
Abstract

In this paper we present a framework for estimating the
energy consumption of Java-based software systems. Our
primary objective is to enable an engineer to make informed
decisions when adapting a system’s architecture, such that
the energy consumption on hardware devices with a finite
battery life is reduced and the lifetime of the system’s key
software services extended. Our framework explicitly takes
a component-based perspective. It allows the engineer to
estimate a system’s energy consumption prior to deployment
and refine it at runtime. In a large number of distributed
application scenarios, the framework has given results that
are within 5% of the actually measured power losses
incurred by executing the software. Our work to date has
also highlighted a number of future enhancements.

1. Introduction
Modern software systems are predominantly distrib-

uted, dynamic, and mobile. They increasingly execute on
heterogeneous platforms, many of which are characterized
by limited resources. One of the key resources, especially in
long-lived systems, is battery power. Unlike the traditional
desktop platforms, which have uninterrupted, reliable power
sources, a newly emerging class of computing platforms
have finite battery lives. For example, a space exploration
system may comprise satellites, probes, rovers, gateways,
sensors, and so on. Many of these are “single use” devices
that are not rechargeable. In such a setting, minimizing the
system’s power consumption, and thus increasing its life-
time, becomes an important quality-of-service concern.

Consider the scenario depicted in Figure 1, in which
seven software components are deployed on four battery-
powered hardware hosts, and are communicating over the
network. Without concerning ourselves with any other
details of this application, we can ask a number of questions
about its energy consumption. For example, does the loca-
tion of a given component (e.g., c4) impact its energy con-
sumption rate? Would redeploying a component (e.g., c4)
from one host (e.g., H4) to another (e.g., H2) change the sys-
tem’s, or a given system service’s, life span? Can we com-
pare the likely energy consumption profiles of two or more
candidate deployments? What is the best deployment for the

system with respect to energy consumption?
The simple obser-

vation guiding our
research is that if we
could estimate the
energy costs of a
given software sys-
tem in terms of its
constituent software
components ahead of
its actual deployment,
or at least early on
during its execution,
we would be able to answer the above questions. In turn,
this would allow us to take appropriate actions to prolong
the system’s life span: unloading unnecessary or expendable
software components, redeploying highly CPU-intensive
components to more capacious hosts, collocating frequently
communicating components, and so on.

To this end, in this paper we define and empirically
evaluate a framework that estimates the power consumption
of distributed software systems implemented in Java. We
chose Java because of its intended use in network-based
applications, its popularity, and very importantly, its reliance
on a virtual machine, which justifies some simplifying
assumptions possibly not afforded by other mainstream lan-
guages. One novel aspect of our framework is its compo-
nent-based development perspective, where the power
consumption of a component (e.g., a Java class or cluster of
classes) is modeled and calculated as a function of its public
interface. In turn, this perspective also simplifies the model
of (inter-component) communication costs. Another contri-
bution of this work is its ability to efficiently adjust energy
consumption estimates at runtime, based on monitoring the
changes in a small number of easily tracked system parame-
ters (e.g., network bandwidth, size of data exchanged over
the network, each interface’s invocation frequency, etc.).

We have evaluated our framework for precision on a
large number of distributed Java applications, by comparing
its estimates against actual electrical current measurements.
Our results suggest that the framework is always able to
estimate the power consumed by a distributed Java system
to within 5% of the actual consumption.

An Energy Consumption Framework for Distributed Java-Based Systems

Computer Science Department
University of Southern California

Los Angeles, CA 90089-0781 U.S.A.
{cseo,malek,neno}@usc.edu

Chiyoung Seo Sam Malek Nenad Medvidovic

H1

C1 …

I1

I2

In

C4

C2

C6

C3

C5

C7

H2

H3

H4

H1

C1 …

I1

I2

In

C4

C2

C6

C3

C5

C7

H2

H3

H4

Figure 1. Interactions
among distributed

components.

A very narrow view of the work described in this paper
is that it can help an engineer determine when her Java-
based system will run out of battery power. A broader, and
in our view more appropriate, view is that this work is the
necessary first step in the direction of
1. improving our understanding of the existing strategies

for minimizing the power consumption of a distributed
software system (e.g., component off-loading,
redeployment, degraded mode operation), and the trade-
offs among them,

2. improving those existing strategies, and
3. devising and quantifying new such strategies.

The remainder of the paper is organized as follows:
Section 2 presents the related research in the energy estima-
tion and measurement areas. We then introduce our energy
estimation framework in Section 3 and detail how it is
applied to component-based Java systems in Section 4. We
present our evaluation strategy in Section 5 and evaluation
results in Section 6. Finally, Section 7 concludes the paper.

2. Related Work
Previous research has suggested energy consumption

models at the level of CPU instructions [22,23]. However,
an engineer would not be able to use these models directly
to estimate the energy consumption of a distributed compo-
nent-based software system: they do not take into account
system elements other than CPU (e.g., main memory) or the
communication energy cost incurred by remote interactions
among software components.

Several studies have profiled the energy consumption
of Java Virtual Machine (JVM) implementations. Farkas et
al. [3] have measured the energy consumption of the Itsy
Pocket Computer and the JVM running on it. A JVM gener-
ally has five stages during its life cycle [15]: start, initialize,
load main class, interpreter loop, and exit. Farkas et al. have
discussed different JVMs’ design trade-offs in each stage
and measured their energy consumption. The energy con-
sumed at the interpreter loop stage corresponds to the actual
energy required to execute a Java application, while the
energy consumed by the other stages is constant [15].
Lafond et al. [15] have measured the energy consumption of
each stage, and showed that the energy required for memory
accesses usually accounts for 70% of the total energy con-
sumed. Vijay et al. [24] have discussed the characteristics of
the energy consumption by cache and main memory when
executing the SPEC JVM98 benchmarks [19] in the just-in-
time (JIT) and interpreter modes on the Sun Labs Virtual
Machine for Research, EVM [20]. However, none of these
studies suggest a model that can be used for estimating the
energy consumption of a distributed Java-based system.

Recently, researchers have attempted to characterize
the energy consumption of the Transmission Control Proto-
col (TCP) [16]. Singh et al. [16] measured the energy con-
sumption of variants of TCP (i.e., Reno, Newreno, SACK,

and ECN-ELFN) in ad-hoc networks, and showed that
ECN-EFLN has a lower energy cost than the others. These
studies also show that since TCP employs a complicated
mechanism for congestion control and error recovery, mod-
eling its exact energy consumption remains an open prob-
lem. While we plan to incorporate into our framework the
future advancements in this area, as detailed in the next sec-
tion we currently rely on the User Datagram Protocol
(UDP), which does not provide any supports for congestion
control, retransmission, error recovery, and so forth.

Several studies [4,5] have measured the energy con-
sumption of wireless network interfaces on handheld
devices that use UDP for communication. They have shown
that the energy usage by a device due to exchanging data
over the network is directly linear to the size of data and
inversely proportional to the available bandwidth. We use
these experimental results as a basis for defining a compo-
nent’s communication energy cost.

3. Overview of the Energy Cost Framework
We model a distributed software system’s energy con-

sumption at the level of its components. The energy cost of
a software component consists of its computational and
communication energy costs. The computational cost is
mainly due to CPU processing, memory access, I/O opera-
tions, and so forth, while the communication cost is mainly
due to the data exchanged over the network. In addition to
these two, there is an additional energy cost incurred by an
OS and runtime platform (e.g., JVM) in the process of man-
aging the execution of user-level applications. We refer to
this cost as infrastructure energy overhead. In this section,
we present our approach to modeling each of these three
energy cost factors. We conclude the section by summariz-
ing the assumptions that underlie our work.

3.1. Computational Cost
In order to preserve a software component’s abstraction

boundaries, we determine its computational cost at the level
of its public interfaces. A component’s interface corre-
sponds to a service it provides to other components.1 While
there are many ways of implementing an interface and bind-
ing it to its caller (e.g., RMI, event exchange), in the most
prevalent case an interface corresponds to a method. In Sec-
tion 3.2 we discuss other forms of interface implementation
and binding (e.g., data serialization over sockets).

As an example, Figure 1 highlights component c1 on
host H1, c1’s provided interfaces, and the invocation of
those interfaces by remote components. Given the energy
consumption iCompEC resulting from invoking an interface

1. Note that we use the them “interface” in a broader sense than the
programming language-level construct supported by Java. Our use
of the term is consistent with component-based software engineer-
ing literature.

Ii, and the total number bi of invocations for interface Ii, we
can calculate the overall energy consumption of component
c1 with n interfaces (expressed in Joule or J) as follows:

Eq. 1

In this equation, iCompEC(Ii,j), the computational energy
cost due to the jth invocation of Ii, may depend on the input
parameter values of Ii and differ for each invocation.

In Java, the effect of invoking an interface can be
expressed in terms of the execution of JVM’s 256 Java byte-
code types, and its native methods. Bytecodes are platform-
independent codes interpreted by JVM’s interpreter, while
native methods are library functions (e.g.,
java.io.FileInputStream’s read() method) provided
by JVM. Native methods are usually implemented in C and
compiled into dynamic link libraries, which are automati-
cally installed with JVM. JVM also provides a mechanism
for synchronizing multiple threads via an internal imple-
mentation of a monitor.

Each Java statement maps to a specific sequence of
bytecodes, native methods, and/or monitor operations; con-
sequently, each Java method, class, and application maps to
a (much longer) such sequence. Therefore, based on the 256
bytecodes, m native methods, and monitor operations that
are available on a given JVM, we can estimate the energy
consumption iCompEC(Ii,j) of invoking an interface on that
JVM as follows:

Eq. 2
where bNumk,j and fNuml,j are the numbers of each type of
bytecode and native method, and mNumj is the number of
monitor operations executed during the jth invocation of Ii.
bECk, fECl, and mEC represent the energy consumption of
executing a given type of bytecode, a given type of native
method, and a single monitor operation, respectively. These
values must be measured before Equation 2 can be used.
Unless two platforms have the same hardware configura-
tions, JVMs, and OSs, their respective energy values for
bECk, fECl, and mEC will likely be different. We will
explain how these values can be obtained for an actual host
in Section 5.

3.2. Communication Cost
Two components may reside in the same address space

and thus communicate locally, or in different address spaces
and communicate remotely. When components are part of
the same JVM process but running in independent threads,
the communication among the threads is generally achieved
via native method calls (e.g., java.lang.Object’s
notify() method). A component’s reliance on native
methods has already been accounted for in calculating its

computational cost from Equation 2. When components run
as separate JVM processes on the same CPU, Java sockets
are usually used for their communication. Given that JVMs
generally use native methods (e.g., java.net.Socket-
InputStream’s read()) for socket communication, this
is also captured by a component’s computational cost.

In remote communication, the transmission of mes-
sages via network interfaces consumes significant amounts
of energy. Given the communication energy consumption
iCommEC due to invoking an interface Ii, and the total num-
ber bi of invocations for that interface Ii, we can calculate
the overall communication energy consumption of a compo-
nent c1 with n interfaces (expressed in Joule) as follows:

Eq. 3

In this equation, iCommEC(Ii,j), the communication energy
cost incurred by the jth invocation of Ii, depends on the
amount of data transmitted or received during the invocation
and might be different for each invocation. Below we
explain how we have modeled iCommEC(Ii,j).

We focus on modeling the energy consumption due to
the remote communication based on UDP. As discussed in
Section 2, UDP is a light-weight protocol (e.g., it provides
no congestion control, retransmission, and error recovery
mechanisms), and is more prevalent than TCP in embedded
and resource-constrained computing domains. Previous
research [4,5] has shown that the actual energy consumption
of wireless communication is directly proportional to the
amount of transmitted and received data, and inversely pro-
portional to the bandwidth between two hosts. Based on
this, we quantify the communication energy consumption of
the jth invocation of component c1’s interface Ii on host H1
by component c2 on host H2 as follows:

 Eq. 4

Parameters tEvtSize and rEvtSize are the sizes (e.g., KB) of
transmitted and received messages on host H1 during the jth
invocation of Ii. The remaining parameters are host-specific.
tBw and rBw are the actual UDP bandwidths (KB/sec) used
by H1 for transmission and receipt. tECH1 and rECH1 are the
host’s energy consumption rates (Joule/sec) while it trans-
mits and receives data. Finally, tSH1 and rSH1 represent con-
stant energy overheads associated with device state changes
and channel acquisition.2

In Equation 4, the energy values of tEC, rEC, tS, rS are
constant and platform-specific. The system parameters that

1
1 1

() (,)
ibn

i
i j

cCompEC c iCompEC I j
= =

= ∑∑

256

, ,
1 1

(,)
m

i k j k l j l j
k l

iCompEC I j bNum bEC fNum fEC mNum mEC
= =

 = × + × + ×

∑ ∑

2. When there is no network traffic for a certain period of time, a wire-
less interface card changes its state from idle to sleep. When a new
packet is ready for transmission or reception, the wireless interface
card changes its state from sleep to active and acquires a channel for
communication. These state changes and channel acquisition activi-
ties consume energy.

1
1 1

() (,)
ibn

i
i j

cCommEC c iCommEC I j
= =

= ∑ ∑

1 2 1 2

1 1 1 1
1 2 1 2

, ,

, ,
(,) c c c c

i H H H H
H H H H

tEvtSize rEvtSize
iCommEC I j tEC tS rEC rS

tBw rBw

 = × + + × +

need to be monitored on each host are only the sizes of mes-
sages exchanged (tEvtSize and rEvtSize, which include the
overhead of UDP protocol headers) and the transmission
and receipt bandwidths (tBW and rBW). Note that transmis-
sion or receipt failures between the sender and receiver
hosts do not affect our estimates: UDP does not do any pro-
cessing to recover from such failures, while our framework
uses the actual amount of data transmitted and received in
calculating the communication energy estimates.

3.3. Infrastructure Energy Consumption
Once the computational and communication costs of a

component have been calculated based on its interfaces, its
overall energy consumption may be determined as follows:

Eq. 5
However, there are additional energy costs for executing a
Java component incurred by JVM’s garbage collection (GC)
and implicit OS routines.

During garbage collection, all threads within the JVM
process are suspended and the GC thread takes over the exe-
cution control. We estimate the energy consumption result-
ing from GC by determining the average energy
consumption rate gEC of the GC thread (Joule/second) and
monitoring the total time tGC the thread is active (second).
In Section 5 we describe how to measure GC thread’s exe-
cution time and its average energy consumption rate.

Since a JVM runs as a separate user-level process in an
OS, it is necessary to consider the energy overhead of OS
routine calls for managing the execution of JVM processes.
There are two types of OS routines:
1. explicit OS routines (i.e., system calls), which are

initiated by user-level applications (e.g., accessing files,
or displaying text and images on the screen); and

2. implicit OS routines, which are initiated by the OS (e.g.,
context switching, paging, and process scheduling).

Java applications initiate explicit OS routine calls via
JVM’s native methods. Therefore, Equation 2 already
accounts for the energy cost due to the invocation of explicit
OS routines. However, we have not accounted for the
energy overhead of executing implicit OS routines. Previ-
ous research has shown that process scheduling, context
switching, and paging are the main consumers of energy
due to implicit OS routine calls [21]. By considering these
additional energy costs, we can estimate the overall infra-
structure energy overhead of a JVM process p as follows:

 Eq. 6
Recall that gEC is the average energy consumption rate of
the GC thread, while tGCp is the time that the GC thread is
active during the execution of process p. csNump, pfNump,
and prNump are, respectively, the numbers of context
switches, page faults, and page reclaims that have occurred
during the execution of process p. csEC, pfEC, and prEC

are, respectively, the energy consumption of processing a
context switch, a page fault, and a page reclaim. We should
note that csEC includes the energy consumption of process
scheduling as well as a context switch. This is due to the
fact that in most embedded OSs a context switch is always
preceded by process scheduling [21].

Since there is a singleton GC thread per JVM process,
and implicit OS routines operate at the granularity of pro-
cesses, we estimate the infrastructure energy overhead of a
distributed software system in terms of its JVM processes.
In turn, this helps us to estimate the system’s energy con-
sumption with higher accuracy.

Unless two platforms have the same hardware configu-
rations, JVMs, and OSs, the energy values of gEC, csEC,
pfEC, and prEC on one platform may not be the same as
those on the other platform. We will describe how these val-
ues can be obtained for an actual host in Section 5.

Once we have estimated the energy consumption of all
the components, as well as the infrastructure energy over-
head, we can estimate the system’s overall energy consump-
tion as follows:

 Eq. 7

where cNum and pNum are, respectively, the numbers of
components and JVM processes in the distributed system.

3.4. Assumptions
In formulating the framework introduced in this sec-

tion, we have made several assumptions. First, we assume
that the configuration of all eventual target hosts is known
in advance. This allows system engineers to closely approx-
imate (or use the actual) execution environments in profil-
ing the energy consumption of applications prior to their
deployment and execution. As alluded above, and as will be
further discussed in Sections 4 and 5, several elements of
our approach (e.g., profiling the energy usage of a bytecode,
assessing infrastructure energy costs, determining an appro-
priate initial system deployment) rely on the ability to
obtain accurate energy measurements “off line”.

Second, we assume that interpreter-based JVMs, such
as Sun Microsystems’ KVM [14] and JamVM [8], are used.
These JVMs have been developed for resource-constrained
platforms, and require much less memory than “just-in-
time” (JIT) compilation-based JVMs. If a JIT-based JVM is
used, the energy cost for translating a bytecode into native
code “on the fly” would need to be added into Equation 2
since the JIT compilation itself happens while a Java appli-
cation is being executed. We are currently investigating how
our framework can be extended to JIT-based JVMs.

Third, we assume that the systems to which our frame-
work is applicable will be implemented in “core” Java. In
other words, apart from the JVM, we currently do not take
into account the effects on energy consumption of any other

() () ()overallEC c cCompEC c cCommEC c= +

() () () ()() p p p pifEC p tGC gEC csNum csEC pfNum pfEC prNum prEC= × + × + × + ×

1 1
() ()

pNumcNum

i j
i j

systemEC overallEC c ifEC p
= =

= +∑ ∑

middleware platform. While this does not prevent our
framework from being applied on a very large number of
existing Java applications, clearly in the future we will have
to extend this work to include other middleware platforms.

We assume that the target network environment is a
(W)LAN that consists of dedicated routers (e.g., wireless
access points) and either stationary or mobile hosts. This is
representative of a majority of systems that rely on wireless
connectivity and battery power today. In the case of mobile
hosts, we assume that each host associates itself with an
access point within its direct communication range and
communicates with other hosts via dedicated access points.
In this environment, there could be a hand-off overhead as a
result of mobile hosts moving and changing their associated
access points. However, it is not the software system that
causes this type of energy overhead, but rather the move-
ment of the host (or user). Therefore, we currently do not
consider these types of overhead in our framework.

Note that in order to expand this work to a wireless ad-
hoc network environment, we also need to consider the
energy overhead of routing event messages by each host.
This type of energy overhead can be accounted for by
extending the infrastructure aspect of our framework (recall
Section 3.3). We plan to investigate this issue as part of our
future work.

Finally, the energy estimates of a small subset of native
methods depend on a given platform’s hardware configura-
tion, such as the LCD brightness and speaker volume. An
underlying assumption in this paper is that the configuration
of target hardware platforms for which native methods are
profiled at construction-time does not change significantly
at runtime. However, we could trivially account for this by
profiling the native methods that depend on hardware con-
figurations for each variation point. For example, we could
profile the energy consumption of a native method that is
impacted by LCD’s refresh rate (e.g., 60Hz vs. 90Hz).

4. Energy Consumption Estimation
In this section, we discuss how our framework can be

used for estimating a distributed software system’s energy
consumption at the level of its components both during sys-
tem construction-time and during runtime.

4.1. Construction-Time Estimation
In order to estimate a distributed system’s energy con-

sumption during construction-time, we first need to charac-
terize the computational energy consumption of each
component on its candidate hosts. To this end, we have iden-
tified three different types of component interfaces:
I. An interface (e.g., a date component’s setCurrent-
Time) that requires the same amount of computation
regardless of its input parameters.

II. An interface (e.g., a data compression component’s
compress) whose input size is proportional to the
amount of computation required.

III.An interface (e.g., DBMS engine’s query) whose input
parameters have no direct relationship to the amount of
computation required.

For a type I interface, we need to profile the number of
bytecodes, native methods, and monitor operations only
once for an arbitrary input. We can then calculate its energy
consumption from Equation 2.

For interfaces of type II, we first generate a set of ran-
dom inputs, profile the number of bytecodes, native meth-
ods, and monitor operations for each input, and then
calculate its energy consumption from Equation 2. How-
ever, the set of generated inputs does not show the complete
energy behavior of a type II interface. To characterize the
energy behavior of a type II interface for any arbitrary input,
we employ multiple regression [1]. Multiple regression is a
method of estimating the expected value of an output vari-
able given the values of a set of related input variables. By
running multiple regression on a sample set of input vari-
ables’ values (in our case, each generated input for a type II
interface) and the corresponding output value (energy con-
sumption calculated from Equation 2), it is possible to con-
struct an equation that estimates the relationship between
the input variables and the output value. In Figure 4 (further
discussed in Section 6), we show an example of applying
multiple regression to the Shortest Path component that
finds the shortest path tree with the source location as a root.

Interfaces of type III present a challenge because there
is no direct relationship between an interface’s input param-
eters and the amount of computation required, yet a lot of
interface implementations fall in this category (e.g., many
Java methods containing loops and branches). To character-
ize the energy behavior of type III interfaces with a set of
finite execution paths, we use symbolic execution [13], a
well known program analysis technique that allows using
symbolic values for input parameters to explore program
execution paths. We leverage previous research [12], which
has suggested a generalized symbolic execution approach
for generating test inputs covering all the execution paths,
and use these inputs for invoking a type III interface. We
then profile the number of bytecodes, native methods, and
monitor operations for each input, estimate its energy con-
sumption from Equation 2, and finally calculate the inter-
face’s average energy consumption by dividing the total
energy consumption by the number of generated inputs.

The above approach works only for interfaces with
finite execution paths, and is infeasible for interfaces whose
implementations have infinite execution paths, such as a
DBMS engine. We use an approximation for such inter-
faces: we invoke the interface with a large set of random
inputs, calculate the energy consumption of the interface for
each input via Equation 2, and finally calculate the average
energy consumption of the interface by dividing the total
consumption by the number of random inputs. This
approach will clearly not always give a representative esti-

mate of the interface’s actual energy consumption: if the
random inputs result in execution paths that are shorter (or
longer) than the actual paths executed at runtime, the inter-
face’s energy consumption will be underestimated (or over-
estimated). Closer approximations can be obtained if an
interface’s expected runtime context is known (e.g.,
expected inputs, possible system states, values of certain
variables, and so on). As we will detail in Sections 4.2 and
5.4, we can also refine our construction-time energy esti-
mates for type III interfaces by monitoring the actual
amount of computation required at runtime.

To estimate the communication energy consumption of
each interface, based on domain knowledge, types of input
parameters and return values, and the target hardware envi-
ronment, we estimate the average size of messages
exchanged and the maximum available bandwidth for com-
munication. Using this data we can approximate the com-
munication energy cost of interface invocation via Equation
4. Finally, based on these analyses for computational and
communication energy costs of each interface, we can esti-
mate the overall energy consumption of a component on its
candidate host(s) using Equations 1, 3, and 5.

Before estimating the entire distributed system’s energy
consumption, we also need to determine the infrastructure’s
energy overhead, which depends on the deployment of the
software (e.g., the number of components executing simul-
taneously on each host). Unless the deployment of the sys-
tem’s components on its hosts is fixed a priori, the
component-level energy estimates can help us determine an
initial deployment that satisfies the system’s energy require-
ments (e.g., to avoid overloading an energy-constrained
device). Once an initial deployment is determined, from
Equation 6 we can estimate the infrastructure’s energy cost.
We do so by executing all the components on their target
hosts simultaneously, with the same sets of inputs that were
used in characterizing the energy consumption of each indi-
vidual component. Finally, we determine the distributed
system’s overall energy consumption via Equation 7.

4.2. Runtime Estimation
Many systems for which energy consumption is a sig-

nificant concern are long-lived, dynamically adaptable, and
mobile. An effective energy cost framework for such sys-
tems should account for variations in the energy consump-
tion due to changes in the runtime environment, or due to
the system’s adaptations. In this section, we discuss our
approach to refining our construction-time energy estimates
of a system after its initial deployment.

The initial deployment of a software system onto the
target hosts may be based on energy cost estimates that are
made in the manner discussed above. However, many
aspects of the system, such as the frequency with which
interfaces of a component are actually invoked, may have
not been accurately estimated. The construction-time esti-

mates are based on a system engineer’s guesses or domain
knowledge. For a large class of systems, such as the space
exploration system that was mentioned in Section 1, most of
the runtime properties can be predicted fairly accurately at
construction-time: available bandwidth between a rover and
a satellite can be estimated based on the orbital position of
the satellite, frequency of each interface’s invocation can be
estimated for a duration of time based on the mission or
task, and so on. On the other hand, in many systems, con-
struction-time estimates may differ from the system’s actual
use and thus its actual energy consumption. In such situa-
tions, more accurate estimates are only possible at runtime
as discussed below.

The amount of computation associated with a type I
interface is constant regardless of its input parameters. If the
sizes of the inputs to a type II interface significantly differ
from construction-time estimates, new estimates can be cal-
culated efficiently and accurately from its energy equation
generated by multiple regression. Recall from Section 4.1
that for type III interfaces our construction-time estimates
may be inaccurate as we may not be able to predict both the
invocation frequency and the most frequently executed
paths. Therefore, to refine a type III interfaces’ construc-
tion-time estimates, we need to monitor the actual amount
of computation at runtime (i.e., number of bytecodes, native
methods, and monitor operations). In Section 5.4 we present
an efficient way of monitoring these parameters.

The communication cost of each component can be
refined in an analogous manner, based on the appropriate
system parameters (recall Equation 4). For example, by
monitoring the variations in the available bandwidth and the
sizes of messages exchanged over the network links, we can
determine their effects on each interface’s communication
cost, and thus update a component’s overall energy cost.

Finally, the fact that the frequency at which interfaces
are involved may vary significantly from what was pre-
dicted at construction-time, and the fact that the system may
be adapted at runtime, may result in inaccurate construc-
tion-time infrastructure energy estimates. Therefore, we
also need to monitor the GC thread execution time and the
number of implicit OS routines invoked at runtime. We dis-
cuss the overhead of this monitoring in detail in Section 5.4.
Based on the refined estimates of each interface’s computa-
tional and communication costs, and of the infrastructure’s
energy overhead, we can improve our construction-time
energy estimates of the distributed system at runtime.

5. Evaluation Strategy
This section describes our evaluation environment and

the tools on which we relied. We also describe the strategy
we employed in selecting Java components for the evalua-
tion. We round out the section by detailing the energy mea-
surement and monitoring approaches we have used.

5.1. Experimental Setup
In order to evaluate the accuracy of our framework’s

estimates, we need to know the actual energy consumption
of a software component or system. To this end, we used a
digital multimeter, which measures the factors influencing
the energy consumption of a device: voltage and current.
Since the input voltage is fixed in our experiments, the
energy consumption can be measured based on the current
variations going from the energy source to the device. To
measure the actual energy consumption of running software
on a device, we first monitor the constant amount of current
drawn by the device when it is idle. When a software com-
ponent executes, the current increases. The cumulative dif-
ference in these two current levels over the execution time
represents the actual energy consumption of executing the
software.

Figure 2
shows our
experimen-
tal environ-
ment setup
that included
a Compaq
iPAQ 3800 handheld device running Linux and Kaffe 1.1.5
JVM [11], with an external 5V DC power supply, a 206MHz
Intel StrongARM processor, 64MB memory, and 11Mbps
802.11b compatible wireless PCMCIA card. We also used
an HP 3458-a digital multimeter. For measuring the current
drawn by the iPAQ, we connected it to the multimeter,
which was configured to take current samples at a high fre-
quency. A data collection computer controlled the digital
multimeter and read the current samples from it. This basic
setup is slightly varied depending on the focus of our mea-
surements, as discussed below.

5.2. Selecting Java Components
We have

selected a large
number of Java
components
with various
characteristics
for evaluating
our framework.
They can be
classified into
the following
three categories:
• Computation-

intensive
components
that require a
large number of CPU operations. We have used compo-
nents that perform data encryption/decryption, image pro-

cessing, data compression, sorting components, and so on.
• Memory-intensive components that require large segments

of memory at runtime. Database and various data struc-
ture components have been selected for this type.

• Communication-intensive components that interact fre-
quently with other components over a network. Database
and FTP components have been chosen for this type.

For illustration, Table 1 shows a cross-section of the
Java components used in our evaluation. These components
vary in size and complexity (HSQLDB [6] is the largest, with
more than 50,000 SLOC, while Jess [10] is somewhat
smaller, with approximately 40,000 SLOC). The source
code of Jess, HSQLDB, and IDEA components can be
found at Jess [10], Source Forge [18], and Java Grande
Forum [9] respectively, while the source code of the other
components shown in Table 1 was obtained from Source
Bank [17].

5.3. Measurement
Prior to system deployment, we first need to measure

the energy consumption on a target platform of each byte-
code, native method, monitor operation, and implicit OS
routine, as well as the average consumption rate during gar-
bage collection (GC). For each bytecode we generate a Java
class file that executes that bytecode 1000 times. We also
create a skeleton Java class with no functionality, which is
used to measure the energy consumption overhead of exe-
cuting a class file. We use the setup discussed in Section 5.1
for measuring the actual energy cost of executing both class
files. We then subtract the energy overhead E1 of running
the skeleton class file from the energy cost E2 of the class
file with the profiled bytecode. By dividing the result by
1000, we get the average energy consumption of executing
the bytecode. Similarly, for measuring the energy consump-
tion of each native method, we generate a class file invoking
the native method and measure its actual energy consump-
tion E3. Note that when JVM executes this class file, several
bytecodes are also executed. Therefore, to get the energy
cost of a native method, we subtract (E1 + energy cost of the
bytecodes) from E3. For a monitor operation, we generate a
class file invoking a method that should be synchronized
among multiple threads, and measure its energy consump-
tion E4. Since several bytecodes are also executed during
the invocation, we can get the energy cost of a monitor oper-
ation by subtracting (E1 + energy cost of the bytecodes)
from E4.

To measure the energy consumption of implicit OS rou-
tines, we employ the approach suggested by Tan et al. [21],
which captures the energy consumption behavior of embed-
ded operating systems. Using this approach we are able to
determine the energy cost of major implicit OS routine calls,
such as context switching, paging, and process scheduling.
Due to space constraints we cannot provide the details of
this approach; we point interested readers to [21] for more
information. Finally, for getting the average energy con-

Java
Com ponents

PD A

Pow er Supply

D igital
M ultim eter

D ata Collection
Com puterJava

Com ponents

PD A

Pow er Supply

D igital
M ultim eter

D ata Collection
Com puter

Figure 2. Experimental setup.

Java Expert Shell System based on
NASA’s CLIPS expert shell system

Jess

Component that finds the shortest path
tree with the source location as root

Shortest Path

HSQLDB, a Java-based database engineDB

Quicksort componentSort

Data compression/decompression
component implementing the LZW
algorithm

LZW

Data structure components that
implement an AVL tree and a linked list

AVL, Linked list

Component that creates a new image by
applying a median filter

Median filter

Components that encrypt or decrypt
messages by using SHA, MD5, and IDEA
algorithms

SHA, MD5, IDEA

DescriptionComponent

Java Expert Shell System based on
NASA’s CLIPS expert shell system

Jess

Component that finds the shortest path
tree with the source location as root

Shortest Path

HSQLDB, a Java-based database engineDB

Quicksort componentSort

Data compression/decompression
component implementing the LZW
algorithm

LZW

Data structure components that
implement an AVL tree and a linked list

AVL, Linked list

Component that creates a new image by
applying a median filter

Median filter

Components that encrypt or decrypt
messages by using SHA, MD5, and IDEA
algorithms

SHA, MD5, IDEA

DescriptionComponent

Table 1:
Java components used in evaluation.

sumption rate of the GC thread, we execute over a given
period of time a simple Java class file that creates a large
number of “dummy” Java objects, and measure the average
energy consumption rate during the garbage collection
phase.

5.4. Monitoring
Since we need to monitor the numbers of bytecodes,

native methods, monitor operations, and implicit OS rou-
tines, as well as the GC thread execution time, we instru-
mented the Kaffe 1.1.5 JVM to provide the required
monitoring facilities. Since the monitoring activity itself
also consumes energy, we had to ensure that our monitoring
mechanism is as light-weight as possible. To this end, we
modified Kaffe’s source code by adding
1. an integer array of size 256 for counting the number of

times each bytecode type is executed;
2. integer counters for recording the number of times the

different native methods are invoked; and
3. an integer counter for recording the number of monitor

operations executed.
As mentioned in Section 4.2, this type of runtime monitor-
ing is only used for type III interfaces. We also added a glo-
bal timer to Kaffe’s GC module to keep track of its total
execution time. This timer has a small overhead equivalent
to two system calls (for getting the times at the beginning
and at the end of the GC thread’s execution). For the num-
ber of implicit OS routines, we simply used the facilities
provided by the OS. Since both Linux and Windows by
default store the number of implicit OS routines executed in
each process’s Process Control Block, we did not introduce
any additional overhead. Finally, for measuring the avail-
able bandwidth on each host we used Iperf [7], a tool for
efficient measurements of network bandwidth variations.
We have measured the energy overhead due to these moni-
toring activities for the worst case (i.e., type III interfaces).
The average energy overhead compared with the energy
consumption without any monitoring was 3.8%. We should
note that this overhead is transient: engineers can choose to
monitor systems during specific time periods only (e.g.,

whenever any changes occur in the system or in its usage).

6. Evaluation Results
In this section, we present the results of evaluating our

framework. Specifically, we assess its accuracy in estimat-
ing the energy cost of distributed Java-based systems.

6.1. Computational Energy Cost
To validate our computational energy model, we com-

pare the values calculated from Equation 2 with the actual
energy costs. In this section, all of the actual energy costs
have been calculated by subtracting the infrastructure
energy overhead (Equation 6) from the energy consumption
measured by the digital multimeter. As an illustration, Fig-
ure 3 shows the results for components of Table 1. For each
component, we have executed each of its interfaces 20
times separately with different input parameter values, and
averaged the discrepancies between the estimated and
actual costs (referred to as “error rate” below). The results
show that our estimates fall within 5% of the actual energy
costs. These results are also corroborated by experiments
performed on a large number of additional Java components
[9,17,18].

As discussed in Section 4, multiple regression can be
used for characterizing the energy consumption of invoking
type II interfaces. For this we used a tool called DataFit [2].
In measurements we conducted on over 50 different type II
interfaces, our estimates of their energy consumption have
been within 5% of the actual energy costs. As an illustra-
tion, Figure 4 shows the graph generated by DataFit for the
find interface of the Shortest Path component, using
20 sets of sample values for find’s input parameters (x1
and x2), and the resulting energy costs (y) estimated by
Equation 2. Several actual energy costs are shown for illus-
tration as the discrete points on the graph.

-6

-4

-2

0

2

4

6

1 2 3 4 5 6 7 8 9 10 11

Er
ro

r
ra

te
 (%

)

Jess

7

Sort

6

DB

8

Shortest
path

9

AVL

10

LZW

5

Linked
List

Median
Filter

IDEAMD5SHA

114321

Jess

7

Sort

6

DB

8

Shortest
path

9

AVL

10

LZW

5

Linked
List

Median
Filter

IDEAMD5SHA

114321

Error Rate = (estimated cost – actual cost) *100 / actual cost

Figure 3. Error rates for the components shown in Table 1. Figure 4. Multiple regression for the find interface of the
Shortest Path component.

Estimated (µJ)

Actual (µJ)

119767

122688

Point 1

261905

245395

Point 2

351300

364891

Point 3

224201

215760

Point 4

341570

316622

Point 5

677319

710709

Point 6

X2 (Num. of edges)

Y
 (

En
er

g
y,

 µ
J)

Y
 (

En
er

gy
, µ

J)

X1 (Num
. of nodes)

1

2

3

4

5

6

For esti-
mating the
energy con-
sumption of
type III inter-
faces, as dis-
cussed
previously we
generated a set
of random
inputs, esti-
mated the
energy cost of
invoking each interface with the inputs using Equation 2,
and calculated its average energy consumption. Figure 5
compares the average energy consumption of each interface
for the DB and Jess components calculated using our frame-
work with the interface’s actual average energy consump-
tion. The results show that our estimates are within 5% of
the actual average energy costs. Recall that these design-
time energy estimates can be refined at runtime by monitor-
ing the numbers of bytecodes, native methods, and monitor
operations executed. For example, for a scenario that will be
detailed in Section 6.3, we refined the construction-time
energy estimate for the DB query interface at runtime,
reducing the error rate to under 2.5%.

6.2. Communication Energy Cost
For evaluating the communication energy cost, we use

a wireless router for the iPAQ to communicate with an IBM
ThinkPad X22 laptop via a UDP socket implementation
over a dedicated wireless network.

Recall from Section 3.2 that several parameters (tEC,
rEC, tS, and rS) from Equation 4 are host-specific. To quan-
tify these parameters for the iPAQ, we set up a fixed envi-
ronment in which the network’s transmission and receipt
bandwidths are constant. In particular, we fixed the UDP
transmission/receipt bandwidths available to the iPAQ to
625 KB/sec by using Iperf [7]. We then used the digital mul-
timeter to measure the actual energy consumptions on the
iPAQ as a result of transmitting and receiving a sample set
of messages of various sizes to/from the laptop. Based on
these results, we used multiple regression to find equations
that capture the relationship between the input (size of the
transmitted or received data x) and the output (actual energy
consumption y): Eq. 8

Eq. 9
We then used the generated equations to quantify the

host-specific parameters in Equation 4. For example, the
size of transmitted data xt in Equation 8 represents tEvtSize
in Equation 4. The constant energy cost of 0.015 represents
the parameter tS in Equation 4, which is independent of the
size of transmitted data. The variables tEC and tBW are cap-

tured by the constant factor 2.7572, as follows:

From the above we can determine that tEC = 1.7232 J/sec.
The values of rS and rEC can be calculated in the same
manner using Equation 9. We can thus express the overall
energy cost of the iPAQ for communicating with the laptop
as a specific instance of Equation 4:

Eq. 10
Using this approach, we have been able to estimate the

overall communication cost of a device to within 3% of the
actual values in our experiments. For illustration, Figure 6
shows energy costs for the iPAQ estimated by Equation 10
versus the energy costs obtained by actual measurements. A
comparable error rate (under 3%) has recurred across our
experiments regardless of the bandwidth used.

6.3. Overall Energy Cost
Figure 7 shows our setup for the evaluation of a distrib-

uted system, where we have connected an iPAQ with two
other hosts via a wireless router. Hosts B and C run Win-
dows XP and Fedora Core 4 Linux, respectively. Both host
B and C use an IEEE 802.11b compliant wireless network
card for communication.

Figure 7
also shows an
example soft-
ware system
deployed across
the three hosts.
Each software
component inter-
acts with the
other compo-
nents via a UDP
socket. A line
between two components (e.g., IDEA and FTP Client on
the iPAQ) represents an interaction path between them. We
have used several execution scenarios in this particular sys-
tem. For example, DB Client component may invoke the
query interface of the remote DB Server; in response, DB
Server calculates the results of the query, and then invokes
IDEA’s encrypt interface and returns the encrypted results
to DB Client; finally, DB Client invokes the decrypt
interface of its collocated IDEA component to get the

Figure 5. Framework’s accuracy for type
III interface of DB and Jess components.

0

200
400

600
800

1000

1200
1400

1600

A
ve

ra
ge

 E
ne

rg
y

(m
J)

Actual 245.5 483.3 957.2 829.1 1289.8

Estimated 234.3 461.4 925.2 842.3 1335.5

DB insert DB query DB
update

Jess
defineRul

Jess
runRules

2.7572 * 0.015t ty x= +

2.5639 * 0.012r ry x= +

(/ sec) J
M B(M B / sec)

2 .7572 ()
0 .625

JtE C tE C
tB W

= =

(2.7572 * 0.015) (2.5639 * 0.012)commEC t ry x x= + + +

Figure 6. Overall communication energy estimation on
the iPAQ with fixed bandwidth of 625 KB/sec.

Estimated (J)

A ctual (J)

T otal Data (M B)

2.634

2.647

0.98

5.231

5.207

1.95

7.636

7.694

2.86

10.19

10.232

3.82

12.691

12.747

4.76

15.245

15.288

5.72

30.24327.96225.37322.45520.35317.799Estimated (J)

30.44127.88725.44122.85520.34317.809A ctual (J)

11.4410.59.548.587.646.68T otal Data (M B)

Estimated (J)

A ctual (J)

T otal Data (M B)

2.634

2.647

0.98

5.231

5.207

1.95

7.636

7.694

2.86

10.19

10.232

3.82

12.691

12.747

4.76

15.245

15.288

5.72

30.24327.96225.37322.45520.35317.799Estimated (J)

30.44127.88725.44122.85520.34317.809A ctual (J)

11.4410.59.548.587.646.68T otal Data (M B)

Figure 7. A distributed Java-based
system comprising three hosts.

DB
Client

iPAQ (host A)

Power Supply

Digital multimeter

Data Collection
Computer

Wireless
router

IBM X22 laptop
(host B)

Dell Inspiron 600m
laptop (host C)FTP

Client

IDEA

LZW

DB
Server IDEA

FTP
Server

IDEA

LZW

DB
Client

iPAQ (host A)

Power Supply

Digital multimeter

Data Collection
Computer

Wireless
router

IBM X22 laptop
(host B)

Dell Inspiron 600m
laptop (host C)FTP

Client

IDEA

LZW

DB
Server IDEA

FTP
Server

IDEA

LZW

results.
We have executed the above distributed software sys-

tem by varying the frequencies of messages exchanged
among the components. We have measured the total energy
consumption on the iPAQ due to invoking its components’
interfaces and compared it with our framework’s estimates.
In the process, we have measured the average UDP trans-
mission and receipt bandwidths (723 KB/sec and 672 KB/
sec, respectively) used by host A for communicating with
hosts B and C. We can thus recalculate the communication
cost from Equation 10 for this example scenario as follows:

As shown in Figure 8, our estimates always fall within 5%
of the actual energy costs regardless of interaction frequen-
cies. These results have been consistently corroborated by a
large number of additional distributed applications.

We should
note that one
restriction we
faced in our
experiments,
such as the one
depicted in Fig-
ure 7 and
described above,
was the avail-
ability of a single
digital multime-
ter. This meant
that, regardless of the numbers of software components in
an application and hosts on which they are deployed, we
could only measure the energy consumption on a single
device at a time. However, the design of the experiments we
conducted, the large number of distribution scenarios we
considered, the results we obtained on several platforms,
and the minimal interference of the digital multimeter with
those results, all suggest that performing multiple such mea-
surements simultaneously would not have had any signifi-
cant effect on our results.

7. Conclusion
In this paper we have proposed and evaluated a frame-

work for estimating the energy consumption of Java-based
software systems. Our objective is to enable an engineer to
make informed decisions when adapting a system’s archi-
tecture, such that the lifetime of the system’s critical ser-
vices is maximized. Our framework explicitly takes a
component-based perspective, which renders it well suited
for a large class of today’s distributed, dynamic, and mobile
applications. The framework is applicable both during sys-
tem construction-time and during runtime. In a large num-
ber of distributed application scenarios the framework has

shown very good precision on the whole, giving results that
have been within 5% (and often less) of the actually mea-
sured power losses incurred by executing the software.

We believe that the framework has significant utility
as-is. At the same time, throughout the paper we have iden-
tified several potential adjustments that should further
improve the framework’s accuracy. An important direction
of future research will be extending this work to multi-lin-
gual systems, with all of their inherent challenges (e.g., lack
of a common execution platform such as the JVM, reliance
on third-party middleware, and so on). Another research
direction will be investigating and quantifying the impact of
existing energy saving techniques: runtime adaptation of
component interfaces (e.g., to lower the quality of provided
services), off-loading of “unimportant” components while
maintaining the most critical functionality, and so on. We
consider the development and evaluation of our framework
to be the crucial first step in pursuing these avenues of fur-
ther work.

8. References
[1] P. D. Allison. Multiple regression. Pine Forge Press. 1999.
[2] Data Fit 8.1. http://www.oakdaleengr.com/, 2006.
[3] K. I. Farkas et. al. Quantifying the Energy Consumption of a

Pocket Computer and a Java Virtual Machine. ACM SIGMET-
RICS, 2000.

[4] P. Gauthier et. al. Reducing Power Consumption for the Next
Generation of PDAs. In Proceedings of MoMuC’96, 1996.

[5] L. M. Feeney et. al. Investigating the Energy Consumption of
a Wireless Network Interface in an Ad Hoc Networking Envi-
ronment. In Proceedings of IEEE INFOCOM, 2001.

[6] HSQLDB 1.8.0. http://www.hsqldb.org/, 2005.
[7] Iperf. http://dast.nlanr.net/Projects/Iperf/, 2006.
[8] JamVM 1.3.2. http://jamvm.sourceforge.net/, 2006.
[9] Java Grande. http://www.epcc.ed.ac.uk/javagrande/
[10] Jess. http://www.jessrules.com/, 2005.
[11] Kaffe 1.1.5. http://www.kaffe.org/, 2005.
[12] S. Khurshid et. al. Generalized Symbolic Execution for Model

Checking and Testing. TACAS, 2003
[13] J. C. King. Symbolic execution and program testing. Commu-

nications of the ACM, vo.19, no. 7, 1976.
[14] KVM. http://java.sun.com/products/cldc/wp/, 2005.
[15] S. Lafond, et. al. An Energy Consumption Model for An

Embedded Java Virtual Machine. ARCS, 2006.
[16] H. Singh, et. al. Energy Consumption of TCP in Ad Hoc Net-

works. Wireless Networks, vol. 10, no. 5, 2004.
[17] SourceBank. http://archive.devx.com/sourcebank/
[18] sourceForge.net. http://sourceforge.net/
[19] JVM98 Benchmarks. http://www.spec.org/jvm98/, 2001.
[20] EVM. http://www.sun.com/research/java-topics, 2001.
[21] T. K. Tan et. al. Energy macromodeling of embedded operat-

ing systems. ACM Trans. on Embedded Comp. Systems, 2005.
[22] V. Tiwari, and T. C. Lee. Power Analysis of a 32-bit Embed-

ded Microcontroller. VLSI Design Journal, vol. 7, no. 3, 1998.
[23] V. Tiwari et. al. Power Analysis of Embedded Software: a

First Step Towards Software Power Minimization. IEEE
Trans. on VLSI Systems, vol. 2, no. 4, 1994.

[24] N. Vijaykrishnan et. al. Energy Behavior of Java Applications
from the Memory Perspective. Java VM, 2001.

2.7572*(625 / 723)* 0.015 2.5639*(625 / 672)* 0.012

 (2.3834 * 0.015) (2.3845 * 0.012)

y x xt r

x xt r

 = + + +

= + + +

Figure 8. Framework’s accuracy with
respect to the interaction frequency.

0

20

40

60

80

100

120

140

Frequency (times/sec)

E
ne

rg
y

(J
ou

le
)

Actual 32.24 50.81 68.76 92.34 123.9
Estimated 33.48 48.89 65.87 94.79 120.58

0.8 2.5 3.7 5.6 8.3

