
An Exploratory Study of Live-Streamed
Programming

Abdulaziz Alaboudi
George Mason University

Fairfax, Virginia, USA
aalaboud@gmu.edu

Thomas D. LaToza
George Mason University

Fairfax, Virginia, USA
tlatoza@gmu.edu

Fig. 1: In live-streamed programming, a developer working on a programming activity shares a live video of their work with other developers,
who may interact through chat to ask questions, suggest alternatives, and help find defects.

Abstract—In live-streamed programming, developers broad-
cast their development work on open source projects using
streaming media such as YouTube or Twitch. Sessions are first
announced by a developer acting as the streamer, inviting other
developers to join and interact as watchers using chat. To
better understand the characteristics, motivations, and chal-
lenges in live-streamed programming, we analyzed 20 hours of
live-streamed programming videos and surveyed 7 streamers
about their experiences. The results reveal that live-streamed
programming shares some of the characteristics and benefits of
pair programming, but differs in the nature of the relationship
between the streamer and watchers. We also found that streamers
are motivated by knowledge sharing, socializing, and building
an online identity, but face challenges with tool limitations
and maintaining engagement with watchers. We discuss the
implications of these findings, identify limitations with current
tools, and propose design recommendations for new forms of
tools to better supporting live-streamed programming.

Index Terms—screencasting, social coding, pair programming.

I. INTRODUCTION

Programming has long been in part a social activity, as
developers share knowledge and collaborate on projects us-
ing platforms ranging from bulletin boards and mailing lists
to GitHub, StackOverflow, and Twitter [1]–[8]. Recently, a
new form of collaboration has emerged in which develop-
ers live-stream their work developing open source software
[9], inviting other developers to join a programming session
and watch while engaged in activities such as writing code,
debugging, and refactoring. In this paper, we refer to this
form of collaboration as live-streamed programming. Live-
streamed programming sessions are often first announced by
a developer, sharing a date and time at which a session will
begin using social media such as Reddit and Twitter. The
announcement may also include a link to the session, hosted
on a video streaming platform such as YouTube or Twitch.
During the session, developers join, watch, and interact, using
chat with the streaming developer to ask questions, offer
suggestions, and warn about potential defects (Figure 1).

Live-streamed programming is increasingly common within
open source, with thousands of developers streaming their

work and tens of thousands watching [10]. Streamers use
communities such as Reddit1 and Shipstreams2 to connect with
watchers. Developers write about their personal experiences
with live-streamed programming, often comparing it to pair
programming [11]–[13].

However, many questions remain about the characteristics
of live-streamed programming and the motives of its partic-
ipants. In this paper, we explore the nature of live-streamed
programming as a new form of social coding and collaboration
between developers. Specifically, we focus on four research
questions:

RQ1 What are the characteristics of live-streamed program-
ming?

RQ2 To what extent is live-streamed programming a form of
pair programming?

RQ3 What motivates developers to host live-streamed pro-
gramming sessions?

RQ4 What challenges do developers face in hosting live-
streamed programming sessions?

To answer these questions, we conducted an exploratory
study in which we watched 20 hours of live-streamed pro-
gramming videos of seven developers (streamers) working on
a variety of software development activities and interacting
with other developers (watchers). We then sent a short survey
to the seven streamers and received five responses with insight
into their motivations and the challenges they faced.

Our results suggest that live-streamed programming shares
some characteristics and benefits with pair programming,
but also differs in several key ways. Watchers interact with
streamers less frequently and show less commitment. We iden-
tified two forms of challenges which developers face. First,
streamers struggled to maintain engagement with watchers
while working on development activities. Second, watchers
were not able to easily explore the codebase and quickly
onboard with the task streamers were working on, limiting
their ability to collaborate effectively with streamers. Based
on these findings, we propose several design recommendations
for how tools can more effectively support the live-streamed
programming workflow.

II. BACKGROUND

Social coding [4], [14] offers opportunities for developers
to collaborate and share artifacts across organizations, teams,
and individuals. Software companies and individual developers
use platforms such as Github and GitLab to host open source
projects and enable the creation of communities [15], [16].
Developers report that they enjoy the process of open sourcing
their software and find it an effective way to improve their
technical skills [1]. Researchers have studied how developers
discuss and evaluate code contributions on platforms such as
Github [7], identifying challenges and best practices regard-
ing code review [8]. Developers use communities such as
StackOverflow to share knowledge and help each other by

1https://www.reddit.com/r/WatchPeopleCode
2https://shipstreams.com/

answering programming-related questions [2]. Social coding
also occurs through Screen casting. Screencasting differs from
live-streamed programming in that developers work solo and
then post their video for asynchronous consumption. It is
often used to document and share knowledge via online video
sharing platforms such as YouTube, helping developers to
promote themselves by building an online identity [17].

Pair programming is a social and collaborative activity in
which two developers sit together at one computer, collab-
orating on designing, coding, debugging, and testing soft-
ware. The collaboration between the two developers occurs
by each taking two roles interchangeably. The first role is
the driver, whose responsibility is to act, including writing
code, debugging, and testing. The navigator is responsible
for observing the driver and suggesting strategies, alternative
solutions, and possible defects [18]. Several studies have
investigated the effectiveness of pair programming in both
industrial and educational contexts [19]. Pair programming
has been found to enable students to produce better programs
[20] and to achieve better grades [21]. In industrial settings,
studies suggest that pair programming provides benefits over
traditional solo programming. Professional developers report
creating higher quality code, inserting fewer defects [22], and
an improvement in team communication [23] when practicing
pair programming. One form of pair programming is mob
programming [24], in which a whole development team works
at a single computer. The role of the driver is rotated among
team members every 5-15 minutes. This practice has been
found to increase team productivity and encourage face to face
communication [25].

Distributed pair programming is a form of pair program-
ming in which the driver and the navigator are not collocated
and work remotely [26]. For distributed pair programming
to have the same benefits as collocated pair programming,
tools that support “cross-workspace information infrastruc-
ture” must exist [27] to ensure that the driver and naviga-
tor communicate effectively [28]. Several tools have been
proposed to support distributed pair programming [29]. For
example, Saros [30] and XPairtise [31] are Eclipse plug-
ins that help developers to communicate during the pair
programming session. Saros is a flexible tool for distributed
pair programming, providing a synchronized workspace and
visualizations to enhance awareness between the driver and the
navigator. XPairtise is built to support students’ collaboration
by offering classroom support capabilities to add programming
and group assignments.

Live coding is a social coding practice in which the goal
is to perform and demonstrate in front of an audience, often
constructing small programs with 20 to 50 lines of code [32].
Live programming often occurs to produce electronic music in
front of an audience [33]–[35] and to teach programming to
students during lectures [36], [37]. Live-streamed program-
ming differs from live coding in that it shows developers
engaged in software development activities on projects that are
intended to be production quality software (e.g., Shipstreams).

Prior studies of live-streamed programming have explored

TABLE I: A summary of the ten sessions. The projects’ number of contributors and lines of code (LOC) indicate the size and level of
activity of each project. Each project URL is prefixed with https://github.com/.

Session Streamer Main Software Development Activity Contributors LOC Project URL Duration Obs.
1 D1 Implementing Features 5 385 Python eleweek/SearchingReddit 2:57:35
2 D1 Implementing Features 5 385 Python eleweek/SearchingReddit 1:49:00
3 D2 Implementing Features 1 423 C++ benhoff/face-recognizer-gui 1:25:28
4 D2 Implementing Features 1 423 C++ benhoff/face-recognizer-gui 2:02:36
5 D3 Code Refactoring 41 32.6K Rust graphql-rust/juniper 2:07:00
6 D4 Responding to Issues and Pull Requests 299 90.3K JavaScript pouchdb/pouchdb 2:37:00
7 D5 Implementing Features Unknown Unknown C Unknown 2:26:30
8 D6 Debugging 37 8.4K JavaScript wulkano/kap 1:21:06
9 D6 Debugging 50 8K JavaScript buttercup/buttercup-desktop 1:31:24
10 D7 Code Refactoring 24 14K JavaScript noopkat/avrgirl-arduino 1:29:37

its educational implications. Haaranes [38] observed one
streamer during three sessions building a game and proposed
teaching methods that expose computer science students to
larger software projects. Faas et al. extended this work with
two studies [39], [40] involving observations and interviews of
streamers on Twitch. This work revealed the mentoring rela-
tions that occur in live-streamed programming and its potential
for use as a learning platform. In this paper, we build upon
this work by exploring live-streamed programming as a form
of social coding and collaboration. In particular, we investigate
its characteristics, how it differs from pair programming, and
the motivations and challenges of its participants.

III. METHOD

To answer our research questions, we first selected 20
hours of live-streamed programming sessions. To identify
these sessions, one approach would be to wait for streamers to
announce live-streamed programming sessions through social
platforms and then join to observe in real time. However, this
limits observations to new sessions. As we did not wish to
actively participate, this offered no benefits. We thus chose to
search for archived sessions on platforms such as YouTube,
Twitch, and Reddit. We used two inclusion criterion to select
sessions. First, each session should show a streamer engaged
in a software development activity, such as writing, debugging,
or refactoring code. Second, each session should show a
streamer and watchers interacting via voice or text, and these
interactions should be accessible via the video or chat history.
We searched for sessions that satisfied these criteria and
selected ten, all of which were hosted on YouTube. We did not
include videos hosted on Twitch and Reddit, as these videos
may not be archived. For examples, Twitch only archives
videos for 14 days 3.

The 20 hours we selected included ten videos by 7 streamers
(six male, one female; D1-D7) working on both personal open
source projects (D1, D2, D5, D7) as well as contributing to
popular open source projects (D3, D4, D6). Table I summa-
rizes the sessions. We watched each of these sessions, iden-
tifying common activities among the streamers and watchers.
We then compared our observations with descriptions of pair
programming reported in prior work [18].

3https://help.twitch.tv/s/article/videos-on-demand,

To further understand the challenges and motivations of
streamers, we sent a brief two question survey to the seven
streamers, focusing on their motivations and challenges. Five
responded (D1-D5). The sessions links and the data we
collected from the sessions are publicly available4.

IV. RESULTS

A. What are the characteristics of live-streamed program-
ming?

Our observations of the ten live-streamed programming
sessions revealed common characteristics in how developers
advertise, start, plan, use, and end sessions. Streamers first
advertised their sessions through announcements on Twitter
(D3, D4, D6, D7) or Reddit (D1, D2, D5), including the
expected time of the streaming session and a link to the
session. All except session 9 had a posted announcement
before the start of the stream.

Each session started with developers showing their face and
giving an introduction and background for the session. This
lasted an average of 9 minutes (range 1-18 minutes). Streamers
educated watchers about the codebase, technologies used, and
the purpose of the session. All sessions were streamed from
a private space except session 10, which occurred in a public
coffee shop.

Streamers often began their work by offering a general plan
of what they would do. D5 stated that he would build a game
but he “do[es] not know what the game exactly will be”. D4
streamed the process of debugging issues reported in open
source projects he maintained. Not all the issues were resolved
during the session, as he stopped while debugging some and
moved on to others. This left the live-streamed session without
a clear goal, leading some watchers to ask when the session
would end.

After finishing the introduction, the streamers used the
session to engage in development activities, including imple-
menting features, debugging, refactoring, and searching for
documentation and StackOverflow posts. Watchers interacted
with streamers during these activities by asking questions and
helping the streamer with the task at hand, which sometimes
prompted new behavior by the streamers. For example, when
watchers posted a library to use or a link to read in the

4https://github.com/Alaboudi1/live-streamed-programming

chat, streamers almost always stopped their current activity
to check what the watchers suggested. Streamers (D1, D4,
D6) were interrupted by people in their physical environment
who brought drinks, talked with them, or rang their doorbell.
While most streamers waited until the end of their session to
commit their code changes to their version control system, D1,
D3, and D4 continually pushed their changes throughout the
sessions, enabling watchers to run and test them.

While streamers were engaged in development activities,
watchers continually joined and left throughout. When they
first joined, watchers sometimes communicated with the
streamer or with other watchers through chat. However, most
watchers remained passive participants. For example, session
1 had over 50 watchers but only 12 who sent at least one chat
message.

Streamers often ended the live-streamed programming ses-
sion by giving a demo of the work they had completed. They
also pushed their final code changes to a public repository for
the watchers to view. Finally they often concluded by stating
the tentative time and date, if any, of their next session.

B. To what extent is live-streamed programming a form of pair
programming?

In pair programming, there are two distinct roles. The role
of the driver is to take action, while the navigator supports
and guides the driver [18]. In the live-streamed program-
ming sessions we observed, the behavior of the streamers
and watchers generally followed these roles. Streamers wrote
code, debugged, and designed, while watchers observed the
streamer, helping debug, suggesting alternative solutions, and
offering tips. However, effective pair programming requires
the driver and navigator to interact at least once every 45 to
60 seconds [18]. In our observations, we did not find that the
streamers and watchers collaborated at this level of frequency.
This made live-streamed programming different from pair
programming in two key ways. First, streamers did not actively
solicit input from watchers. Throughout the sessions, streamers
educated watchers about the project and explained design
decisions and technology choices they made. When watchers
helped streamers debug or find better tools and solutions,
streamers thanked the watchers, as they were not expecting
such a contribution (Figure 2). Second, watchers exhibited
weaker focus and commitment to the task at hand. Watchers
joined and left throughout the sessions, inspecting and working
on other parts of the code if it was available to them, and
interrupted the streamer by asking questions that were not
relevant to the current task or which had been answered before.
Figure 3 lists examples of interactions between the streamer
and watchers from session 3.

Studies have found that pair programming offers several
benefits, such as producing high-quality code, shortening de-
velopment time, facilitating knowledge sharing, and creating
joy in the work environment [18]. The observations and survey
responses suggest that live-streamed programming may offer
some of these same benefits. We were able to identify seven
instances in which watchers improved the quality of their code,

Fig. 2: A streamer (D7) thanked a watcher for finding a defect.

reporting three defects and helping debug another four. D1
stated during session 2 that he would not have discovered a
defect a watcher reported, as it was related to an edge case
that he was not aware of: “Thank you! I would not have
thought about the accented character”. Another streamer (D5)
tested multiple incorrect hypotheses about the cause of a defect
before a watcher suggested a correct hypothesis.

STREAMER: [After reading the error] I think I know
why, but before I say it I want to confirm it.

WATCHER: Did you forget /misc when copying into
a bundle?

STREAMER: [Stopped debugging and started reading
the chat] I do not think so, but thanks! Let’s see.

STREAMER: [After testing the watcher’s suggested
hypothesis] Bravo, you are right! I forgot to do that,
thank you!

We observed 38 instances in which streamers and watchers
shared tips, explaining technical topics and offering alternative
technology choices to each other. D4 was explaining his git
workflow to the watchers, and one of the watchers pointed
out a better workflow that he did not know. “[Reading the tip
message from the chat] Oh thank you, Jake! Let us try it out.
[He tries it.] OK, that is a lot faster than [the] three steps that
I was doing before, thank you! That is going to improve my
efficiency a lot”. D3 was working on refactoring an existing
codebase in an open source library, where the maintainer of
the library was among the watchers. Both the streamer and
the watcher (maintainer) asked and answered each others’
questions while the streamer was working. When the streamer
finished working on the project, the watcher wrote “it has been
very useful, learned new things, thanks!”.

One advantage of pair programming that we did not observe
was shortening development time. Two developers (D2, D4)
explicitly stated in their sessions that they usually take less
time doing the same job offline. “I really [am] only keeping
doing this because people say, hey, I like the thing you are
doing. Otherwise, I really would not do it, because I would
code faster without [it]” - D2. One contributing factor might
be a lack of effective tooling, which we discuss in RQ4 below.

Mob programming is a form of pair programming in which
more than two developers collaborate and rotate the role of

1:50

32:31

1:08:52

1:25:28

Yes, that is what we are doing today!

I need to figure out how to do Vim and get tap spaces to do a lot less.
It is not good currently (laugh).

Ok let us do that really quick!

Alright let see what this is[clicking on the link].

I have a question: what do you guys use for auto complete?

That is cool, I would do that except they do not support python 3. We had
discussion about this before.

OK.

Yeah, so how I would link to OpenCV?

Ok, so how I make it find my OpenCV?

[typing in Google search] link to OpenCV.

This way[pointing at the code].

Yeah works really well. I am surprised.

Background and overview Coding Debugging

5

4

2

3

1
OpenCV cool :D

1

tabstop=4, shiftwidth=4.

Had a plugin for vim and now I do not really use autocomplete anymore

Gist URL gist.githubusercontenet.....

2
Yeah, something is wrong with YouTube. You can post it like
google[dot]come instead of google.com or whatever uri you have.

3

3
Just the section of my vimrc that deals with tabs.

2
I use vanilla Ctrl-N but I tried YouCompleteMe with clang for completing

C++ code and it was good.

good luck!

3
Thanks! You've inspired me to go back to work on my JS project! See you
next time :)

3
Cannot paste code snippet here. "Remove any web address and try again"
<= wow.

You are not linking to OpenCV.

Its not finding your OpenCV.

2
I am back! How did you link this code?

We shall see :p

2
What does pkg-config-libs OpenCV outputs?

2
Oh looks like you figured that out!

2
Demo is really cool!

K
n

o
w

le
d

ge
 s

h
ar

in
g

H
el

p
 in

 d
eb

u
gg

in
g

Fig. 3: Excerpts from session 3 which offer examples of the
interactions between the streamer (left) and watchers (right). These
excerpts illustrate knowledge sharing between the streamer and the
watchers, watchers helping in debugging, and watchers joining and
leaving throughout the session.

driver between them. We did not observe any instances of a
streamer and watchers rotating their roles.

C. What motivates developers to host live-streamed program-
ming sessions?

From our observations of the sessions as well as the
survey responses, we identified three motives for live-streamed
programming: knowledge sharing, socializing and work enjoy-
ment, and building an online identity.

We found knowledge sharing to be a common activity in
live-streamed programming, confirming findings from prior
studies [38]–[40]. We identified several instances in which
streamers and watchers explained to each other design rec-
ommendations and choices, alternative tools and libraries, and
tips they found to increase their productivity. D3 stated at
the beginning of a live-streamed programming session that
he does the recording for people who “ want to learn or see
the language [Rust] being used in a more advanced way”. He
further expanded on this motivation in his survey response:

“I find it very rewarding to hear that others are learning
from what I’m putting out there. I’ve always enjoyed teaching,
and this medium seems to work very well for a lot of people.”

D4 reported in his survey response that what motivated him
is “to show“a daily in the life”of an open-source maintainer”.
He pointed us to a blog post that he wrote about the struggles
open source software maintainers of popular library experience
day to day [41]. During his session, he went through 69 sepa-
rate Github issues and pull requests opened by the community,
showing how he answers these issues and reviews code written
by other developers.

D1 indicated that, besides his live-streamed programming
sessions, he also joins other developers’ sessions, collaborating
with them and assisting novices while developing software.

“My favorite aspect of streaming was collaboration. I’d even
say that more than my own streaming I enjoyed helping other
people on their streams more - especially novices.”- D1
Socializing and work enjoyment was another key motive.
D5 stated that what made him start to host live-streamed pro-
gramming sessions was because he “enjoyed watch[ing] others
coding [...] and thought it would be fun as an experiment to try
to do that too”. D3 stated that socializing during live-streamed
programming session made him enjoy his development work
to a degree that he would work for 5-6 hours continuously, and
that he often uses it to motivate him to work on his research.

“I genuinely enjoy the experience of programming with
other people. It feels like we’re solving something together,
and having them there makes the entire experience more fun.
[...] That’s amazing! Often I will choose projects that tie into
my research too, so it’s even useful work.” - D3

Watchers expressed enjoyment in the process of sharing,
watching the development workflow, and collaborating with
streamers. One watcher expressed enjoyment after suggesting
an idea to the streamer during session 1. “This is so cool... :)
watching others code and contributing with ideas”. Another
watcher enjoyed the idea of watching another developer while

coding. “It is really like hardcore watching [another] hardcore
coding like this. I love it!” (session 2).
A third motive was building an online identity. D1 stated
that a recruiter from Google had contacted him because of
his streaming activity. D2 has a similar experience where he
“had multiple new job opportunities that came out of streaming
online”. D3 expressed no interest in job opportunities, as he
was still in graduate school, but stated that “with the videos
I think there’s now a lot more people who know who I am”.
D4 pointed out that although his online identity had not grown
because of his streaming activity, he was happy that he inspired
another developer to become a streamer (D7), who later landed
a job at Microsoft because of her streaming activity [11].

D. What challenges do developers face hosting live-streamed
programming sessions?

Our observations and survey responses revealed two key
challenges that streamers and watchers experienced.
Tools limitations. Our observations suggest that watchers
sometimes help streamers while debugging, and thus may
need access to the source code to inspect and test their
hypotheses. These needs were not directly supported by any
of the development tools used by the streamers. For example,
a watcher was trying to help D7 while debugging, but the
interaction was slow and consisted of “Are you referring to
this line?”. This largely was due to a lack of direct access
to the code. To answer a question, he needed first to write
the question down in chat and wait for the streamer to read
it and respond, which sometimes then required a request for
clarification. D7 referred to this interaction as “slow, delayed
pair programming” while the watcher felt guilty for not being
able to help: “oh my gosh I am terrible”.

D1 stated in the survey that the lack of tools which “remove
some friction with figuring out what the streamer is doing
right now and allow more collaboration” created a challenge
in maintaining productive live-streamed programming sessions
with watchers.

“I really wish there was a way of letting viewers browse
your code independently, and maybe even a way of quickly
recreating the same dev environment in some way.” - D1

In addition to giving watchers the ability to explore the
code independently, watchers may need help in understanding
the codebase and the current task of the streamer, particularly
when they join a session late. D2 reported that existing tools
lack support for giving a quick overview of the project and its
architecture for watchers.

“I think the hardest thing the viewers would have was
understanding the architecture of the code base, or how things
fit together. So if you can figure out how to keep track of the
problem that you are working on, visually represent the code
base/changes made against the task, and how that code fits
together, you would have a good visual editor.” - D2
Maintaining engagement. Writing and debugging code are
cognitively demanding tasks which may often require the
developer’s full attention. Streamers often stayed silent while
they were thinking about what might cause a defect in their

code. This may create a disconnect between the streamer’s and
watchers’ mental models, leaving watchers less engaged in the
current task.

“I think the hardest thing is to make sure you keep the
viewers engaged. Don’t just code without speaking – you
need to voice your thoughts, and ask the people watching
the same questions you’d normally mull over in your head
while programming. Otherwise they won’t learn anything as
it’ll be an entirely passive experience. And I don’t think people
are generally used to speaking their thoughts out loud while
programming!” - D3

Another streamer reported that coding while a camera was
recording impacted his ability to maintain watchers’ engage-
ment.

“While coding, there are many other thoughts that need to
be managed. You literally have a camera on you while you are
coding, and that can greatly affect my focus. Likewise, once
I am concentrating on some code - I may forget about the
camera and not explaining my thought-process clearly” - D5

V. LIMITATIONS AND THREATS TO VALIDITY

Our study has several important limitations and potential
threats to validity. One potential threat to external validity
is how representative the ten live-streamed programming ses-
sions that we selected were. We included sessions based on
the development activities and the presence of interactions be-
tween streamers and watchers. However, our selected sessions
were also diverse in programming languages, projects size
(ranging from 385 to 90.3K lines of code), and the number
of developers contributing to the projects. Another potential
threat to the generalizability of our results is the size of our
sample. In our study, we observed a total of ten sessions which
spanned 20 hours of activity by 7 streamers. Prior work [42]–
[45] which involved analysis of developers working in various
development activities had on average 6.6 developers (range
3-10) and an average of 8 hours of videos (range 5-15).

A potential threat to internal validity is related to our quali-
tative data analysis. As our focus was to identify the nature of
live-streamed programming work rather than characterize the
frequency of specific practices or characteristics, we employed
a lightweight data analysis and did not code most events for
their frequency.

VI. DISCUSSION

Live-streamed programming is a new form of collaboration
in which streamers invite watchers to observe them perform
programming work. Our observations revealed that develop-
ers’ roles, interactions, and benefits have similarities to pair
programming. However, live-streamed programming differs
in two important ways. Streamers and watchers interactions
were less frequent, and watchers were less committed to
the task at hand, joining and leaving throughout the session.
Streamers were motivated by the opportunity to use their work
as an educational resource and as a means to promote them-
selves, confirming findings in prior studies [17], [38]–[40].
One additional motive we observed was that both streamers

and watchers enjoyed the process of streaming and watching
coding activities. D3 reported that streaming helped him to
enjoy working for hours for different projects, including his
academic research work. Further research on this motive may
help to better reveal how live-streamed programming might be
used create an enjoyable and stimulating working environment,
assisting developers in enjoying daunting coding activities and
potentially increasing their productivity.

One unique characteristic of live-streamed programming
is that, unlike the navigator in pair programming, watchers
may or may not contribute to the task at hand and may join
and leave throughout the session. Current tools that support
distributed pair programming such as Saros [30], XPairtise
[31], and Visual Studio Live Share [46] were not designed
to support this form of work. For example, they do not offer
support for watchers who join late in gaining a holistic view
of what the streamer is working on and planning for the rest of
the session. Further, existing pair programming tools require
investment and commitment by the watcher to install and
configure the development environment to run them. Online
development environments such as Codenvy5, Codeanywhere6,
and Cloud97 may require less setup. But they may offer
development tools and workflow that differ from what the
streamers use locally. They also lack other features to support
the workflow of live-streamed programming, discussed below.

The lack of effective tooling for live-streamed programming
has already motivated some open source developers to invent
new tools that address some of the challenges we identified.
During the time in which this study was conducted, an open
source extension for VS Code8 was introduced which allows
watchers to refer to a location in the source code via chat,
which results in an in-editor visualization for the streamer.
While addressing one key aspect of streamer and watcher
collaboration for one specific development environment, there
remain additional challenges to be addressed such as how to
enable watchers to explore the code independently, how to help
them with onboarding with the streamer’s development work,
and how to help streamers maintain watchers’ engagement. We
discuss design implications for tools in the following section.

VII. DESIGN IMPLICATIONS

Our study revealed that streamers sometimes struggle in
maintaining engagement with watchers, while watchers need
tools that help them explore code independently and help
onboard to the streamer’s project. In this section, we propose
a set of design recommendations for addressing these needs.

A. Maintaining Engagement

Instead of relying exclusively on the streamer to continu-
ally remember to keep watchers engaged while immersed in
development activities, watchers might instead help in quickly
notifying the streamer of their needs. For example, watchers

5https://codenvy.com
6https://www.codeanywhere.com
7https://aws.amazon.com/cloud9
8https://github.com/clarkio/vscode-twitch-highlighter

may want to inform the streamer to think aloud to make them
follow along and avoid making them speculate as to why she
acted as she did. We call these notifications from watchers
Fast interactions.

Fast interactions are a way for watchers to communicate
common needs to the streamer quickly. Instead of writing a
text message to remind the streamer to think aloud, watchers
might click a button to notify the streamer to talk through
what she is currently doing. Watchers may need access to
the latest version of the code or to increase the font size to
make the code in the streamer’s editor more easily readable.
Watchers may also want to give a sign of support to inform
the streamers that they are following along. Faster interactions
might be triggered by either the streamer or the watcher. This
form of communication may also encourage more watchers to
actively collaborate by lowering the barriers to participate.

B. On-demand Code Exploration

Our findings suggest that watchers may benefit from being
able to explore the code independently from the streamers.
However, the latest version of the codebase may not always
be accessible for the watchers or may require the installation
of several dependencies and modification to the environment
variables to build the project and run it. Such barriers increase
the cost of code exploration for the watchers and may decrease
their engagement with the streamer. This suggests that a
tool to support live-streamed programming should offer on-
demand code exploration for watchers. Additionally it should
not require any tool or development environment set-up for
either the streamer or for the watchers.

One approach may be to build a web application that
connects to the streamer’s project repository (e.g., Github) and
offers the necessary environment for the watchers to build and
run the software. Watchers may also need to know what files
have been changed recently so that they can only focus on
these files instead of the entire project.

C. Fast Onboarding

One difference between pair programming and live-
streamed programming is that, unlike navigators, watchers join
and leave throughout the session. Watchers who join later may
have questions that have already been answered about the
purpose of the project, previous design decisions, and the plan
for the rest of the session. To help watchers quickly answer
these questions and get up to speed, tools might offer content
linking that help watchers quickly traverse the history of the
session to find answers for their questions.

Tools such as chat.codes offer the ability to link between
code fragments and natural language descriptions in “asyn-
chronous settings where one user writes an explanation for
another user to read and understand later” [47]. Our proposed
feature for content linking extends this idea to consider link-
ages between video segments, code fragments, and natural
language text in the chat. Streamers might indicate video
segments in the stream that are of importance to watchers who
came late. These video segments may include the introduction

Fig. 4: A tool mockup illustrating our design recommendations

to the session or answers to key questions posed in the chat.
Besides video segment linking, watchers who have questions
about the codebase should have the ability to link their
questions with a code location, helping offer both the streamer
and other watchers more context.

D. Tool Workflow

To illustrate how our design recommendations might be
embodied in a tool for supporting live-streamed program-
ming, Figure 4 depicts a mockup of a web-based tool for
live-streamed programming. Before the live-streaming session
begins, the streamer first logs into the tool website and provide
links to both the live-streamed programming session and the
public repository that hosts the source code. The tool then
aggregates access to the session and the code repository in
one web page. The streamer may then advertise the session
by using the share button or copying the page link and posting
it to social platforms. After the session begins, the streamer
may work in her preferred development environment and push
any updates to the code repository for the watchers to use.

When watchers join the session, they have the option to
either watch the live stream or independently explore the code-
base, triggered through a toggle button (). Invoking the
code mode brings up a lightweight development environment
containing a code editor, terminal, and file browser. In the
file browser, watchers can pull updates from the repository,
explore the entire project, or limit the focus to the files that
have been recently updated during the session. Watchers may
interact with the streamer via chat or fast interaction (bottom
right in Figure 4). In the regular chat, watchers can link to a
code location in the chat using @. This creates a () mark on
the gutter at that location so that other watchers can see the
presence of discussions by skimming the gutter.

When answering a question posted in the chat, the streamer
can mark the beginning of the answer by clicking on (),

linking the question to its answer to make it easy for late-
comers to find the answer by clicking on (). Both the
streamer and watchers may mark important chat questions by
clicking on the () and indicate segments of the session where
the streamer discusses important topics by clicking on ().
This might be used to create a list of important questions and
moments for late watchers to explore.

VIII. CONCLUSION

Live-streamed programming is a form of collaboration in
which a streamer synchronously broadcasts their programming
work and interacts with watchers. Our results offer insight into
its characteristics, why developers use it, and the challenges
they face. Our findings suggest that live-streamed program-
ming shares several characteristics and benefits with pair
programming, but also differs in ways which make existing
distributed pair programming tools less effective. We propose
several design recommendations for how future tools can offer
more effective support. We believe that such tools may enable
more developers to make portions of their development work
public and accessible for other developers to observe and
collaborate.

ACKNOWLEDGMENTS

We would like to thank the survey respondents for their
time. This research was funded in part by NSF grant CCF-
1703734. The first author is supported in part by a King Saudi
University Graduate Fellowship.

REFERENCES

[1] K. R. Lakhani and E. Von Hippel, “How open source soft-
ware works:“free” user-to-user assistance,” in Produktentwicklung mit
virtuellen Communities. Springer, 2004, pp. 303–339.

[2] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Conference
on Human Factors in Computing Systems, 2011, pp. 2857–2866.

[3] L. Singer, F. Figueira Filho, and M.-A. Storey, “Software engineering
at the speed of light: how developers stay current using twitter,” in
International Conference on Software Engineering, 2014, pp. 211–221.

[4] L. Dabbish, C. Stuart, J. Tsay, and J. Herbsleb, “Social coding in
github: Transparency and collaboration in an open software repository,”
in Conference on Computer Supported Cooperative Work, 2012, pp.
1277–1286.

[5] B. Vasilescu, V. Filkov, and A. Serebrenik, “Stackoverflow and github:
Associations between software development and crowdsourced knowl-
edge,” in International Conference on Social Computing, 2013, pp. 188–
195.

[6] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and N. A.
Kraft, “Building reputation in stackoverflow: An empirical investiga-
tion,” in International Conference on Mining Software Repositories,
2013, pp. 89–92.

[7] J. Tsay, L. Dabbish, and J. Herbsleb, “Let’s talk about it: Evaluating
contributions through discussion in github,” in International Symposium
on Foundations of Software Engineering, 2014, pp. 144–154.

[8] L. MacLeod, M. Greiler, M. Storey, C. Bird, and J. Czerwonka,
“Code reviewing in the trenches: Challenges and best practices,” IEEE
Software, vol. 35, pp. 34–42, jul 2018.

[9] J. Koebler, “Thousands of people are watching this guy code
a search engine,” 2015, accessed: 2019-01-16. [Online]. Avail-
able: https://motherboard.vice.com/en_us/article/pgax4n/thousands-of-
people-are-watching-this-guy-code-a-search-engine

[10] C. Bernasconi, “Live programming on twitch is grow-
ing fast,” 2019, accessed: 2019-06-25. [Online]. Avail-
able: https://www.claudiobernasconi.ch/2019/05/29/live-programming-
on-twitch-is-growing-fast/

[11] S. Hinton, “Lessons from my first year of live coding
on twitch,” 2017, accessed: 2019-01-16. [Online]. Avail-
able: https://medium.freecodecamp.org/lessons-from-my-first-year-of-
live-coding-on-twitch-41a32e2f41c1

[12] A. G. Bell, “Rethinking databases and noria with jon gjengset,” 2019,
accessed: 2019-06-25. [Online]. Available: https://corecursive.com/030-
rethinking-databases-with-jon-gjengset/

[13] S. H. Adam Stacoviak, Jerod Santo, “Live coding open source
on twitch,” 2018, accessed: 2019-06-25. [Online]. Available:
https://changelog.com/podcast/288

[14] A. Begel, R. DeLine, and T. Zimmermann, “Social media for software
engineering,” in Workshop on Future of software engineering research,
2010, pp. 33–38.

[15] L. Hecht and L. Clark, “Survey: Open source programs are
a best practice among large companies,” 2018, accessed: 2019-
03-02. [Online]. Available: https://thenewstack.io/survey-open-source-
programs-are-a-best-practice-among-large-companies/

[16] M. Asay, “Who really contributes to open
source,” 2018, accessed: 2019-03-02. [Online].
Available: https://www.infoworld.com/article/3253948/who-really-
contributes-to-open-source.html

[17] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
how software developers document and share program knowledge using
youtube,” in International Conference on Program Comprehension,
2015, pp. 104–114.

[18] L. Williams and R. Kessler, Pair programming illuminated. Addison-
Wesley Longman Publishing Co., Inc., 2002.

[19] H. Hulkko and P. Abrahamsson, “A multiple case study on the impact
of pair programming on product quality,” in International Conference
on Software Engineering, May 2005, pp. 495–504.

[20] C. McDowell, L. Werner, H. Bullock, and J. Fernald, “The effects
of pair-programming on performance in an introductory programming
course,” in Technical Symposium on Computer Science Education, 2002,
pp. 38–42.

[21] N. Nagappan, L. Williams, L. Williams, M. Ferzli, E. Wiebe, K. Yang,
C. Miller, and S. Balik, “Improving the cs1 experience with pair pro-
gramming,” in Technical Symposium on Computer Science Education,
2003, pp. 359–362.

[22] W. Cunningham, L. Williams, R. R. Kessler, and R. Jeffries, “Strength-
ening the case for pair programming,” IEEE Software, vol. 17, pp. 19–25,
07 2000.

[23] A. Cockburn and L. Williams, “The costs and benefits of pair program-
ming,” in EXtreme Programming and Flexible Processes in Software
Engineering. Addison-Wesley, 2000, pp. 223–247.

[24] J. Dalton, Mob Programming. Apress, 2019.

[25] W. Zuill and K. Meadows, “Mob programming: A whole team ap-
proach,” in Agile 2014 Conference, Orlando, Florida, 2016.

[26] P. Baheti, E. Gehringer, and D. Stotts, “Exploring the efficacy of
distributed pair programming,” in Conference on Extreme Programming
and Agile Methods, 2002, pp. 208–220.

[27] N. V. Flor, “Globally distributed software development and pair pro-
gramming,” Commun. ACM, vol. 49, pp. 57–58, Oct. 2006.

[28] G. Canfora, A. Cimitile, G. Di Lucca, and C. A. Visaggio, “How
distribution affects the success of pair programming.” International
Journal of Software Engineering and Knowledge Engineering, vol. 16,
pp. 293–313, 04 2006.

[29] B. J. da Silva Estácio and R. Prikladnicki, “Distributed pair pro-
gramming: A systematic literature review,” Information and Software
Technology, vol. 63, pp. 1–10, 2015.

[30] S. Salinger, C. Oezbek, K. Beecher, and J. Schenk, “Saros: An eclipse
plug-in for distributed party programming,” in Workshop on Cooperative
and Human Aspects of Software Engineering, 2010, pp. 48–55.

[31] D. Tsompanoudi, M. Satratzemi, and S. Xinogalos, “Exploring the
effects of collaboration scripts embedded in a distributed pair program-
ming system,” in conference on Innovation and technology in computer
science education, 2013, pp. 225–230.

[32] A. Blackwell, A. McLean, J. Noble, and J. Rohrhuber, “Collaboration
and learning through live coding (Dagstuhl Seminar 13382),” Dagstuhl
Reports, vol. 3, pp. 130–168, 2014.

[33] C. Nilson, “Live coding practice,” in Conference on New interfaces for
musical expression, 2007, pp. 112–117.

[34] N. Collins, A. McLean, J. Rohrhuber, and A. Ward, “Live coding in
laptop performance,” Organised sound, pp. 321–330, 2003.

[35] T. Magnusson, “Algorithms as scores: Coding live music,” Leonardo
Music Journal, pp. 19–23, 2011.

[36] L. J. Barker, K. Garvin-Doxas, and E. Roberts, “What can computer
science learn from a fine arts approach to teaching?” in Technical
Symposium on Computer Science Education, 2005, pp. 421–425.

[37] C. Chen and P. J. Guo, “Improv: Teaching programming at scale via
live coding,” in Conference on Learning at Scale, 2019.

[38] L. Haaranen, “Programming as a performance: Live-streaming and
its implications for computer science education,” in Conference on
Innovation and Technology in Computer Science Education, 2017, pp.
353–358.

[39] T. Faas, L. Dombrowski, A. Young, and A. D. Miller, “Watch me code:
Programming mentorship communities on twitch.tv,” Human-Computer
Interaction, vol. 2, pp. 50:1–50:18, Nov. 2018.

[40] T. Faas, L. Dombrowski, E. Brady, and A. Miller, “Looking for group:
Live streaming programming for small audiences,” in Information in
Contemporary Society, 2019, pp. 117–123.

[41] N. Lawson, “What it feels like to be an open-
source maintainer,” 2017, accessed: 2019-02-08. [Online].
Available: https://nolanlawson.com/2017/03/05/what-it-feels-like-to-be-
an-open-source-maintainer/

[42] M. P. Robillard, W. Coelho, and G. C. Murphy, “How effective develop-
ers investigate source code: An exploratory study,” IEEE Transactions
on Software Engineering., vol. 30, pp. 889–903, Dec. 2004.

[43] M. Abi-Antoun, N. Ammar, and T. LaToza, “Questions about object
structure during coding activities,” in Workshop on Cooperative and
Human Aspects of Software Engineering, 2010, pp. 64–71.

[44] J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Transactions on
Software Engineering., vol. 34, pp. 434–451, Jul. 2008.

[45] J. Starke, C. Luce, and J. Sillito, “Searching and skimming: An ex-
ploratory study,” in International Conference on Software Maintenance,
2009, pp. 157–166.

[46] A. Silver, “Introducing visual studio live share,”
2017, accessed: 2019-06-25. [Online]. Available:
https://code.visualstudio.com/blogs/2017/11/15/live-share

[47] S. Oney, C. Brooks, and P. Resnick, “Creating guided code explanations
with chat.codes,” Human-Computer Interaction., vol. 2, pp. 131:1–
131:20, Nov. 2018.

