
Designing Distributed Applications

with Mobile Code Paradigms

Antonio Carzaniga

Politecnico di Milano

Piazza Leonardo da Vinci, 32

20133 Milano, Italy

+39-2-2399-3638

carzaniga@elet.polimi.it

Gian Pietro Picco

Politecnico di Torino

Corso Duca degli Abruzzi, 24

10129 Torino, Italy

+39-11-564-7008

picco@athena.polito.it

Giovanni Vigna

Politecnico di Milano

Piazza Leonardo da Vinci, 32

20133 Milano, Italy

+39-2-2399-3666

vigna@elet.polimi.it

ABSTRACT
Large scale distributed systems are becoming of
paramount importance, due to the evolution of technol-
ogy and to the interest of market. Their development,
however, is not yet supported by a sound technologi-
cal and methodological background, as the results de-
veloped for small size distributed systems often do not
scale up. Recently, mobile code languages (MCLs) have
been proposed as a technological answer to the problem.
In this work, we abstract away from the details of these
languages by deriving design paradigms exploiting code
mobility that are independent of any particular tech-
nology. We present such design paradigms, together
with a discussion of their features, their application do-
main, and some hints about the selection of the correct
paradigm for a given distributed application.

Keywords
Mobile code, design paradigms, distributed applica-
tions.

INTRODUCTION
Distributed systems have been investigated for years,
but recently research on this subject has gained a new
impetus, partially due to the explosive growth of the In-
ternet. Being the largest distributed system ever built,
Internet is making distributed systems available to the
general public, taking advantage of both the achieve-
ments in network technology and the ever-increasing
interest of markets in long-haul communications. Con-
sequently, a great deal of research is focusing on the
exploitation of new broadband communication devices
and in the provision of new services on large scale dis-
tributed systems, such as the Internet.

The technological and methodological background de-
veloped for conventional distributed systems often fails
to scale up when applied to the problem of providing

large scale distribution. As often happens, researchers
tried to overcome the problem with a bottom-up ap-
proach, by developing technology providing ad hoc sup-
port for this kind of systems.

One of the outcomes of this research is the recent pro-
posal of a number of new programming languages, espe-
cially conceived for the Internet, that are all character-
ized by the capability to provide some sort of code mo-
bility, i.e., the capability to recon�gure dynamically, at
run-time, the binding between the software components
of the application and their physical location within a
computer network. Work on code mobility is not new;
other approaches [3, 8] already investigated the capabil-
ity to provide code mobility at the language level. The
novelty of the new approaches is in their emphasis on
the application of code mobility to a large scale setting.

In our view, good technology addresses only a part of
the problem. Software engineering taught us that a
good software product does not come just from tech-
nology. Rather, higher level phases in the development
process, such as speci�cation and design, play a cen-
tral role in the �nal success [1, 16]. Research on dis-
tributed systems partially fails to address these issues
within a well-established framework able to guide an
engineer through the development of a distributed ap-
plication, and this de�ciency is even more evident when
large scale systems are involved.

In this paper, we are concerned mainly with the design
of distributed applications, that aims at identifying the
distributable components and their interactions which
together satisfy the system requirements [10]. Our goal
is to develop a repertoire of design paradigms [15] that
can be used to design distributed applications exploiting
code mobility. We achieve this by leveraging o� of the
experience we gained in our ongoing research [4] about
programming languages supporting code mobility, of-
ten called mobile code languages (MCLs). We proceed
bottom-up, trying to abstract away from MCLs and
conceptualize the design paradigms they embody. The
resulting paradigms are quite general and independent
of the speci�c technology one may choose for the im-
plementation although, of course, each design paradigm

can be implemented more naturally by languages pro-
viding speci�c features [6]. Independence of the design
paradigm from the underlying technology is a major
point in the general software engineering practice. As
an example, the bene�ts of an object-oriented design do
not stem from the availability of an object-oriented lan-
guage to be used in the implementation. Rather, they
are valuable per se, for example in terms of improved
understandability and reusability of the design.

The following section gives an overview of currently
available MCLs, classifying them according to the de-
gree of mobility they provide. Then, we give the ratio-
nale for mobile code design paradigms, followed by their
de�nition and explanation. Subsequently, we discuss
why and when mobile code paradigms can be bene�-
cial and we tackle the problem of choosing a particular
paradigm via analysis performed at the design stage.
The �nal section illustrates further directions for this
work.

A BRIEF OVERVIEW OF MOBILE CODE
TECHNOLOGY
The interest about code mobility has been raised mainly
by a new family of programming languages, usually re-
ferred to as mobile code languages (MCLs), that were
proposed recently1. Although languages belonging to
this family are being developed both in industry and
academia, marketing forces are playing a fundamental
role in the acceptance of such languages in the com-
munity of potential users. This is proven by the fact
that two of the most well-known MCLs, that is, Java
by Sun Microsystems [18], and Telescript by General
Magic [11], come from industry.

Although both Java and Telescript are considered
MCLs, they are at the extremes of a continuum repre-
senting the degree of code mobility that can be provided
by a programming language. Telescript provides a so-
phisticated form of thread migration, in which a thread
running on an interpreter (or engine, in the Telescript
jargon) is able to migrate autonomously to a di�erent
engine, possibly run by a di�erent machine, by execut-
ing a go operation. This operation causes the engine to
suspend the thread, serialize it (together with its state),
and transmit it to the destination engine speci�ed as ar-
gument. There, it will be unserialized, and its execution
will be resumed from the instruction following the go.
Telescript is a very rich language, in which support for
mobility of both the code and the associated state has
been a driving factor for the whole language design.

On the other hand, in Java there is no support for mi-

1For simplicity, we refer to the technologies mentioned here as
\languages", even when they are extensions of existing languages.
Furthermore, we will describe only brie
y problems and issues in
MCLs. An in-depth discussion is provided in [4].

gration of executing code. The only language feature
that can be directly exploited for code mobility is pro-
vided by a programmable class loader. Instead of hav-
ing a �xed policy for resolving class names at run-time,
Java provides the capability to program where the code
corresponding to an unresolved class name has to be re-
trieved. Hence, Java programs can download code from
the net and link it dynamically at run-time.

Between these two extremes there is a full spectrum
of MCLs that provide di�erent degrees of mobility for
their execution units2 (EU). Currently available MCLs
provide support for at least one of the following:

Strong mobility is the ability of an MCL (called
strong MCL) to allow EUs to move their code and
execution state to a di�erent site. Executing units
are suspended, transmitted to the destination site,
and resumed there. For instance, Telescript is a
strong MCL.

Weak mobility is the ability of an MCL (called weak
MCL) to allow an EU in a site to be bound dynam-
ically to code coming from a di�erent site. This
encompasses two cases: either the EU dynamically
links code downloaded from the network (as can be
done in Java), or the EU receives its code from an-
other EU. In the latter case, two more options are
possible. Either the EU in the destination site is
created from scratch to run the incoming code, or
a pre-existing EU links the incoming code dynam-
ically and executes it.

Strong MCLs are a minority, because of the challenging
problems they pose in both de�ning and implementing
the semantics of strong mobility. Besides Telescript, the
family of strong MCLs includes languages such as Ty-
coon, Agent Tcl and Emerald. Tycoon [12] provides
thread migration like Telescript, but lacks Telescript's
richness of abstractions and features. Agent Tcl [7] pro-
vides strong mobility where the whole image of the in-
terpreter can be transferred to a di�erent site by execut-
ing a jump instruction. Agent Tcl also supports weak
mobility, as it provides a submit instruction that al-
lows transmission of Tcl [14] procedures, together with
a portion of their global environment, to an interpreter
running on a di�erent site. Emerald [3] also provides
a form of strong mobility, though it is not completely
under programmer's control.

Weak mobility has been around for quite a long time un-
der many shapes. For example, the well-known UNIX
sh shell language together with the run-time support

2Hereafter, we will use the term execution unit to refer to the
run-time representation of a single
ow of computation, e.g., a
UNIX process or a thread in a multithreaded environment.

provided by the rshd daemon can be regarded as a lan-
guage implementation supporting weak mobility, in that
it allows a user to send a shell script to be executed on a
remote machine. In addition, the REV [8] system, that
inspired much of the work on code mobility, provides an
extension to remote procedure call (RPC) that allows
one to send both the actual parameters and the code for
a procedure to be executed on a remote machine. More
recent approaches have been inspired by applications de-
velopment on the Internet. As we mentioned, the Java
class loader allows the programmer to customize the res-
olution of a class name, possibly downloading the cor-
responding code from any machine on the network. An
extension of Java, called MOLE [17], adds the capabil-
ity of sending code to another Java interpreter without
modifying the Java interpreter. TACOMA [9] is an ex-
tension of Tcl that allows the programmer to send code
together with any kind of data to a remote machine, in
order to be executed there. Facile [5] is a higher-order
functional language conceived for concurrent distributed
programming where code mobility is naturally achieved
because Facile functions are �rst class elements of the
language. M0 [19] di�ers from the above languages in
that it is not conceived to be the language in which
mobile code applications are programmed. Rather, its
goal is to provide a middleware layer supporting code
mobility for higher level layers.

DISTRIBUTED APPLICATIONS AND CODE
MOBILITY
When designing the architecture of a distributed ap-
plication, interaction among the various components is
usually considered independent of the components' lo-
cation. The location of components is simply regarded
as an implementation detail. In some cases, such de-
tails are explicitly stated by the programmer in the im-
plementation stage. In other cases, they are automat-
ically de�ned by some middleware layer. For example,
CORBA [13] intentionally hides the location of com-
ponents to the programmer. In this framework, there
is no distinction between interaction involving compo-
nents residing on the same host and components resid-
ing on di�erent hosts of a computer network.

This, however, is not the only possible approach to the
design of distributed applications. There are cases when
the concepts of location, binding of computational re-
sources to locations, and migration to di�erent locations
need to be taken into account during the design stage.
In some cases, the interaction among components resid-
ing on the same host is remarkably di�erent with re-
spect to the case where components reside on di�erent
hosts of a computer network, in terms of latency, access
to memory, partial failure, and concurrency. As stated
in [20], hiding such di�erences can lead to unexpected
performance and reliability problems.

In this paper, we address the class of applications for
which the concepts of location and mobility are so im-
portant that they a�ect the conceptual structure of the
application as it is conceived in the design stage. The
next section illustrates a number of design paradigms
that emerged from our research. Such paradigms are
general and provide a repertoire of architectural pat-
terns that can be used to design distributed mobile ap-
plications in a systematic fashion.

MOBILE CODE PARADIGMS
In this section we will abstract away from the speci�c
features provided by the language in which a distributed
application is written. Our goal is to identify design
paradigms encompassing code mobility which can pro-
vide guidance for the design of distributed applications.

Design paradigms will be de�ned in terms of the follow-
ing basic abstractions:

Components are the composing elements of an archi-
tecture. They can be further divided into:

Resource components embody architectural el-
ements representing passive data or physical
devices, e.g., a �le, a network device driver, or
a printer driver. A particular kind of resource
is represented by code components which con-
tain the know-how necessary for the execution
of a particular task.

Computational components embody a
ow of
control. An example is a process, or a thread.
They are characterized by a state, which in-
cludes private data, the state of their execu-
tion, and bindings to other components, in
particular to code components and resource
components.

Interactions are events that involve two or more com-
ponents. For example, a message exchanged be-
tween two computational components can be re-
garded as an interaction between them.

Sites are execution environments; they host compo-
nents and provide support for the execution of com-
putational components. In our paradigms, sites
embody the intuitive notion of location. Hence, in-
teractions among components residing in the same
site are considered less expensive than interactions
taking place among components located in di�erent
sites.

Implicitly, we assume the existence of an underlying net-
work which provides support for all the communication
facilities.

We will present our design paradigms in terms of inter-
actions patterns that de�ne the coordination and reloca-

tion of components needed to perform a service. To this
end, we consider a computational component A, located
at a site SA, that needs the results of the computation
of a service. We assume the existence of another site
SB , which will be involved in the delivery of the ser-
vice. In order to obtain the service results, A starts the
interaction pattern that leads to service delivery. Ser-
vice execution involves a set of resources, the know-how
about the service (its code), and a computational com-
ponent responsible for the execution of the code. In
order to accomplish the service, these elements must be
present at one site at the same time.

In this context, we identify three main design paradigms
that extend the well-known client-server paradigm to
exploit code mobility. We will call them: remote eval-
uation, code on demand, and mobile agent. We distin-
guish the design paradigms according to the location
of the di�erent components before and after the execu-
tion of the service, the computational component that
is responsible to execute the code, and where the com-
putation actually takes place (see Table 1).

The presentation of the paradigms is based on a real
life scenario where two friends|Louise and Christine|
interact and cooperate to make a chocolate cake. In or-
der to make the cake (the results of a service), a recipe
is needed (the know-how about the service), as well as
the ingredients (the resources that can be moved), an
oven to bake the cake (a resource that can hardly be
moved), and a person to mix the ingredients following
the recipe (a computational component responsible for
the execution of the code). To prepare the cake (to ex-
ecute the service) all these elements must be co-located
in the same home (site). In the following, Louise will
play the role of component A, i.e., she is the initiator of
the interaction, and the one interested in its e�ects.

Client-Server (CS)

Louise would like to have a chocolate cake, but

she doesn't know the recipe, and she has at

home neither the required ingredients nor an

oven. Fortunately, she knows that her friend

Christine knows how to make a chocolate cake,

and that she owns everything needed at her

place. Since Christine is usually quite happy

to prepare cakes on request, Louise phones her

asking: \Please, can you make me a chocolate

cake?". Christine makes the chocolate cake

and delivers it back to Louise.

The client-server paradigm is well-known and widely
used. An example is the X Windows system. In this
case, the server manages a physical display while client
applications use the display through the services pro-
vided by the server. For instance, one client may request

the server to draw a �lled rectangle passing the coordi-
nates of the upper-left and lower-right corners. As a
consequence, the server executes the procedure that ac-
tually draws the rectangle driving the physical display.

In this paradigm, a computational component B (the
server) o�ering a set of services is placed at site SB .
Resources and know-how needed for service execution
are hosted by site SB as well.

The client component A, located on SA, requests the ex-
ecution of a service with an interaction with the server
component B. As a response, B performs the service re-
quested by executing the corresponding know-how and
accessing the involved resources co-located with B. In
general, the service produces some sort of result that
will be delivered back to the client with an additional
interaction.

Actually, a server may rely on other components in or-
der to perform parts of the required service or to retrieve
parts of the required data, but, in this case, the server
would act as a client in another client-server interaction.
From the original client's viewpoint the server owns all
necessary data and knowledge.

Remote Evaluation (REV)

Louise wants to prepare a chocolate cake. She

knows the recipe but she has at home nei-

ther the required ingredients nor an oven. Her

friend Christine has both at her place, yet she

doesn't know how to make a chocolate cake.

However, Louise knows that Christine is happy

to try new recipes, therefore she phones Chris-

tine asking: \Can you make me a chocolate

cake? Here is the recipe: take three eggs...".

Christine prepares the chocolate cake following

Louise's recipe and delivers it back to her.

There are several examples of a remote evaluation de-
sign paradigm3 implemented using the available tech-
nology. For example, in the UNIX world, the rsh com-
mand allows a user to have some script code executed
on a remote host. Another example is the interaction
between an application (e.g., a word-processor) and a
PostScript printer. The resources involved in this inter-
action are the printing devices (e.g., laser raster, paper
tractor, and so on), while the code is the PostScript �le,
which is executed by the PostScript interpreter hosted
by the printer.

3Hereafter, by \remote evaluation" we will refer to our design
paradigm. Although it has been inspired by work on the REV
system [8], they have to be kept de�nitely distinct. Our REV is a
design paradigm, while the REV system is a technology that may
be used to actually implement an application designed using the
REV paradigm.

Before After
Paradigm

SA SB SA SB

Client-Server A
know-how
resources

B
A

know-how
resources

B

Remote

Evaluation

know-how
A

resources
B

A
know-how
resources

B

Code on

Demand

resources
A

know-how
B

resources
know-how

A
B

Mobile

Agent

know-how
A

resources |
know-how
resources
A

Table 1: Mobile code paradigms. This table shows the location of the components before and after the service execu-
tion. For each paradigm, the computational component in bold face is the one that executes the code. Components
in italics are those that have been moved.

In the REV paradigm, a component A has the know-
how necessary to perform the service but it lacks the
required resources, which happen to be located at a re-
mote site SB . Consequently, A sends the service know-
how to a computational component B (which we call
\executor") located at the remote site that, in turn, ex-
ecutes the code using the resources available there. An
additional interaction delivers the results back.

Given the above de�nition, it may be argued that REV
is nothing more than a special case of the client-server
paradigm in which the server exports an execute code

service that takes a code fragment as parameter. To
some extent, this is true. Yet, we believe that it is useful
to distinguish between the two paradigms. In particular,
it is the ability of the server/executor to o�er customiz-
able services that makes the di�erence. A server in the
client-server paradigm exports a set of �xed function-
alities. In turn, an executor in the remote evaluation
paradigm o�ers a service that is programmable with a
computationally complete language.

Code on Demand (COD)

Louise wants to prepare a chocolate cake. She

has at home both the required ingredients and

an oven, but she lacks the proper recipe. How-

ever, Louise knows that her friend Christine

has the right recipe and she has already lent it

to many friends. So, Louise phones Christine

asking \Can you tell me your chocolate cake

recipe?". Christine tells her the recipe and

Louise prepares the chocolate cake at home.

Many upcoming Internet applications are based on this
paradigm. For example, consider a generic terminal that

is able to download, link, and execute some code from
the net. The terminal could get documents that come
in a particular format that the terminal is unable to
elaborate. The header of the document may contain
a reference to the code that is needed to interpret the
document so that the terminal, after downloading the
data, could fetch the necessary code.

In the COD paradigm, component A is already able to
access the resources it needs, which are co-located with
it within SA. However, no information about how to
process such resources is available at SA. Thus, A inter-
acts with a component B contained in SB by requesting
the service know-how, which is in SB as well. A second
interaction takes place when B delivers the know-how
to A, which can subsequently execute it.

Mobile agent (MA)

Louise wants to prepare a chocolate cake. She

has the right recipe and ingredients, but she

has not an oven at home. However, she knows

that her friend Christine has an oven at her

place, and that she is very happy to lend it.

So, Louise prepares the chocolate dough and

then goes to Christine's home, where she bakes

the cake.

As an example of an application that is conveniently
modeled with mobile agents, consider a network man-
agement activity. The network manager would like to
test the status of a set of network nodes and perform
some corrective actions on each faulty node following the
net topology (e.g., because the faults may be caused or
propagated by adjacent nodes). Current mainstream

protocols for network management, e.g. SNMP, are
based on a pure client-server paradigm where a man-
agement station continuously polls and updates data on
the network devices by means of very low-level get/set
operations. As discussed in [2], this is likely to generate
a huge network tra�c in proximity of the management
station, thus worsening the situation that management
is supposed to solve. A mobile agent, in turn, could be
composed of a diagnostic routine that travels among the
faulty nodes performing all the needed get/set opera-
tions locally, without overloading the network.

In the MA paradigm, the service know-how is owned by
A, which is initially hosted by SA, but some of the re-
quired resources are located on SB . Hence, A migrates
to SB carrying the know-how and possibly some inter-
mediate results with itself. After it has moved to SB ,
A completes the service using the resources available
there.

The mobile agent paradigm is di�erent from other mo-
bile code paradigms in that the associated interactions
involve the mobility of an existing computational com-
ponent. In other words, while in REV and COD the
focus is on the transfer of code between components, in
the mobile agent paradigm a whole computational com-
ponent, together with its state, the code it needs, and
some resources required to perform the task, are moved
to a remote site.

DISCUSSION
The mobile code design paradigms introduced in the
previous section de�ne a number of abstractions that
provide an explicit model for the bindings between com-
ponents, locations, and code and their dynamic re-
con�guration. Our initial experience in applying the
paradigms [2, 6] suggests that these abstractions are
e�ective in the design of distributed applications. Fur-
thermore, their independence of the particular language
or system in which they are ultimately implemented is
an additional asset.

Mobile code paradigms model explicitly the concept of
location. The site abstraction is introduced at the archi-
tectural level in order to take into account the location
of the di�erent components. Following this approach,
the type of interaction between two components is de-
termined by both components' code and location. In-
troducing the concept of location makes it possible to
model the cost of the interaction between components
at the design level. In particular, an interaction between
components that share the same location is considered
to have a negligible cost when compared to interaction
that is carried out through a communication network.

Most well-known paradigms are static with respect to
code and location. Once created, components cannot
change either their location or their code during their

lifetime. Therefore, the types of interaction and its qual-
ity (local or remote) cannot change.

Mobile code paradigms overcome these limits by pro-
viding component mobility and remote code linking.

By changing their location, components may dynami-
cally change the quality of interaction, reducing inter-
action costs. To this end, the REV and MA paradigms
allow the execution of code on a remote site, encompass-
ing local interactions with components located there.
Components that are able to link code dynamically can
extend the types of interaction they support. The COD
paradigm enables components to retrieve code from
other remote components, providing a
exible way to
extend dynamically the behavior of a component.

SOME SCENARIOS FOR CODE MOBILITY
In this section, we depict informally some scenarios that
are expected to gain great bene�t from the exploitation
of a mobile code paradigm, in order to show how they
can help in building distributed applications.

Deployment and Upgrade of Distributed Appli-
cations
Code mobility can be exploited to support software de-
ployment and maintenance. Traditional software engi-
neering addresses the problem of minimizing the work
needed to extend an application and to keep trace of
the changes in a rational way, by emphasizing design
for change and the provision of suitable development
tools. In a distributed setting, however, the action of
installing or rebuilding the application at each site still
have to be performed locally by an operator.

The REV and MA paradigms could help in providing
automation of the installation process. A scheme could
be devised where the installation process is coded in a
program that is transferred to a set of network nodes.
On each node, the program could analyze the features of
the local hardware/software platform and perform the
correct con�guration and installation steps.

Code mobility can go even further. For instance, let
us suppose that a new functionality has to be added
to an application; say, a new dialog box must be shown
when a particular button on the user interface is pushed.
In a distributed application designed with conventional
techniques, the new functionality needs to be introduced
by reinstalling or patching the application at each site.
This process can be lengthy and, even worse, it is put in
place even if the user never activates the corresponding
functionality.

The COD paradigm could help in many ways. First, all
changes would be centralized in the code server reposi-
tory, where the latest version is kept. Moreover, changes
would not be performed proactively by an operator on
each site, rather they could be performed reactively by

the application itself, that would request automatically
the new version to the central repository, as soon as
the corresponding functionality is activated. Hence,
changes could be propagated in a lazy way, concentrat-
ing the upgrade e�ort only where it is really needed.

Customization of Services
Conventional distributed applications built following a
client-server paradigm provide, by their nature, an a-
priori �xed set of services accessible through a statically
de�ned interface. It is often the case that this set of ser-
vices, or their interfaces, are not suitable for unforeseen
client needs. A common solution to this problem is to
upgrade the server with new functionality, thus increas-
ing both its complexity and its size, without increasing
its
exibility.

The REV and MA paradigms could help in increasing
server
exibility, yet keeping both the size and com-
plexity of the server limited. In these paradigms, in
fact, the server actually provides a unique service, the
execution of remote code; as a consequence, it does not
need to be changed, unless the language in which code
is programmed and executed is changed. Hence, the
server provides the maximum
exibility, in that it can
execute any service requested by a client. By converse,
each client is responsible for the correct speci�cation of
the service it needs, described by the code sent to the
remote server.

This approach is well-known in certain �elds of com-
puter science. For example, it is just the way distributed
relational databases work; the DBMS server is not re-
sponsible for providing answers to speci�c and pre-built
queries, rather, the only service it provides is the execu-
tion of SQL code that comes from application programs
or SQL shells acting on the client side.

However, the paradigm exploited by SQL systems dif-
fers in two respect with the ones we proposed. First,
the MA paradigm de�nes migration of a computation
that is already in execution, while SQL systems are more
similar to REV, in that they migrate only application
code. Second, our approach assumes implicitly that the
languages used to implement the paradigms are compu-
tationally complete, that is not the case of SQL.

Support for Disconnected Operations
The nodes of a distributed system may be connected by
a variety of physical links, whose di�erences in perfor-
mance must be taken into account at the design level.
In fact, the characteristics of the link may be part of the
criteria used to select the most suitable design paradigm
for the application at hand.

For instance, recent developments in mobile computing
showed that low-bandwidth and low-reliability commu-
nication channels require new design methodologies for

applications in a mobile setting. In complex networks
where some regions are connected through wireless links
while others are connected through ordinary links the
design becomes complex, in that it must aim at avoid-
ing as much as possible the generation of tra�c over the
weaker links.

The client-server paradigm has only one way to achieve
this goal, that is, to raise the granularity level of the ser-
vices o�ered by the server. This way, a single interaction
between client and server is su�cient to specify a high
number of lower level operations, that are performed lo-
cally on the server and do not need to pass across the
physical link. Unfortunately, this solution is not always
feasible. Moreover, it leads to an increase in complexity
and size of the server, and to reduced
exibility.

The REV and MA paradigms could help because they
allow, by their nature, to specify complex computations
that can move across a network. Hence, the services
that have to be executed by a server that resides in a
portion of the network that is reachable only through an
unreliable and slow link could be described in a program
that should pass once through this link, being injected
into the reliable network. There, it could execute au-
tonomously and independently. In particular, it would
not need any connection with the node that sent it, ex-
cept for the transmission of the �nal results of its com-
putation.

Improved Fault Tolerance
In conventional client-server applications, the state of
the computation is distributed between the client and
the server. A client program contains statements which
are executed locally and interleaved with statements
that invoke remote services on the server. The latter
contain (copies of) data that belong to the environment
of the client program, and will eventually return a re-
sult that will be inserted into the client's environment.
This structure leads to well-known problems in presence
of partial failures, because it is very di�cult to deter-
mine where and how to react in order to recover in a
consistent state.

The MA paradigm, and to some extent also the REV
paradigm, could help in solving the problem of partial
failures, in that they encapsulate all the state involv-
ing a distributed computation into a single component
that can be easily traced, checkpointed, and eventually
recovered locally, without any need for a global state
knowledge.

CHOOSING THE RIGHT PARADIGM
The choice of the paradigm for the design of a dis-
tributed application is a critical decision. Much of the
success of the development process may depend on it.

There is no paradigm that is better than others in abso-

lute terms. In particular, the paradigms proposed here
do not necessarily prove to be better than traditional
ones. The choice of the paradigm must be performed
on a case-by-case basis, according to the type of ap-
plication. For instance, the best paradigm for a net-
work management application could be di�erent from
the paradigm that is best suited for an information re-
trieval system.

For each case, some parameters that describe the appli-
cation behavior have to be chosen, together with some
criteria to evaluate the parameters values. For exam-
ple, one may want to minimize the number of interac-
tions, the CPU costs or the generated network tra�c.
In addition, a model of the underlying distributed sys-
tem should be adopted to support reasoning about the
criteria. For each paradigm considered the reasoning
method should be applied in order to determine which
paradigm optimizes the chosen criteria. This phase can-
not take into account all the characteristics and con-
straints, which probably will be fully understood only
after the detailed design, but it should provide hints
about the most reasonable paradigm to follow in the
design.

In the following, we will explain the ideas above by con-
sidering the example of an information retrieval appli-
cation. In this application we assume that information
is structured in clusters (information blocks) located on
di�erent network nodes. Each information block is man-
aged by a component (running on that node) that coor-
dinates the access to the data. The information that is
relevant to our application may be scattered all over the
network and it is assumed to be very small with respect
to the size of the whole data base.

Often, such data mining activities are human-intensive,
i.e., there is a person who browses through the net,
interpreting documents and �ltering out useful infor-
mation. In this example, we suppose that the docu-
ment browsing task can be carried out automatically,
i.e., there is a component that scans the incoming doc-
uments and is able to �lter text (and possibly images)
to relate one piece of information to another, to save
documents that are relevant to the search, and to fol-
low some implicit or explicit link to other nodes to fetch
other relevant information.

This application is similar to the usual process of �nding
some information on the Internet. So far, applications
of this kind have been designed following a client-server
paradigm, but one of the reasons why the idea of \mo-
bile agent" has become popular is that it has been pre-
sented as a facility for data mining and Internet search-
ing. In particular, it is often stated that if this kind of
application would be designed with \agents" interacting
with servers, performance could improve, particularly as

far as network tra�c is concerned.

However, this claim is supported usually only by intu-
ition. In the following, we show that it actually holds for
the REV paradigm only under certain conditions, and
it never holds for MA. Surprisingly, the CS paradigm
performs better than mobile code ones, if some con-
ditions are met. We demonstrate this by building a
simple model of the data mining application, determin-
ing which are the parameters we want to optimize (net-
work tra�c in this case) and reasoning about the best
paradigm to exploit4.

Description of the Model
We consider a network in which a node (e.g., a com-
puter or a printer) communicates with another node by
exchanging messages with a reliable protocol. Although
in a real system the cost of communication depends on
the distance between two nodes, we assume a uniform
network, i.e., the cost of communication is independent
of the particular node pair and is proportional to the
amount of bytes that are transmitted. The cost of com-
munication between two components that are located
on the same node is null.

Furthermore, we do not consider all the implications of
having code executed on remote hosts, i.e., the cost of
CPU time is negligible and every machine is accessi-
ble from anywhere in the network without any access
control and authentication procedure. These two as-
sumptions are not realistic. However, for the moment
we want to concentrate on bandwidth consumption only,
thus we will not take these cost items into consideration.

The application is composed of a browser component
that retrieves information represented by documents
stored on several hosts and managed locally by a ded-
icated data manager component. The browser compo-
nent can get either an entire document or just a docu-
ment header (e.g., containing update time and keywords
list) from one node by sending a request message to the
data manager component located at that node. The
browser keeps a \see also" list of nodes that is initial-
ized with at least one element. At each step, the browser
extracts the �rst node from the list and queries the data
manager at that node in order to get relevant documents
and references to other interesting nodes that are then
merged into the \see also" list. The browser continues
until all the interesting nodes have been visited.

The browser searches each node by requesting the
header of all the documents that are present on that
node (we assume that each data manager has an \index"
document that contains references to all its documents).

4Note that, in doing this, we ruled out the COD paradigm
which, although useful for augmenting the know-how of a compo-
nent, in this case does not help us in trying to optimize communi-
cation among the data mining application and the data managers.

parameter unit description
N nodes number of network nodes that contain useful

information
D documents/node average dimension of the data base at each network

node
i number density of relevant information: relevant/total docu-

ments ratio (constant for every node).
h bits/document average dimension of a document header
b bits/document average dimension of a document body
r bits/document dimension of the request (includes message headers

and all the auxiliary data of the request/reply).

Table 2: Parameters for the model of a simple data mining application.

It then selects only those documents that are relevant to
the search and requests their bodies. The \see also" list
is �nally produced by extracting links from the bodies
of relevant documents.

For simplicity, we make the following additional as-
sumptions:

� all requests have a �xed length (r),

� each node holds the same number D of documents,

� the relevant information is uniformly distributed
among a set of N nodes, being i the ratio between
relevant and total documents,

� documents have constant length. h and b are the
size of the header and the body, respectively.

The application is characterized by the parameters
shown in Table 2.

Evaluating the paradigms
Client-server
If we design the application using the client-server
paradigm, we will have a browser component on one
node that will interact remotely with the N data man-
agers. For each node, the browser issues D requests
for document headers and i�D requests for document
bodies. Thus, the total tra�c is:

TCS = ((D + iD)r +Dh+ iDb)N:

Remote evaluation
Using the REV paradigm, the browser can obtain the
execution of the �ltering task on the same node that
holds the data. Thus, for each node H , the browser
sends a request to an executor component on H con-
taining the code of the �lter. CREV is the size of this
code. The executor component performs the requests
to the data manager and sends the relevant document
bodies across the network back to the browser. The

browser extracts the \see also" list and then focuses on
another node.

Therefore, for each node H there is a single request
containing CREV which returns only the required infor-
mation, expressed by iDb. The total amount of data
that move through the network is:

TREV = (r + CREV + iDb)N:

Mobile agent
In the MA paradigm, the browser migrates on each in-
teresting node, performs all the interactions with the
data manager and the �ltering locally, and saves in its
state all the relevant information and the \see also" list.

At each hop, the mobile agent carries its code and state
across the network. For each hop j, the tra�c is T jMA =
r+CMA + Sj , where r is the dimension of the request,
CMA is the dimension of the code of the agent, and
Sj denotes the size of the state of the agent at hop
j. More precisely, Sj = dSAlist + s +

Pj
1
iDb, where

dSAlist is the size of the \see also" list, s denotes the
size of other internal data structures representing the
state of the computation, and the last term is the useful
information collected by the agent at each visited node.
Assuming that i, D, b, dSAlist, and s do not depend on
the node and de�ning for simplicity �s = dSAlist + s, the
overall tra�c generated by the mobile agent is:

TMA =
PN

j=0 (r + CMA + �s+
Pj

1
iDb);

that is,

TMA = (r + CMA + �s+ N
2
iDb)(N + 1):

Tra�c overhead
If we isolate the amount of relevant data that must nec-
essarily go through the network, we can reason about
the tra�c overhead produced by each paradigm. Thus,
being I = iDbN the size of the interesting information,

the three paradigms produce the following overhead:

OCS = TCS � I = (r + ir + h)DN;

OREV = TREV � I = (r + CREV)N;

OMA = TMA � I

= (r + CMA + �s)(N + 1) + (
I

2
)(N + 1)� I

= (r + CMA + �s)(N + 1) +
I

2
(N � 1):

Comments
It is clear that the overhead caused by the three
paradigms is always proportional to the number of vis-
ited nodes. It is also clear that REV is always more
convenient than MA because (1) CREV is always smaller
than CMA because the mobile agent must also include
the code that manages the \see also" list and the jump
choices, (2) OMA includes some terms that depend on
the state of the computation. In our application the
state grows with the number of hops N , thus, the over-
head grows with N2.

It is important to notice the di�erence between CS and
REV. This evaluation should suggest the condition that
makes one paradigm more convenient in terms of band-
width consumption. The choice is expressed by the fol-
lowing comparison: (r + ir + h)D � (r + CREV), i.e.,
assuming r � CREV , REV is convenient when:

(r + ir + h)D > CREV :

What makes the di�erence is that the overhead caused
by CS depends on the size of the database. In partic-
ular, it is proportional to the amount of data that is
necessary to perform the search (in a system with no
abstracts or indexes this equals the whole data base).
Instead, the overhead given by REV is bound to the size
of the code, i.e., the \know-how" sent by the applica-
tion. Thus, REV scales up very well for huge databases
and does even better when the information is concen-
trated in a few clusters, i.e., N is small and D is big.

Changing the model or the application parameters
The model we analyzed is very simple. It assumes that
the network is uniform and that each node is willing and
able to execute code coming from foreign hosts. It also
assumes that the goal is to minimize network load and
no other performance metrics, e.g., response time, or
other costs, e.g., implementation and deployment, are
taken into account.

As a future work, this model could be extended in the
following directions:

� non-uniform networks : we may assign di�erent
costs to di�erent links in the network. This way,

we may simulate disconnected/mobile computing,
or networks characterized by clusters of nodes with
high-speed connections among nodes within a clus-
ter, and unstable and slow links among clusters.

� security/CPU costs : we can assign a non-null cost
to the execution of code on remote hosts. This cost
should include a �xed part that accounts for secu-
rity procedures, e.g., authentication or code anal-
ysis, and a variable part proportional to the CPU
usage.

� memory usage: we may assign a cost proportional
to the amount of memory used by the executor of
the code.

CONCLUSIONS AND FUTURE WORK
On the basis of our ongoing research on MCLs, in this
paper we described some design paradigms that can
be derived by abstracting from the details of such lan-
guages. More important, we believe that the paradigms
we described are independent of the technology used to
implement them, and that, to some extent, they can
be valuable even when speci�c mobile technology is not
used at all. In addition, we believe that there is no
\best" solution to the problem of designing an appli-
cation with a mobile code paradigm. Rather, the best
solution has to be found on the basis of a careful evalua-
tion of the application requirement against the peculiar
features of each paradigm. We gave only some hints
about the process of selecting the right paradigm for a
given application, and surely there is room for further
work to be done in this �eld.

We plan to extend the work described in this paper in
the following directions:

� There is a strong need for real-world applications
developed using mobile code technology and/or de-
sign paradigms, that should be used as a testbed
to verify the advantages of the \mobile" approach.
For this purpose, we plan to implement a mobile
code application for network management, along
the lines described in [2].

� We will extend the repertoire of design paradigms
described in this paper and provide assessment cri-
teria that will allow each paradigm to be evaluated
with respect to the quality criteria of a given appli-
cation.

� It is an open question whether the paradigms de-
scribed here, which are inspired by the feature pro-
vided by MCLs, cover all the conceivable design
paradigms for code mobility. Thus, we are cur-
rently interested in investigating the minimal ab-
stractions needed to express all the possible inter-
action patterns involving code mobility at design

level, and their corresponding mapping at the lan-
guage level.

ACKNOWLEDGMENTS AND DISCLAIMER
This work could not have been made without enlighten-
ing discussions with several people, including G. Cugola,
A. Fuggetta, and C. Ghezzi. Another vital contribu-
tion comes from the \cake makers", Cristina and Luisa,
who in real life are Picco's �ancee and Vigna's wife, re-
spectively. While giving a talk about this work, one of
us was informed that our examples seem to convey an
image of the woman which is not \politically correct".
It is not a matter of political correctness. Simply, we
thought that nobody|at least among our colleagues|
would have believed in examples in which we were in
the role of cooks. Furthermore, we found that using the
names of our signi�cant others (who actually bake de-
licious cakes) if compared with sentences like \X wants
to prepare a cake", was far better than dealing with
aseptic symbolic names.

REFERENCES

[1] G. Abowd, R. Allen, and D. Garlan. Using Style
to Understand Descriptions of Software Architec-
ture. In Proceedings of SIGSOFT'93: Foundations
of Software Engineering, December 1993.

[2] M. Baldi, S. Gai, and G. P. Picco. Exploiting
Code Mobility in Decentralized and Flexible Net-
work Management. In Proceedings of the First In-
ternational Workshop on Mobile Agents (MA97),
Berlin, Germany, April 1997. To appear.

[3] A. Black, N. Hutchinson, E. Jul, and H. Levy. Fine-
Grained Mobility in the Emerald System. ACM
Transactions on Computer Systems, 6(1), February
1988.

[4] G. Cugola, C. Ghezzi, G. P. Picco, and G. Vigna.
Analyzing Mobile Code Languages. In J. Vitek and
C. Tschudin, editors, Mobile Object Systems. Lec-
ture Notes on Computer Science, 1997. To appear.

[5] B. T. et al. Facile Antigua Release Programming
Guide. Technical Report ECRC-93-20, European
Computer-Industry Research Centre, Munich, Ger-
many, December 1993.

[6] C. Ghezzi and G. Vigna. Mobile Code Paradigms
and Technologies: A Case Study. In Proceedings of
the First International Workshop on Mobile Agents
(MA97), Berlin, Germany, April 1997. To appear.

[7] R. S. Gray. Agent Tcl: A transportable agent sys-
tem. In Proceedings of the CIKM'95 Workshop on
Intelligent Information Agents.

[8] J. W. Stamos and D. K. Gi�ord. Remote Evalu-
ation. ACM Transactions on Programming Lan-
guages and Systems, 12(4):537{565, October 1990.

[9] D. Johansen, R. van Renesse, and F. Schneider. An
Introduction to the TACOMA Distributed System
- Version 1.0. Technical Report 95-23, "University
of Troms� and Cornell University", June 1995.

[10] J. Kramer. Distributed Software Engineering. In
Proceedings of the 16th International Conference
on Software Engineering, Sorrento (Italy), May
1994.

[11] G. Magic. Telescript Language Reference. General
Magic, October 1995.

[12] B. Mathiske, F. Matthes, and J. Schmidt. On Mi-
grating Threads. Technical report, Fachbereich In-
formatik Universit�at Hamburg, 1994.

[13] OMG. CORBA: Architecture and Speci�cation,
August 1995.

[14] J. Ousterhout. Tcl and the Tk Toolkit. Addison-
Wesley, 1995.

[15] D. Perry and A. Wolf. Foundations for the Study
of Software Architecture. ACM SIGSOFT Software
Engineering Notes, October 1992.

[16] M. Shaw and D. Garlan. Software Architecture:
Perspective on an Emerging Discipline. Prentice
Hall, 1996.

[17] M. Stra�er, J. Baumann, and F. Hohl. MOLE - A
Java Based Mobile Agent System. In Proceedings
of the Second International Workshop on Mobile
Object Systems, Linz, July 1996.

[18] Sun Microsystems. The Java Language Speci�ca-
tion, October 1995.

[19] C. F. Tschudin. An Introduction to the M0 Messen-
ger Language. University of Geneva, Switzerland,
1994.

[20] J. Waldo, G. Wyant, A. Wollrath, and S. Kendall.
A Note on Distributed Computing. Technical Re-
port TR-94-29, Sun Microsystems Laboratories,
November 1994.

