1

(
λs

i

)2(
ϕ

(
λ∗

i

λs
i

)
− ϕ

(
λs

i

λs
i

))

+ 2 ln 2
m∑

i=r+1

(
λ∗

i − λs
i

)2]
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= k−1
[ r∑

i=1

λs
i

[
ϕ′
(

1 + θ ′
i
λ∗

i − λs
i

λs
i

)
− ϕ′

(
λs

i

λs
i

)](
λ∗

i − λs
i

)

+ 2 ln 2
m∑

i=r+1

(
λ∗

i − λs
i

)2]

= k−1
[ r∑

i=1

ϕ′′
(

1 + θ ′′
i θ

′
i
λ∗

i − λs
i

λs
i

)(
λ∗

i − λs
i

)2
θ ′

i

+ 2 ln 2
m∑

i=r+1

(
λ∗

i − λs
i

)2]

= k−1
[ r∑

i=1

ϕ′′(·)(λ∗
i − λs

i

)2
θ ′

i + 2 ln 2
m∑

i=r+1

(
λ∗

i − λs
i

)2]

≤ k−1
[ r∑

i=1

ϕ′′(·)(λ∗
i − λs

i

)2 + 2 ln 2
m∑

i=r+1

(
λ∗

i − λs
i

)2]
,

where 0 < θ ′
i < 1, 0 < θ ′′

i < 1.
Taking into account the dual uniqueness from (80) we obtain lims→∞ λs

i = λ∗
i > 0,

i = 1, . . . , r, therefore lims→∞ ϕ′′
(

1 + θ ′′
i θ

′
i
λ∗

i −λs
i

λs
i

)
= ϕ′′(1) = 2, i = 1, . . . , r.

Hence there is such s0 that for any s ≥ s0 we have ϕ′′(·) ≤ 3. Hence

k−1
m∑

i=1

(λs
i )

2ϕ

(
λ∗

i

λs
i

)
≤ 3k−1‖λ∗ − λs‖2. (86)

Combining (85) and (86) we have

3k−1‖λ∗ − λs‖2 ≥ (b, λ∗)− (b, λs+1). (87)

From (81) with λ = λs we obtain

‖λs − λ∗‖ = α−1 [(b, λ∗)− (b, λs)
]
.

Therefore the following estimation

(b, λ∗)− (b, λs+1) ≤ ck−1 [(b, λ∗)− (b, λs)
]2 (88)

holds true with c = 3α−2 for any s ≥ s0. It follows from Theorem 2 that by taking
k > 0 large enough one can make s0 = 1.

Remark 5. Theorem 6 remains valid for the method (77)–(79) when the LS transform-
ation is replaced by CHKS transformation given by (71) or the exponential transform-
ation given by (74).

Remark 6. If the dual solution is not unique, it can be fixed by a slight change of vector b
(see [24], p. 316).
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10. Numerical results

The numerical realization of the LS method (19)–(21) requires to replace the uncon-
strained minimizer xs+1 by an approximation. Then the approximation is used for both
Lagrange multipliers and scaling parameters update. To find an approximation x̄s+1 for
xs+1 we applied Newton method with steplength for minimization L(x, λs,ks) in x.
Such approach leads to the Newton LS method (see [28]). The other approach consists
of using Newton method for solving nonlinear system of equations, which consists of the
primal optimality criteria equations for LSL minimizer and equations for the Lagrange
multipliers update. Such approach leads to the Primal-Dual LS method [26].

The numerical results obtained using both approaches allowed systematically ob-
serve the “hot start” phenomenon, which was described for MBF in [21], [25].

Practically speaking the “hot start” means that from some point on the primal-dual
approximation will remain in the Newton area after each Lagrange multipliers and
scaling parameters update.

It means that only few updates and very few (often one) Newton’s steps per update
requires to reduce the duality gap and primal infeasibility by several orders of magnitude.

We illustrate it on the following NLP and LP problems, where n is the number of
variables, m is the number of equations and p is the number of inequalities.

For the NLP examples we show the norm of ∇xL, duality gap, primal infeasibility.
For LP calculations we show the duality gap, the primal and dual infeasibility.

Although Theorem 6 is proven under the assumption that the dual LP has a unique
solution, we systematically observed the quadratic convergence for the constrained
violation and the duality gap for all LP, which have been solved.

Table 1. Name: structure4; Objective: linear, Constraints: convex quadratic. n = 1536, p = 720

it ‖∇xL‖ gap inf # of steps

0 1.001756e+00 1.999851e+00 0.000000e+00 0

1 6.431239e+00 4.230525e-01 1.047209e-02 12

2 1.394687e+00 3.544221e-01 2.237616e-03 8

3 4.886293e-01 1.578621e-01 5.551414e-04 8

4 3.116503e-01 3.861605e-02 2.987699e-04 6

5 3.143736e-01 5.248152e-03 1.753116e-04 3

6 2.447404e-01 8.953510e-04 7.933149e-05 3

7 3.429093e-05 1.332356e-04 5.928732e-05 1

8 3.559139e-05 5.906833e-05 3.667183e-05 3

9 3.048857e-05 1.543989e-05 1.865640e-05 4

10 2.057229e-05 2.905176e-06 7.497569e-06 3

11 1.053395e-05 3.391419e-07 2.413493e-06 4

12 3.933137e-06 2.161987e-08 5.415852e-07 5

13 1.012385e-06 6.686092e-10 8.462800e-08 3

14 1.698804e-07 1.003167e-11 8.575809e-09 3

15 1.791739e-08 5.971439e-13 5.287028e-10 2

Total number of Newton steps 68
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Table 2. Name: nnls; Nonnegative Least Squares Models; Objective: convex quadratic, Constraints: bounds.
n = 300, p = 300

it ‖∇xL‖ gap inf # of steps

0 5.721662e+06 6.072350e+01 2.038436e+00 0

1 1.566275e-04 3.508411e-06 7.797084e-10 2

2 2.483283e-05 2.146990e-09 9.072215e-12 1

Total number of Newton steps 3

Table 3. Name: antenna; Objective: linear; Constraints: convex quadratic. n = 49, m = 10, p = 156

it ‖∇xL‖ gap inf # of steps

0 2.967835e+05 7.677044e-01 9.134264e-05 0

1 1.103439e+02 1.795130e-02 2.262034e-03 15

2 4.304839e+00 1.056079e-02 2.217783e-05 7

3 3.339791e+00 7.387677e-03 1.803251e-05 6

4 3.174754e+00 3.824959e-03 9.352697e-06 6

5 1.622338e+00 1.144959e-03 2.812697e-06 6

6 4.724850e-01 1.944959e-04 9.352697e-06 6

7 8.286059e-02 1.940084e-05 4.821745e-08 3

8 8.729887e-03 1.161975e-06 2.891458e-09 5

9 5.493163e-04 4.173671e-08 1.037934e-10 7

10 9.527629e-05 9.817914e-10 7.951639e-12 6

Total number of Newton steps 67

Table 4. Name: trafequil; Objective: convex nonlinear; Constraints: linear. n = 722, m = 361, p = 722

it ‖∇xL‖ gap inf # of steps

0 4.632893e+01 3.347643e+01 4.840000e+00 0

1 8.747497e+00 1.710541e-01 5.849002e-03 18

2 1.636448e-04 2.166123e-03 4.290428e-04 13

3 7.108554e-06 2.918467e-05 7.591514e-06 6

4 6.158934e-07 1.045222e-06 8.207374e-07 4

5 1.305577e-10 4.493538e-13 1.338086e-10 2

6 3.672736e-09 1.344654e-09 2.130356e-09 2

7 2.617049e-09 4.599113e-11 8.222189e-11 1

Total number of Newton steps 46
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Table 5. Name: markowitz2; Objective: convex quadratic; Constraints: linear. n = 1200, m = 201, p = 1000

it ‖∇xL‖ gap inf # of steps

0 3.162834e+05 7.032438e+01 1.495739e+00 0

1 1.821451e-02 9.001130e-02 5.904234e-05 10

2 1.513762e-03 4.205607e-03 3.767383e-06 12

3 5.716835e-05 6.292277e-05 2.654451e-05 13

4 3.737993e-06 1.709659e-06 1.310097e-05 8

5 4.736475e-07 1.074959e-07 1.381697e-06 5

6 7.101903e-08 7.174959e-09 3.368086e-07 4

7 1.070573e-08 4.104959e-10 3.958086e-08 3

8 1.355662e-09 1.749759e-11 2.868086e-09 2

9 1.305577e-10 4.493538e-13 1.338086e-10 2

Total number of Newton steps 59

Table 6. Name: Israel. n = 174, p = 316

it gap primal inf dual inf # of steps

0 1.05e+10 1.21e+06 1.78e+04 0

1 6.40e+00 2.77e-09 7.53e-10 20

2 7.364041e-02 1.0729e-07 0.00e+00 14

3 7.497715e-07 4.2011e-12 0.00e+00 6

4 1.628188e-10 1.7764e-15 0.00e+00 3

Total number of Newton steps 43

Table 7. Name: AGG. n = 488, p = 615

it gap primal inf dual inf # of steps

0 4.29e+11 3.78e+07 2.49e+04 0

1 1.23e+00 3.01e-06 7.16e-10 19

2 2.942798e-04 2.7691e-10 0.00e+00 3

3 3.949872e-09 2.8421e-14 0.00e+00 3

Total number of Newton steps 25

Table 8. Name: AGG2. n = 516, p = 758

it gap primal inf dual inf # of steps

0 6.93e+10 7.41e+06 2.08e+04 0

1 6.07e+00 4.39e-07 5.41e-10 16

2 1.422620e-03 2.2625e-09 0.00e+00 3

3 2.630272e-10 7.1054e-15 0.00e+00 3

Total number of Newton steps 25
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Table 9. Name: BNL1. n = 516, p = 758

it gap primal inf dual inf # of steps

0 3.98e+06 1.83e+04 8.41e+02 0

1 9.47e-05 7.13e-09 3.81e-12 25

2 2.645905e-07 3.8801e-10 0.00e+00 5

3 2.025197e-12 4.5938e-13 0.00e+00 4

Total number of Newton steps 34

11. Concluding remarks

We mentioned already that LS multipliers method is to the smoothing technique [1], [8]
as Quadratic Augmented Lagrangian [12], [29] to the penalty method [9] for equalities
constraints or MBF to Log-barrier SUMT [10] for inequalities constraints. In the dual
space the Interior Prox method with Fermi–Dirac second order distance is to regulariza-
tion method [1] as Quadratic-Prox [20], [32] to N. Tikhonov’s regularization technique
[36] or Interior Prox method with ϕ-divergence distance [27] to path following methods.

Although in Augmented Lagrangians, MBF or LS methods, there exists an exchange
of the information between the primal and dual space, the calculations are always con-
ducted sequentially: first is the primal minimization then the dual Lagrange multipliers
update. On the other hand, it has become evident lately that the most efficient methods,
which are based on path-following ideas are Primal-Dual methods for which the calcu-
lations are conducted simultaneously in the primal and dual spaces. In other words at
least for LP the most efficient are the Primal-Dual Interior Point methods [38].

For each NR multipliers method there exists the Primal-Dual equivalent (see [26]).
Our experiments with the Primal-Dual NR methods in general and with the Primal-Dual
LS method in particular are very encouraging.

Currently both the theoretical and the experimental research on the Primal-Dual NR
methods for NLP calculations are in the early stage. Global convergence, rate of conver-
gence, “hot start” phenomenon, complexity issues, efficient numerical implementation
of the Primal-Dual NR multipliers methods were left for further research.
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