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Abstract—Good documentation has long been argued to be key
to helping developers write code more quickly and consistently
with design decisions, but is left largely disconnected from code.
We propose a method for active documentation, where design
decisions are made explicit as design rules and checked against
code. Developers can discover how to follow a design rule by
navigating to examples in their codebase. After editing code,
developers receive immediate feedback about which design rules
are satisfied and which are violated, notifying developers who
miss design decisions about the existence of these design decisions.
We implemented our approach in a prototype tool and conducted
a user study. Compared to developers using a traditional design
document, developers working in an unfamiliar codebase with
active documentation were faster and more successful, using
active documentation to learn how to follow design decisions
through examples and receive immediate feedback on their
changes.

Index Terms—documentation, design decisions, IDE

I. INTRODUCTION

Software is the embodiment of the design decisions made
by its developers, which together determine how software
will satisfy its requirements [1]. A design decision captures
a choice, constraining how software will be implemented,
as well as design rationale explaining why this choice was
selected. A design rule captures the specific choice made,
expressing a constraint that must be true of an implementation
to be consistent with the design decision [2]. For example, a
developer might decide that, in order to implement a behavior,
a specific class must have a reference to an object that it is
contained within. Figure 1 illustrates how this design decision
can be captured in two parts: a design rule expressing the
constraint that a class (Microtasks) must have a reference to
a containing object (Artifact) and text explaining the design
rationale behind this choice.

Good documentation has long been argued to be the key
to capturing design decisions and helping developers write
code more quickly and consistently with the design [3].
Unfortunately, design documents today are largely exclusively
a mix of text and figures that are entirely disconnected
from code. To understand how to follow a design decision
described in the document in practice, developers often seek

Fig. 1: In active documentation, a design decision is repre-
sented as a design rule, which can be checked against code,
and a rationale, which explains the design choice.

to identify examples of the decision in code [4]. Lacking a
direct connection from the documentation to code, developers
must instead search through the code for examples, making it
harder to learn how to follow decisions. Developers may fail to
read the documentation at all or miss relevant design decisions
and write code which violates the design. Unit tests might be
used to catch some issues, but design decisions may not be
behaviorally observable or may be at a level of abstraction that
is not tested. Other issues may be caught during code review,
but this process is not fullproof and offers no assistance to the
developer as they are working in the task.

Program analysis infrastructure offers rule checking en-
gines which could be adapted to check design rules for
conformance against code. Extensible Static Checkers such as
CheckStyle [5], PMD [6], and FindBugs [7] identify potential
defects in code by checking code for conformance against a
set of rules. However, traditional rule checkers are specialized
for addressing a different problem, offering the ability to
check universal rules reflecting poor coding practice true of
all projects rather than project-specific design decisions, focus
on rules local to a file rather than rules where code in one file
constrains code in another, and offer little support for explain-
ing, organizing, and evolving rules used as documentation.

We propose a new form of documentation which is active in
three senses. First, design rules expressing a design decision
are translated into constraints and actively checked against
code. As code or documentation changes, each is checked for
conformance and divergences are flagged. Second, whenever a
design rule applies to code, a link between the documentation
and code is generated. Developers may then actively interact978-1-7281-0810-0/19/$31.00 ©2019 IEEE



with the design rule, supporting the process of finding exam-
ples illustrating how to follow a design rule [8] by following
links from documentation to code and supporting the process
of understanding design decisions by identifying design rules
and rationale related to the current code. Third, by connecting
documentation to code, developers may more easily actively
update and maintain documentation as both evolve.

In this paper, we argue that making documentation active
enables developers to work more effectively with design
decisions in code. We present a prototype, ACTIVEDOCUMEN-
TATION, which embodies the active documentation approach
and enables design decisions to be made explicit as design
rules, checks design rules against code, and offers developers
real-time feedback as they work (Section III). To evaluate
our approach, we conducted a user study, where participants
implemented a feature in an unfamiliar codebase (Section IV).
The results suggest that active documentation enables devel-
opers to work more quickly and successfully by helping them
understand where to start and how to follow design decisions.
Our tool and study materials are publicly available.1

II. MOTIVATING EXAMPLE

In this section, we walk through an example of a developer
interacting with active documentation in our system. Suppose
Alice is working to build a crowdsourcing application, working
on logic which generates microtasks. While adding a new
feature, she finds herself in a portion of the codebase with
which she is unfamiliar. Bob and other developers documented
their design decisions as design rules, which were written with
ACTIVEDOCUMENTATION and are available to Alice.

To find a place to begin, Alice first opens ACTIVEDOC-
UMENTATION in the IDE and reads the Table of Contents
page displayed, skimming through several listed design rules.
Looking to see if she might have already violated a rule in
her implementation, Alice clicks on the Violated Rules tab
(Figure 2). Seeing several violations, she clicks on the first
violated rule. Three tags are associated with the rule, including
‘sharding’. Not familiar with the concept, Alice clicks on the

Fig. 2: The Violated Rules page lists rules with at least one
violation.

gray ‘sharding’ tag, displaying the Tag page. (Figure 3). After
reading the description, Alice understands that ‘sharding’ is
about the system’s data handling policy. Navigating back to
the previous page, she reads the description of the violated rule
once more, which now makes more sense. The rule states that

1 bit.ly/ActiveDocumentation

all microtask actions (including the one she just created) must
have their own subclasses, and these subclasses are grouped
into ‘command’ classes, which she understands is necessary to
ensure sharding works correctly. Clicking on the code snippet
she sees listed as a violation (Figure 4), her editor navigates
to the code she wrote which violates the rule.

Fig. 3: Related design rules may be labeled with tags. Each
tag is associated with an editable description, offering a place
to explain concepts that crosscut individual design rules.

Fig. 4: Each design rule is accompanied by a list of example
code snippets which satisfy (top) and violate the rule (bottom).

Alice notices that the line of code is returning null. After
reading several code snippets listed as following the design
rule in the Examples tab, she notes that all of these are gen-
erating an object by calling a constructor for a corresponding
subclass. Following these examples, Alice adds the missing
subclass, adds its constructor, and updates the return statement:
return new Create(title, descr, isApiArtifact, readOnly);

Alice saves her change. ACTIVEDOCUMENTATION updates,
displaying a page listing all the rules applicable to her
current file. One is listed with a green background; Alice
notes that her change has caused the violated rule to now
be satisfied (Figure 7). However, a second rule is indicated
in red, indicating a new violated rule concerning a missing
method. Alice adds the required method and saves her change.
ACTIVEDOCUMENTATION again updates, indicating that the rule
is now satisfied through a green background.

III. ACTIVE DOCUMENTATION

In this paper, we propose an approach for making documen-
tation active, enabling design rules described in documentation
to be directly checked against code for consistency, the ability
to browse design rules connected to code or related to each
other, the ability to find code examples illustrating how to
follow documented design rules, and immediate continuous
feedback notifying developers when they write code which

http://bit.ly/ActiveDocumentation


Fig. 5: ACTIVEDOCUMENTATION integrates design rules into the IDE, en-
abling rapid switching between code and related rules by displaying rules
immediately adjacent to the code editor.

Fig. 6: The Generate Rules page enables devel-
opers to interact with a template of a design rule.

Fig. 7: ACTIVEDOCUMENTATION lists design rules which apply
to the current file, indicating satisfied and violated rules with
a green or red background, respectively.

violates a design rule. We implement our approach in a
prototype tool called ACTIVEDOCUMENTATION.

To understand the types of design rules which might support
developers work, we interviewed developers, asking them
about the rules a developer should learn about code to suc-
cessfully onboard. In addition, we examined two open source
projects to extract design rules. From this, we built a small
corpus of examples of design rules, which we then used to
inform our choices about what types of design rules to support.

A. Interacting with design rules

ACTIVEDOCUMENTATION directly integrates design rules into
the IDE, adding a design rules window to the development
environment. This direct integration reduces the overhead of
documenting design rules in a separate media [9]. Separate
pages enable developers to browse all rules, see rules which
apply to the active file in the code editor, see design rule
violations across the whole codebase, and create new rules.

Design rules are displayed in panels, with a gray box
grouping content related to a single design rule (Figure 1).
To enable developers to understand the rationale behind the
design rule, each rule includes an editable title and description.
The description of the rule may include information about
what the rule is, how it should be enforced, and the design

rationale behind the rule. At the bottom of each rule panel
are expandable tabs for viewing example snippets which
satisfy the rule and violated snippets which violate the rule
(Figure 4). Example snippets support developers in finding
detailed examples of how to follow the rule [8]. Developers
can click on a snippet to view the snippet and its surrounding
code in the editor.

Design rules are often closely related, where several rules
together implement a higher-level architectural or design de-
cision. For example, a decision to shard data to enable paral-
lelism might be implemented through a variety of design rules
which describe how specific types of data are decomposed into
individual groups. Related design rules are indicated through
tags, enabling a design rule to be related to multiple higher-
level decisions. Clicking on a tag anywhere in the interface
opens a page listing all design decisions with the associated tag
(Figure 3). The tag itself offers a description where developers
can document the rationale behind the higher-level decision.

In large codebases, there may be many design rules, and
developers need support for identifying rules relevant to the
task at hand. When a developer switches the currently active
file, a page is displayed which lists all of the rules which apply
to code in the current file (Figure 5). To help developers find
relevant information about the active file, the code snippets
associated with the file are separated from the rest of snippets
in the rule panels. Developers can use the All Rules page to
browse all design rules in the project and the Table of Contents
page to browse rules by tag.

As a developer edits code and design rules, the developer is
offered continuous feedback on which rules are violated and
which violations are fixed. If a change fixes a violation, the
background of the corresponding rule panel turns green. If a
new violation is created, the background of the panel turns
red (Figure 7). Developers can browse rules with at least one
violation in the Violated Rules page (Figure 2). In situations
where developers import new code into a codebase or make
larger changes, developers can see the impact of these changes
in one place. In some cases, developers may choose to leave
violations unfixed, introducing technical debt to implement
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Fig. 8: The ACTIVEDOCUMENTATION system architecture. After a source code or design rule change, srcML generates an AST
in an XML format. The rule checker then verifies each design rule against the AST by running two XPath queries, one for
the quantifier and one for the constraint, generating a list of matches for each query. These matches are compared, generating
a list of design rule examples and violations. These are then displayed to the user in several pages.

changes more quickly [10]. Developers working to reduce
technical debt may then use the violated rules page to survey
debt to be addressed.

Generating New Rules
Developers create design rules using the Generate Rules

page. Each design rule is implemented as a set of abstract
syntax tree (AST) queries. Developers can write AST queries
using a visual interface, depicting a template describing which
elements a query will match (Figure 6). The interface includes
separate tabs for specifying the quantifier and the constraint
queries. Developers are able to select elements participating
in the rule from dropdowns in the template and set their prop-
erties through textboxes. The main elements and predicates of
the query are distinguished by blue borders. For example to
create a query for finding names of classes with a subclass
named Foo, the developer can add a class in the body of
the base class and set its name to Foo and mark the name
of the base class as the target of the query (Figure 6). In
this example, the design rule imposes constraints on a single
class. Constraints may also be imposed on several classes. AST
queries written in the visual interface are translated into XML
Path Language (XPath) queries (displayed at the bottom of
the page), and experienced developers may also write XPath
queries directly, similar to PMD [6].

B. System architecture
ACTIVEDOCUMENTATION is implemented as a plugin for

IntelliJ, a Java IDE [11]. The plugin is organized into two
components: IDE Connector and Main. This design reduces
dependencies on the underlying development environment,
enabling a common Main component to be used with many
environments and a small IDE connector to implement any
environment-specific functionality. The IDE Connector is im-
plemented in Java and interacts with the underlying environ-
ment to monitor code change and navigation events, retrieve
source code, and navigate the code editor when required to go
to examples. Most of ACTIVEDOCUMENTATION is implemented
in JavaScript in the Main component, hosted as a web app
running in a browser within the IDE.

In our approach, each design rule consists of two parts:
a quantifier and a constraint. The quantifier specifies the
scope in which the rule must be applied and the constraint
specifies the condition that must be imposed. For example,
consider the rule in Figure 1, “IF a class is a subclass of
Microtask, THEN it needs a field representing the reference
to the associated entity”. This rule imposes a condition on a
specific set of classes. The quantifier and the constraint in this
rule are determined by, respectively, the IF and THEN clauses
in the description of the rule. In ACTIVEDOCUMENTATION, the
rule quantifier and the rule constraint are each translated into
AST queries. Compared to PMD [6] which is restricted to a
single XPath query per rule, ACTIVEDOCUMENTATION is able
to check more complex rules that require multiple sub-queries.
In these cases, the result of a sub-query is used as input into
a second sub-query, which may be further chained. As sub-
queries are chained with element identifiers rather than fully
qualified names, there may be false positives in chained sub-
queries when multiple elements share the same identifier.

Design rules are checked against code in several steps
(Figure 8). The IDE Connector first receives the source code
from the IDE. Next, it uses srcML to generate an abstract
syntax tree of the source in XML format [12]. The srcML
formatted data and the design rules are then sent to the Main
component for processing. The Main component executes
XPath queries defined for each design rule on the designated
files and folders. Each query generates a set of elements which
match the quantifier and the constraint. The Main component
then compares these sets to generate a set of examples and
violations for each rule. The Main component generates code
snippets from this result and updates the current page with the
new data, if applicable.

The Main component generates requests for the IDE Con-
nector based on user interactions. Some of these requests are
then passed to the IDE. When a code change or navigation
event occurs, the IDE Connector notifies the Main component.
For example, when a user clicks on a code snippet, the Main
component sends a request to the IDE Connector to navigate
the code editor. When a developer defines a new rule, the Main



component sends all information on the new rule to the IDE
Connector, which persists the data as a JSON file. Figure 8
illustrates the ACTIVEDOCUMENTATION system architecture.

IV. EVALUATION

A key role of documentation is in helping developers
become familiar with a codebase. As developers ultimately put
this knowledge to use in implementing features, we conducted
a lab study in which we asked developers to implement a small
feature. In our evaluation, we sought to understand the impact
of making documentation active by conducting a between-
subjects study comparing developers working with traditional
documentation with those using active documentation.

A. Method

We recruited 21 participants from graduate students enrolled
in a software engineering graduate course with prior experi-
ence in Java. Participants ranged in programming experience
from 2 to 20 years (median 5 years). Most had experience as
a professional software developer, ranging from 0 to 15 years
(median 2 years). All were familiar with at least one IDE. As
the task involved writing code interacting with a persistence
framework, we asked participants about their experience with
persistence frameworks. 8 participants reported familiarity
with a persistence framework (1 expert, 1 moderately familiar,
3 somewhat familiar, and 3 slightly familiar).

At the end of the study, we interviewed participants about
their documentation practices. Participants varied in the re-
ported frequency with which they document their project, al-
though almost all reported they add comments in code, partic-
ularly code they found potentially complicated and confusing.
Participants reported using JavaDoc, using tool support to
generate templates for function declarations. Some participants
reported authoring documentation using external applications
such as version control tools and text editors.

We adapted a task from the implementation of CrowdCode,
a web-based IDE for developing projects using microtasks [13]
(described briefly in the Motivating Example). Participants
were expected to interact with only the back-end of the
system, which includes approximately 9000 lines of Java in
107 classes. A key abstraction is an artifact. Artifacts are per-
sisted in the Google App Engine persistence framework [14].
Participants were given a partial implementation of a new
artifact and were asked to continue its implementation by
focusing on storing it to the persistence store. As persistence
was a crosscutting concern, this required adding approximately
20 lines of code and modifying 2 lines of code in 4 different
classes. All participants were given access to the same doc-
umentation, describing design rules about how artifacts were
implemented and how they were persisted to the data store.
We extracted 15 design rules from the codebase, which we
gave to all participants.

Participants were randomly assigned to one of two condi-
tions, a control group (P1-P11) and an experimental group
(P12-P21). Participants in both conditions had a similar dis-
tribution of programming experience (median 6 years for the

control group and 5 years for the experimental group) and
professional experience (median 2 years for both groups).
Experimental participants were given access to ACTIVEDOCU-
MENTATION, containing the design rules for the project. Control
participants were given a traditional design document listing
the same design rules in text including titles and descriptions
of the rules as well as the concepts each was related to.

After beginning the study, participants in both groups first
completed a warmup task to familiarize themselves with the
IDE. Experimental participants familiarized themselves with
ACTIVEDOCUMENTATION as well.

All participants were then given 70 minutes to complete the
main task. As participants worked, we asked participants to
think aloud and captured a screen and audio recording. At the
end of the study, we collected their final code and conducted
a semi-structured interview. We asked participants about how
often they document their code, methods they use to document,
and prior experience with tools offering real-time feedback.
We asked participants in the control condition about challenges
they had when using the design document, while we asked
participants in the experimental condition about their perceived
usefulness of ACTIVEDOCUMENTATION, challenges, and desired
features. We removed the data of three participants (two from
the control group and one from the experimental group) who
found the task too difficult and gave up early in the task,
resulting in a total of 9 participants in each condition.

B. Results

To investigate the impact of ACTIVEDOCUMENTATION on task
time, we measured the task time for each participant from
when they first had access to the code to the point where
they announced the completion of the task or reached the
maximum allotted time. Overall, participants with ACTIVE-
DOCUMENTATION were significantly faster (Mann Whitney U
test, U = 16.5, p < 0.05), finishing the task in an average
of 49 minutes (Task Duration column in Table I). Participants
in the control condition completed the task in an average of
68 minutes. 7 of the 9 participants in the control condition
used the entire task time, resulting in a much higher variation
in task times for participants with ACTIVEDOCUMENTATION

(SD = 17.4) than for control participants (SD = 3.4).
To assess participants’ success in the task, we examined the

code written by participants. As described in Section IV-A,
the task required participants to implement code to persist a
new artifact class. To evaluate participants’ implementations,
we ran the final implementation created by each participant,
inspected the persisted data, and scored the work as success-
ful if it correctly persisted all of the data. We found that
participants with ACTIVEDOCUMENTATION were significantly
more successful (Fisher’s exact test, p < 0.027). Only 23%
of control participants (2 of 9) succeeded while 78% of
participants (7 of 9) with ACTIVEDOCUMENTATION succeeded
(indicated by green rows in Table I). To quantify how close
participants who did not succeed were to finishing, we edited
each submission to complete the implementation, modifying
any lines as necessary to fix defects. Participants in both
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Control Group
P1 15 5 14 70 16 1 8
P2 65 2 16 70 0 3 18
P3 124 12 4 70 16 1 87
P4 2 1 64 70 17 2 1
P5 36 3 11 61 0 0 7
P6 23 2 8 64 1 0 0
P7 5 1 43 70 16 1 2
P8 69 3 11 70 0 0 34

P11 66 3 12 70 1 8 29
Mean 45.00 3.56 20.33 68.33 7.44 1.78 20.67

Median 36.00 3.00 12.00 70.00 1.00 1.00 8.00
Std. Dev. 39.64 3.40 19.82 3.39 8.37 2.54 27.76

Experimental Group
P13 21 19 13 70 16 1 29
P14 29 3 8 49 0 0 0
P15 29 4 2 70 0 0 4
P16 33 2 6 39 1 0 2
P17 26 2 1 27 0 0 0
P18 44 3 6 70 0 0 15
P19 28 3 9 40 0 0 0
P20 31 2 4 28 0 0 2
P21 26 2 8 47 0 0 1
Mean 29.67 4.44 6.33 48.89 1.89 0.11 5.89

Median 29.00 3.00 6.00 47.00 0.00 0.00 2.00
Std. Dev. 6.36 5.50 3.71 17.44 5.30 0.33 9.87

All Participants
Mean 37.33 4.00 13.33 58.61 4.67 0.94 13.28

Median 29.00 3.00 8.50 70.00 0.00 0.00 3.00
Std. Dev. 28.65 4.46 15.59 15.77 7.37 1.95 21.59

p or U value 0.142 0.343 12.5 16.5 0.056 0.043 0.082

TABLE I: The lines of code which participants submitted
which were missing, incorrect, or modified but task-irrelevant;
the total added and removed lines of code; and the task
duration and time of first edit. The last row indicates U values
for the First Edit and Task Duration (with p < 0.05) and
p values for the remaining columns (Significant values are
bold). Green rows indicate participants who finished the task
successfully.

groups who were not successful were bimodal in the amount
of work which remained: several needed only a single line
while many needed 16 or 17 additional lines (shown in the
Missing and Incorrect columns in Table I)

One potential benefit documentation may offer is in helping
developers to more quickly and successfully understand what
code is necessary to implement the desired feature. That
is, effective documentation might be expected to reduce the
amount of task-irrelevant code developers write and reduce
the amount of necessary code that developers miss and fail
to write correctly. To analyze this, we first created a diff of
each participant’s change and calculated the number of added
and removed lines (shown in the Diff columns in Table I).
There was no significant difference between conditions. Next,
we labeled each changed line as being either task-related
or task-irrelevant by comparing the change against a correct
change and identifying additional lines unrelated to the feature

(shown in the Submitted Lines of Code columns in Table I).
For task-related lines, we compared the change against the
correct change and identified lines that were incorrect. Finally,
to understand if participants varied in how fast they were
able to get started with their implementation, we recorded and
analyzed the time at which participants first edited the code.

Participants with ACTIVEDOCUMENTATION added signifi-
cantly fewer lines of incorrect task-related code (one-tailed
unequal t-test, p < 0.044). On average, code written by partic-
ipants with ACTIVEDOCUMENTATION was missing fewer task-
relevant lines of code, but the difference was not significant
(one-tailed equal t-test, p < 0.057). Participants with ACTIVE-
DOCUMENTATION modified fewer lines of task-irrelevant code,
changing on average 5.89 lines of code compared to 20.67
lines of code for control participants. However, the difference
was not significant, in part due to two outliers (P13 and P18)
which we discuss below.

Participants with ACTIVEDOCUMENTATION (Median=6) were
able to start editing code significantly faster than the control
participants (Median=12) (Mann Whitney U test, U = 12.5,
p < 0.05). On average, participants with ACTIVEDOCUMEN-
TATION made their first edit after only 13.33 minutes, while
participants in the control group made their first edit after
20.33 minutes. The First Edit column in Table I lists the time
at which each participant made their first edit.

To help understand these results and identify ways in which
ACTIVEDOCUMENTATION may have enabled developers to work
differently, we analyzed the screen recordings and think aloud
data as well as the post-task interview data, identifying dif-
ferences in behaviors we observed and challenges that partici-
pants reported experiencing. Control participants reported ex-
periencing challenges finding relevant design decisions within
the design document and connecting code with these design
decisions. For example, P1 and P5 reported that they believed
that the document was unnecessarily long and thus hard to
work with, and P2 reported that he had difficulty understanding
the relationships among rules. In contrast, participants with
ACTIVEDOCUMENTATION reported viewing the Violated Rules
page to find relevant design decisions.

“(Looking at Violated Rules page) Oh nice ... this is
kind of giving me how to solve [the task].” - P13

As control participants continued work, the task required
them to work with code scattered across several classes. While
some locations were easy to identify, others required more ef-
fort, and many struggled. Participants with ACTIVEDOCUMEN-
TATION used the violated snippets to identify relevant places to
make changes. They also used example snippets listed for each
design rule in ACTIVEDOCUMENTATION to compare examples
of the rule and the faulty lines of code.

“(clicking on an Example code snippet, the caret
moved to the location of the snippet in the code)
... That is nice ... Seeing that something is working
correctly ... is very helpful.” - P12

Real-time feedback helped ACTIVEDOCUMENTATION partici-
pants to detect errors and violations early. Participants reported



that the real-time feedback was valuable, offering feedback
about rule verification immediately after changing the code
without running the application.

To explore why some participants seemed to benefit less
than others from ACTIVEDOCUMENTATION, we investigated the
submitted code and screen recordings by the two participants
with the highest number of modified lines in the experimental
group. We observed that P13 often failed to use the features of-
fered by ACTIVEDOCUMENTATION. Instead of using the feature
linking snippets to code, the participant visually searched for
snippets illustrating violations and examples in the code, and
as a result, the participant made changes in a wrong class.
In contrast, P18 was overeager in their work, identifying a
violation of a design rule in the code that was unrelated to
the task. After finishing the task, they continued by working
to implement a fix to this issue.

The study revealed several usability issues with ACTIVE-
DOCUMENTATION. While the tool was loading, many partici-
pants refreshed the page, which restarted the tool and caused
the tool to be non-responsive while it finished loading. Some
participants appreciated that the listed rules in ACTIVEDOCU-
MENTATION constantly changed as they navigated through code
and used this to verify each file against design rules. Others
were frustrated by the constant view changes and wished to
have more direct control. Participants suggested a number of
additional features, including flagging rules for revision (P12),
displaying file names for each snippet (P13), adding markers
in the code editor to indicate the presence of satisfied and
violated design rules (P17), adding search based on keywords
in the code and documentation (P15), and automatic code fixes
(P16). Some participants suggested that enabling design rules
to be hidden or shown on demand may help them to spend
their time on rules relevant to the task at-hand.

V. LIMITATIONS AND THREATS TO VALIDITY

As in all studies, our study has several important limitations
and threats to validity. Participants worked on a codebase with
which they were unfamiliar, as in all programming lab studies.
Much of the task involved working with a specific persistence
framework, with which developers were unfamiliar. Develop-
ers with more experience in a codebase or a framework might
benefit less, as they might already have internalized more of
the design rules. In practice, this may occur when developers
are new to a team or find themselves working in part of a
large codebase with which they are previously unfamiliar.

Participants were artificially limited in learning about the
codebase exclusively by reading the code and documentation.
In practice, developers may have access to other resources,
such as asking experienced teammates or the original authors
to go over the code with them and explain aspects of the
design. However, developers often do rely first on building
their own understanding, as interactions with others can im-
pose costs on others and developers are often expected to have
first made an effort to understand themselves [15].

Finally, our study focused on the benefits developers might
gain from active documentation that is already created. A key

problem our study did not examine is in helping developers
create and modify documentation to maintain its consistency
with the code. This is an important subject for future work.

VI. RELATED WORK

Documenting design decisions has long been viewed as
important to maintaining the comprehensibility of code [16].
Keeping the documentation in sync with source code is one of
the key challenges developers face during software develop-
ment [17]. Developers often fail to update the documentation
regularly and completely, resulting in outdated, incomplete,
and untrustworthy documentation [18]. Poorly-written and
missing documentation is a significant cause of defects [19]
and a serious challenge newcomers face [20]. Developers
often consider API documentation errors and incompleteness
as blocking issues which force them to use other APIs [21].
Many tools have explored approaches for documenting various
aspects of software. For example, there are tools for capturing
architecture decisions [22], decision knowledge [23], and
implementation decisions [24]. Tutorons generates context-
relevant on-demand micro-explanation of code [25]. Design
fragments document repeated patterns in code about how a
program interacts with a framework [26]. Robillard et al. also
studied on-demand developer documentation [27].

Throughout their interactions with code, developers interact
with crosscutting concerns, reflecting decisions whose im-
plementation is scattered through code. Working with cross-
cutting concerns in traditional IDEs is problematic: simply
navigating dependencies through code may occupy a third of
developers’ time [28] and developers can become disoriented
and lost [29]. In response, a wide range of languages and
systems have explored helping developers to more effectively
work with scattered code, reifying concerns into various
constructs. Language-based solutions such as aspect-oriented
programming reify scattered code as a new entity, an aspect,
that is weaved into the source at compile-time [30]. Concern
browsers (e.g., [31]) collect lists of artifacts related to a con-
cern, supporting navigation between artifacts. Other systems
change how developers interact with the IDE itself, displaying
concerns as snippets of code in “bubbles” displayed in dia-
grams [32]. Tools such as aspect miners support queries for
locating scattered code [33]. Active documentation builds on
these ideas by offering similar navigational benefits, reifying
concerns into groups of related design rules and supporting
navigation between code snippets using rules. It extends these
ideas by associating a navigational context with an explicit
design rule and checking these rules against code.

Developers document rationales for decisions that are ob-
scure or associated with other decisions [34]–[36] and they
often ask about the rationale behind design decisions [37].
A number of sophisticated tools exist for documenting ra-
tionales within the IDE [38], building on research exploring
the structure and representation of rationales. Design rationale
systems largely focus on documenting alternatives and reasons
for choices between alternatives rather than checking if code is



conformant with a decision. In active code completion, devel-
opers are able to design ‘palettes’ for defining rules, access
them through auto complete menus, and insert code based
on the rules [39]. In Codelets, developers are able to search
for example code previously uploaded in the tool, and edit
and insert them in code [40]. Unlike ACTIVEDOCUMENTATION,
such systems do not actively check new code written by the
developer for conformance to a design rule.

Other work has investigated documenting constraints im-
posed by decisions and checking that code conforms to these
constraints. Broadly, lightweight specification and verification
can often be viewed as checking that decisions imposed by
an API are satisfied by an API client. Much of this work
captures constraints imposed in an interface or contract, and
then ensures client code conforms to this contract [41]. Other
work considers constraints to be crosscutting, checking design
rules [42] or inspecting code for incorrect idioms [7]. However,
such constraints reflect constraints imposed by an API, not
those made by client developers, and often focus on design
decisions that are behaviorally observable. Another approach is
to generate constraints from higher-level artifacts, using them
to check that code correctly conforms to an architecture [43] or
design model [44], [45]. Caracciolo at al. studied conformance
checking of architectural rules specified by Dicto, a domain
specific language [46]. Existing work has not explored how
design decisions more generally might be translated into
constraints and checked in code.

Extensible rule checkers support finding potential defects
in code at the statement level. Coding styles can be checked
using CheckStyle [5]. All of these tools are intended to check
for common defect patterns true of all projects rather than as
a method for documenting project-specific design decisions.
Other tools focus on analyzing the architecture of code [47],
such as by using dependency-structure matrices [48], source
code query languages [49], and reflexion models [50].

VII. DISCUSSION

Maintaining documentation consistently with code is chal-
lenging. In traditional documentation, developers do not re-
ceive any notification when documentation and become in-
consistent. In this paper, we proposed an approach for making
documentation active. In active documentation, documentation
is checked against code for conformance, a link between
design rules and code is generated, and developers can view
divergences between code and design rules and update either.
We explored this approach by implementing a tool which
directly integrates design rules with code, offering developers
examples of each rule and immediate feedback when rules
are violated. We found that, compared to a traditional de-
sign document, developers offered the same text as active
documentation were able to work significantly more quickly
and successfully. Developers used active documentation to
get started implementing code faster, learn how to follow
design decisions by finding examples, and receive immediate
feedback on changes before running the code.

As we observed in our study, developers working with a
design rule often seek to identify example code that can be
used to satisfy the design rule and understand what parts of the
example are required. ACTIVEDOCUMENTATION helped support
developers in this work, offering a list of short code snippets
and enabling developers to navigate the code editor to the
full example by clicking on the code snippet. However, even
with this support, developers still faced challenges working
with examples. In particular, it was sometimes challenging
for developers to extract from the code the minimal elements
necessary to satisfy the design rule. Better editor support might
help address this problem by directly highlighting the elements
in the code which match the quantifier and constraint queries.
Alternatively, the code snippets view might display an abstract
example with just the query constraints, which developers
could copy and paste into code. Yet, in some cases these
examples might be too minimal, as developers may sometimes
wish to see typical accompanying code. Techniques for finding
patterns and generalizing examples may offer solutions [51].

Design rules come in many forms. In our prototype, we
chose to represent design rules as patterns in the AST, enabling
the system to check several types of design decisions. The
concept of active documentation as well as the system itself
are agnostic to the underlying rule checker and require only an
engine which can take a set of rules and output a set of code
examples which satisfy and violate the rules. Other forms of
static analysis based rule checkers could be directly integrated
into our approach. For example, a protocol checker might
directly check that an initialization method is called before
other methods. Mechanisms would also be needed to enable
developers to author design rules quickly and easily, likely
through interactive interfaces rather than by directly writing
new analyses in a static analysis framework. Another approach
to checking rules may be to use design rules to generate
corresponding tests. However, waiting for tests to execute
could introduce delays in obtaining feedback, requiring ways
to signal that some design rules have not yet been verified.

A key challenge for all documentation systems is incentiviz-
ing developers to document their design decisions. In tradi-
tional documentation, the developer writing the documentation
may receive no immediate benefit from the long-term invest-
ment of writing the documentation. By making design rules
active, the environment may offer some immediate benefits.
Writing the design decision down as a design rule enables
the developer to check if it is satisfied by the existing code,
helping the user decide if the decision should be abandoned or
to update violations to conform with the decision. Writing a
design rule also helps the developer find examples, potentially
finding more details on how code elsewhere follows the design
constraint. Our prototype offers a basic editor for authoring
design rules. The usability of the authoring experience is
clearly key to reducing the cost incurred by a developer when
they write down a design decision. More work remains to
improve and simplify the process of authoring design rules.
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