Barriers in Front-End Web Development

David I. Samudio and Thomas D. LaToza
Department of Computer Science
George Mason University, Fairfax, VA, USA
{dgonzal0, tlatoza} @gmu.edu

Abstract—Developers building web applications constantly face
challenges, particularly in working with complex APIs. In re-
sponse, developers often turn to Stack Overflow, offering a
window into the programming barriers developers face. We
examined 301 posts on Stack Overflow related to front-end
web development and systematically characterized the challenges
present in these posts. We found that most challenges reflected
not a request for new code or an explanation of an error
message but a request about how a specific code snippet might
be edited to make its behavior as desired. Many challenges also
reflected an underlying need to gather information about how
specific code idioms are implemented within a framework or
library. We identified 28 barriers developers face in front-end web
development. Our findings suggest opportunities for facilitating
more effective interactions with complex APIs through new types
of programming content and tools that better address barriers
in working with code idioms.

Index Terms—debugging, information needs, programming
barriers, program comprehension, web development

I. INTRODUCTION

As developers approach programming tasks, they ask ques-
tions and seek evidence to answer these questions [1]-[7],
sometimes encountering programming barriers that block
progress, introduce challenges, and consume significant time
[8]-[14]. Better understanding these barriers can reveal new
opportunities for programming tools and resources that better
support developers [8], [15], [16]. The benefits tools offer often
stem from an insight into the barriers that make a common
activity hard and a solution to overcome these barriers: making
debugging easier by supporting following data dependencies
backwards from erroneous output to the responsible code [17],
making error messages easier to fix by offering actionable
error messages [18], or making code easier to understand
by reducing barriers to navigating call relationships [19]. To
identify barriers, empirical studies have begun to catalog the
questions that developers ask and the challenges developers
experience [9], [10], [12], [20]. These studies offer important
evidence that the challenges programming tools address are
real and that successful solutions to them could have mean-
ingful impact on productivity.

While front-end web development is a pervasive software
application domain [21], [22], less is known about its pro-
gramming barriers. Inherent to this domain are client-server
and GUI interactions, a style of programming dominated by
complex, loosely coupled, and asynchronous behaviors across
diverse APIs. To deal with this complexity, developers often

turn to crowdsourced question and answer sites, particularly
Stack Overflow. For struggling developers, these offer the hope
of an answer. Yet these interactions also represent a failure:
whatever developers were trying to do, they needed help to
do it. In this way, question and answer sites offer a lens
to further understand the human factors of these challenges,
where studying the developers intent in Stack Overflow posts
may offer an opportunity to unveil emerging types of barriers.

In this paper, we investigate the programming barriers in
front-end web development. We sampled 301 posts from
Stack Overflow and identified the programming activity they
reflected and the underlying barriers that led to each post.
Our results reveal that the most common challenges devel-
opers experienced were in determining how to adapt specific
fragments within code snippets to create a desired behavior.
This was often hard, as developers were unaware of how to
correctly use semantically-related framework APIs to achieve
it. Following prior investigations of programming barriers in
other domains [8], we found that front-end web development
barriers were strongly tied to the type of code developers were
struggling with.

To explain these findings, we use the concept of code idiom
— recurring code fragments across programs with a single
underlying semantic role [6], [23]. Idioms consist of two parts:
code fragments and their semantic role. For instance, devel-
opers working with a graphical setter idiom refer to its code
fragments (e.g. x.setAttribute ("class", .), or
React’s <X className={...}/>) by its semantic role:
updating the appearance of elements in the page’s layout.
Through this perspective, we offer an explanation of how
developers may form invalid assumptions, and how the nature
of APIs involved may shape that.

We identified 28 barriers across 11 idioms, detailing the
information developers need when working with front-end web
frameworks. Our findings offer a checklist for the design of
future programming content and tools, enumerating specific
challenges they might address to better support developers in
web development work.

Our findings offer further evidence for the value of existing
theories [8], [16] and tools [24]-[33], we discuss how they
might benefit developers by helping them address specific
challenges related to complex APIs as knowledge of idioms.
Our results also suggest an opportunity for more direct support
within the IDE or Stack Overflow for interacting with idioms.

978-1-6654-4214-5/22/$31.00 ©2022 IEEE

II. PRIOR WORK

Both novice and experienced developers face programming
learning barriers [8], [20]. One study identified 6 common
types of barriers in two categories [8]. Data barriers related
to the code the developer is writing: design (what), selection
(which), use (how), and coordination (when); and, debugging
barriers related to the environment the developer interacts
while writing the code: understanding (why) and informa-
tion (where). One way to study developers’ programming
challenges is to formulate needed information developers
must obtain in order to complete programming tasks, often
conceptualized in the form of a question a developer asks when
programming [9].

At the highest level, questions can be organized by devel-
oper intent [10], the relationship between code and domain
concepts and control and data relationships between methods
and classes [34]. Questions also concern the relations be-
tween team members and code occurring in task assignments,
changes, and builds [14]. Developers ask hard-to-answer ques-
tions about code, most commonly including questions about
rationale, intent and implementation, debugging, refactoring,
and code history [12].

Web developers, regardless of programming expertise,
struggle to understand and remember programming related
knowledge. Students learning web development often seek
help on programming concepts, and spend the most time
developing or getting instructions and the least time design-
ing [35]. Experienced developers also struggle with finding the
information they need. Web developers often do not recognize
the names of concepts they are using as complexity increases,
but when given a definition, are ten times as likely to recognize
the concepts [36].

To explain how developers manage and reuse knowledge
about complex APIs, code idioms have been identified using
data mining [6], [23] and crowdsourcing [37]. Idioms differ
from code clones in that idioms recur across multiple software
projects with varying behavior in each instance, and differ
from API usage patterns in their broader generality and
in being potentially associated with many API usages [6].
When trying to help developers in their synthesis selection,
it is difficult to automatically mine and attribute rationale to
idioms [23].

Much work has examined software developers’ practices
around knowledge repositories, particularly Stack Overflow.
Small pools of thousands of developers contribute most posted
answers, and do so quickly [38]. Small groups of well-
known contributors extensively cover widely-used APIs within
a year of their introduction [39], yet many questions remain
unanswered because they are apparently of little interest to the
community [40]. Several posts involve a widespread misuse of
APIs [41], [42]. User-created post tags alone are insufficient
to effectively represent post discussions and need automa-
tion [43]. How-to questions dominated posts of the most pop-
ular languages (C#, Java, JavaScript) [1], and most mobile-
related posts to be about how-to or discrepancy questions [44].

Using only code snippets extracted from Stack Overflow to an-
swer questions is effective half of the cases [5]. Question types
may help automatically classify questions before posting [3].
There is a strong correlation between concepts and questions
types, regardless of the programming domain [7]. The most
helpful answers highlight important rationale related to the
question’s code and offer step-by-step solutions [4]. Posts
on topics such as data manipulation and layouts were more
likely to get answers accepted [2]. Posts also show JavaScript,
HTMLS to be confusing and, for CSS, complex and without
effective tool support [11].

Web developers’ challenges have also been identified from
code repositories. One study found that most defects in web
codebases were related to DOM manipulation and invalid
references [13].

III. METHOD

To better understand the challenges inherent to front-end
web development, we sought to identify the information de-
velopers use to ask questions and the insights answers give to
solve them. We also sought to understand the nature of the
challenges themselves, specifically the barriers from which
they resulted and the relationships of these to idioms. We
formulated three research questions:

o RQI: In what contexts do front-end web developers turn
to crowdsourced knowledge repositories, and how do they
communicate challenges and answers?

o RQ2: What are the common programming barriers that
developers face in front-end web development?

o RQ3: What code idioms did answers reference in explain-
ing how to overcome programming barriers in front-end
web development?

To answer these research questions, we collected and coded
front-end web development posts taken from Stack Overflow.
Our data is publicly available. !

A. Collecting posts

Each post on Stack Overflow is labeled with one or more
tags reflecting its topic. To select posts related to front-end web
development in JavaScript, we first examined the 400 most
frequent tags on Stack Overflow and selected those related
to front-end web technologies (e.g., React, jQuery, Angular,
JavaScript). Next, we used the Stack Exchange API to collect
metadata on approximately 286,000 posts between May and
October 2016 that included the resulting 24 most frequent
front-end web technology tags. We obtained close to 50,000
posts after excluding posts that were unanswered, marked
as duplicates, or had no upvoted questions. From these, we
randomly sampled 1000 posts. Since answers’ metadata was
not collected, we manually excluded posts that did not have
upvotes for the top answer. We stopped once we reached 666
posts (99% confidence level, 5% margin of error). Finally, we
manually discarded 365 posts unrelated to front-end web de-
velopment, including those related to back-end only (90), with

Thttps://github.com/devuxd/public/blob/main/VLHCC_2022.zip

incorrect tags (64), related to configuring NPM or Webpack
(48), or related to installing frameworks (26). We then coded
301 posts in total.

B. Coding posts

We used an iterative, inductive process to describe the
contexts of the programming challenges reflected in the posts.
We analyzed the content of each question and its top voted
answer. We assumed that the top voted answer reflected a
correct answer and coded the challenge as reflected in the
information exchanged in the question and answer rather than
attempting to independently diagnose the problem or derive
an alternative answer.

From initial open coding of 31 posts, we identified five
dimensions: programming activity, explanation strategy, evi-
dence, web technologies, and related idioms. Figure 1 depicts
a subset of the information we coded from a post. We refined
the coding scheme four times, with two authors meeting
independently coding batches of 15 to 20 posts. Finally, we
computed the inter-rater reliability, achieving a Cohen’s Kappa
of a minimum of 0.75 and average 0.92 £ 0.12, indicating
excellent agreement [45]. We then coded the corpus of 301
posts using the final coding scheme.

To understand the context of posted questions, we coded
question evidence describing the sources of information ref-
erenced by the question and programming activity reflecting
the developer’s goal when the challenge occurred. Initially, we
expected to distinguish activities such as fixing defects from
adding behavior. But we found that the distinction between
editing code to fix a defect and editing code to add missing
behavior was ill-defined, as developers sought to change the
behavior of code in both cases and were often themselves
unclear if this change required "fixing" some aspect of their
implementation or adding code they had not yet realized they
needed. We distinguished six activities: implement code from
scratch, comprehend code, change the behavior of existing
code, resolve a compile time or runtime error, refactoring, and
performance optimization.

To understand the context of posted answers, we coded the
answer evidence describing sources of information referenced
in the answer and explanation strategy capturing the use of
code change explanations or execution simulation in how
answers described code.

Across both questions and answers, we identified six forms
of evidence referenced in posts: code, executable code within
a pastebin, official documentation by the software’s author
or standards body, alternate documentation offered by others
including tutorials, program output, and execution state de-
scribing intermediate values computed and observed through
debugging aids such as console logging or the debugger. We
also included another category for infrequently referenced
evidence such as diagrams or references to codebases.

While refining our coding scheme, we found that idioms
presented a better level of abstraction to explain common
rationale across web technologies, rather than coding used
API-terminology or programming concepts separately. Posts

Create a dynamic link based on checkbox values
What I'm trying to achieve is this:
1. Default state of page = no checkboxes ticked, no link shown

a

2. User ticks one (or more) checkboxes

3. Link appears, dynamically generated from the checkbox values, in the following format:

http:/lexample com/?subject=Products&checked=Blue, Green.Purple (where the selected
checkbox values are "Blue", "Green" and "Purple") ﬁ

Thus far, based on advice from another question (Using JavaScript to load checkbox Values into a
string), I've been able to get the values in the proper format (as part of the required url) printed to

console.log via a button: “
2 Answers active oldest __votes

$("button”).on("click”, function(){ A | believe that you were on the right track
arr = [] 2 if | understood your question correctly. | added the
change event on you checkboxes as you suggested

4 Try the modified code be\om
Workina CodePen

$("input [type=checkbox]") .on("change",

|

B

:checkbox") .each(function(){
if($(this)
arr.pus

A

function()
var str =

"http://example.com/? subject=Product
console.log(str) 1

if (vals.length > @) {
$(°.1ink').html($('<@>', {
href: str
text: str }));
} else {

<input $(*.link').html(*")

R

¥ Blue

Green

Purple | button | B

http://example.com/?subject=Productsi8lue nsa‘m.??:’ :J

I've been advised that .change() might be the way to go he%ﬁ

dynamically. Something like: jQuery checkbox change and click even
How can | merge the two approaches to achieve the result I'm looking for?

Fig. 1. A Stack Overflow post illustrating the information we coded. (A)
Programming Activity: change the behavior of existing code. (B) Source code:
question (uses jQuery, HTML) and answer (changes jQuery: graphical query,
and event bind target). (C) Pastebin use: question and answer. (D) Browser
output: question. (E) Execution state: question. (F) Other evidence: question
(another Stack Overflow post). (G) Explanation strategy: code inspection about
bound event change.

often reflected how semantics of frameworks lead to similar
challenges. We coded idioms and web technologies based on
the code snippets changed or related explanation given by the
top answer.

C. Identifying barriers

To identify programming challenges reflected in posts, we
grouped posts by idiom to identify barriers, re-examining both
question and answer alongside coded information. We found
one or more barriers reflecting the information suggested by
the top answer as necessary to resolve the issue. Answers
were often anchored around discussion of idioms necessary
to explain underlying barriers. These were often illustrated
through code fragments. For example, one developer asked:

"...[code snippet] works fine if i remove "400, function()",
when 1 click the menu-trigger, the menu appears. but

with it added, the menu appears then disappears too
quickly,..." 2

And received this answer:

"Remove the display setting which jQuerys slideToggle()
sets, that why the menu gets hidden...:"

$ (this) .tog

s ("nav-expanded") .css ("display","")

The answer indicates a barrier related to a graphical setter
idiom. The graphical setter is unidentified, and the answer
suggests to remove it.

Zhttps://stackoverflow.com/questions/40041515

IV. RESULTS

The results are reported based on our final coding scheme.
All percentages are reported as the percentage of Stack Over-
flow posts unless otherwise noted.

A. Context of challenges (RQ1)

Discussions in posts often focused on changing running
code, and some, on fixing non-running code. Questions were
rich in additional information surrounding the code, mostly
from browser output and execution state. Answers usually
involved explanations of code changes, occasionally bringing
execution details.

1) Programming Activity: Posted questions varied in what
developers wished to learn and how much code had already
been written.

Change the behavior of existing code (72%): Posts
focused on the currently observed behavior or the behavior
to be achieved, often describing specific visual output or the
desired content of specific objects. Posts rarely referred to
specific lines of code or offered hypotheses about why the
desired behavior was not yet realized.

Resolve a compile or runtime error (18%): Posts pro-
vided code surrounding the lines where the error had occurred.
Of these posts, 91% involved frameworks and libraries not
bundled with the browser. Developers rarely presented a
specific hypothesis about the cause.

Posts rarely occurred in the context of other programming
activities: 4% were related to comprehension tasks to under-
stand existing code or its rationale, 3% concerned refactoring,
3% reflected developers who had not yet written code and
were seeking assistance on where to start, and a single post
concerned performance optimization.

2) Evidence: To pose a question and offer an answer,
developers referenced several types of evidence.

Code snippets (78% questions, 75% answers): The ma-
jority of both questions and answers included code snippets,
serving to anchor the discussion of the issues. 4% of cases
developers reported having the code but not including it
because they did not consider it relevant to illustrate the
problem. Instead, they referenced documentation or explained
the desired behavior.

Executable code within pastebins (26% questions, 33%
answers): Some questions and answers contained or linked
to pastebins, including Stack Overflow’s built in facility for
running code snippets (45%), JSFiddle (31%), and others such
as CodePen and Plunker (23%).

Browser output (42% questions, 3% answers): Descrip-
tions of browser output were common in questions, anchoring
the discussion around the generated output and how the
desired output differed. Output was often described abstractly
and rarely included screenshots. Output was rarely used in
answers, as discussion was instead anchored in code and
explanations of code.

Execution state (32% questions, 6% answers): A third of
questions referenced specific state generated during program

execution, or console logs. 2% of answers included execution
state to explain other issues not mentioned in the questions.

Official documentation (9% questions, 23% answers):
Answers sometimes made reference to official documentation,
including specifications, tutorials, wikis, or blogs created by
the software’s authors. References offered explanation and
justification for suggested code snippets.

Alternate documentation (6% questions, 5% answers):
Questions and answers rarely referenced alternate documenta-
tion, often to supplement official documentation.

Other forms of evidence (17% questions, 9% answers)
included back-end code and other posts. Posts rarely included
diagrams or annotated screenshots.

3) Explanation Strategy: Top posted answers often ex-
plained the code changes or missing rationale to achieve the
desired behavior at different levels of abstraction.

Code change explanations (89%): Posts inspected code
to clarify what had changed or how the snippet worked. Posts
often explained technology rationale in fragments of the code
snippet with technology-specific terminology.

Execution simulation (22%): Posts explained code using
either a simulation of a specific code fragment or more
abstractly in terms of the API or code rationale that was not
present. Only 3% of the posts used execution simulation alone,
it was mostly used to support code inspections. Execution data
was gathered from console logs, breakpoints, or through the
browser output.

4) Web Technologies: The prevalent web technologies were
UI frameworks (70%): jQuery (23%), Angular (20%), React
(13%), among others. This period was rich in questions related
to jQuery (standard, UI, and mobile), the transition from
Angular 1 to 2, and emerging questions about React. In support
of these code snippets, posts also included HTML (29%),
client code for back-end communication such as MySQL or
RESTHful services (16%), or included CSS (8%), among others.

B. Programming barriers and code idioms (RQ2, RQ3)

We identified 28 concrete programming barriers that
blocked developers from completing their tasks (Figure 2).
In examining these barriers, we found that many were closely
tied to 11 idioms in front-end web development, specifically
using callbacks to manage asynchronous behavior, ways of
interacting with rendered graphical elements, and interaction
with object structures during data processing. In the following
sections, we report the idioms and the corresponding barriers
we identified.

C. Callback Idioms
x.on("event", ..., function callback (arg) {/**/})

51% of posts involved challenges with one or more callback
code fragments. Callback registration may take several forms,
including explicit registration in JavaScript (x.on (...) in
the example above), through HTML, or through frameworks.

A callback consists of three key parts: a bind target iden-
tifying an event to subscribe to ("event"), a bind config-
uration in the form of parameters controlling the behavior

cauBack ibioms |

29‘)’ BIND TARGETS IDENTIFYING OR CHOOSING AN EVENT, LIFECYCLE HOOK, OR
TRIGGER TO REGISTER A CALLBACK
CB1 Unidentified Target:
desired bind target - target name & code fragment
CB2 Constrained Target:
bind target code fragment = API rules making fragment (in)valid
CB3 Confused Target:
current & desired bind targets > API use differences, new target’s code fragment
CALLBACK CONTEXTS IDENTIFYING WHEN THE CALLBACK IS DISPATCHED,
25% USING ITS ARGUMENTS, OR OTHER RELATED OBJECTS
CB4 Improper Scheduling:
callback code fragments & desired schedule = correct callback order & code fix
CB5 Unidentified State:
desired state = API rationale for identifying state & code fragment to obtain it
CB6 Missed Callbacks:
callback code fragment - API rationale & state required for callback to occur
23 BIND CONFIGURATIONS SETTING OPTIONS OF A CALLBACK TRIGGER, OR
° MODIFYING PARAMETERS OF ITS BIND MECHANISM
CB7 Incorrect Bind Parameters:
callback parameter fragments & desired behavior = correct code fragments
CB8 Misconfigured Framework:
framework configuration fragments & desired behavior = correct framework code

GRAPHICAL IDIOMS |
37)GRAPHICAL SETTERS UPDATING GRAPHICAL PROPERTIES OF THE LAYOUT VIA
°4 API (DOM ACCESS METHODS, CSS SELECTORS)
GB1 Unidentified Setter:
visual property change = code fragment to mutate property
GB2 Unobservable Setter:
setterA & visual property change -> setterB to mutate property
GB3 Indirect Setter:
setterA = elements which inherit properties from setterA or occlude mutations
GB4 Overwritten Setter:
setterA - setterB overwriting setterA & code fragments with alternative fixes
N GRAPHICAL QUERIES RETRIEVING GRAPHICAL ELEMENTS OR SIMILAR
21% REPRESENTATIONS VIA APl (DOM ACCESS METHODS, CSS SELECTORS)
GBS5 Incomplete Query:
queryA and desired elements to be matched = queryB matching those elements
GB6 Outdated Query:
queryA - changes to query result set over time & code fragment fixing it
GB7 Overwritten Query:
queryA > queryB intersecting queryA’s mutations & code fragment fixing queryA
8~% GRAPHICAL GETTERS OBTAINING GRAPHICAL PROPERTIES OF THE LAYOUT
VIA APl METHODS
GBS Unidentified Getter:
visual property = getter code fragment to retrieve it

OBJECT-INTERACTION IDIoms |

2;10\ VALID REFERENCES DETERMINING DEFINED STANDARD, OR FRAMEWORK
% IDENTIFIERS AT COMPILE TIME OR RUNTIME

OB1 Inactionable Reference Error:

statement generating error & error message = explanation of error message
OB2 Silent Invalid Reference:

invalid statement = warning message & statement fixing warning

~ BACK-END REQUESTS SENDING STRUCTURED DATA TO A SERVER, OR
16% HANDLING SERVER RESPONSES
OB6 Misconfigured Request:

back-end request & desired behavior - modified request matching behavior
OB7 Unclear Transmission:

back-end request as sent = back-end request as received
OB8 Mishandled Response:

‘back—end request = code fragment for response(s) listening and parsing
8% SCQPE CONTEXTS IDENTIFYING THE CONTEXT (?IVEN TO THE KEYWORD

this WITHIN A CODE BLOCK, OR A VARIABLE’S VISIBILITY

OB12 Unclear Scope: this statement = owner scope of this

ZCE COLLECTIONS AND FORMATS CREATING OR MANIPULATING A COLLECTION,
OR FORMATTING DATA FOR USE IN A FRAMEWORK OR LIBRARY
OB3 Unidentified Iteration Construct:

collection object = code fragment with corresponding iteration construct

OB4 Occluded Modification:
collection object & loop fragment = modifications of collection per iteration

OB5 Confused Formatting:
object in format A > code fragment converting object to format B
-

8% METHOD CHAINS DETERMINING THE EFFECTS OF A METHOD INVOCATION
® WITHIN A SEQUENCE OF CONSECUTIVE CALLS
OB9 Incomplete Sequence:
o.m1(...).m2(..)...mn(....) 2 o.m1(..).m2(...)..mk(...)...mn(...)
OB10 Incorrect Sequence:
o.m1(...).m2(..)....mn(....) > o.mk(...)...m1(...).mn(...)
OB11 Overwritten Effect:
o0.m1(...).m2(...)...mn(....) > methods and m| where both mutate object

Fig. 2. Overview of the programming barriers grouped by idiom category. Percentages indicate the fraction of total posts. Posts may included multiple barriers.
Each idiom’s name is followed by an explanation of developers’ usage intent, and its specific barriers. Each barrier is listed with its name, and description
as a mapping from the information developers had available to the information they sought to obtain.

of the callback (.. .), and a callback context defining which
arguments are available and what other additional state is, or
is not, available when the callback is invoked (arg, local or
global variables).

1) Bind Targets (29%): Posts reflected challenges with
unidentified targets (CBI), where questions described the
circumstance of a target but did not know its name or binding
mechanism. Answers explained which HTML elements sup-
ported which targets, often targets for DOM changes.

Constrained targets (CB2) occurred when targets were
unavailable in specific circumstances, such as specific points
within a framework lifecycle.

Confused targets (CB3) occurred when developers selected
the wrong target thinking it was another.

2) Callback Contexts (25%): Challenges with improper
scheduling (CB4) involved differentiating state changes made
synchronously from those made asynchronously, identifying
the appropriate callback for specific state to be accessible,
and locating code appropriately (e.g., properties of an image

element being immediately accessible after a synchronous call
but the image itself only being loaded afterwards). Answers
clarified these issues, sometimes describing how various time-
outs, promises, and DOM callbacks were queued and sched-
uled for execution by the browser’s event loop or framework
equivalents.

Unidentified state (CB5) involved finding desired state in
argument object structures or through functions invoked on
arguments, which answers identified.

Missed callbacks (CB6) involved callbacks not executing
when desired. Answers often detailed conditions about the
state a framework (e.g., React) needed to be in so that a
callback would occur and how to check for them.

3) Bind Configurations (23%): Challenges with incorrect
bind parameters (CB7) were common, where developers
sought to identify the appropriate parameters to achieve a
desired behavior (e.g., lodash’s debounce time units).

Misconfigured frameworks (CB8) involved the initialization
or state of the framework generating the callback resulting

in the callback not behaving as desired. Answers explained
required framework interactions, sometimes describing scat-
tered changes to interactions with the framework in code and
in HTML representations.

D. Graphical Idioms

const [rl, r2]
rl.get ("prop")

= querylnterface (params)
&& r2.set ({aProp: value, ...})

42% of posts involved challenges with graphical elements. We
refer to graphical elements as a visual element in the browser
output, DOM element in the app’s document, layout element
in HTML or equivalent source files, and graphical object in
JavaScript. Other software application domains may follow
similar representations (e.g., Android UI layer, JavaFX).

A graphical query is a pattern expression which se-
lects graphical elements by matching property values
(queryInterface (...) inthe example above). Graphical
queries include CSS selectors as well as framework variants,
which may generate framework-specific wrappers around lay-
out elements. Questions often described observed or desired
visual output. A graphical getter is an expression that retrieves
information about graphical elements, often in the form of
property values (rl.get (...)). A graphical setter is an
expression that mutates graphical elements to achieve a new
graphical state, such as by setting one or more properties or
by adding or removing elements (r2.set (...)).

Graphical elements have visual properties such as style,
position, and animation as well as non-graphical properties
such as custom data or bound callbacks. Questions frequently
referenced specific browser output (68%) and occasionally
referenced execution state (12%). Fixes were rarely (4%)
confined to CSS snippets alone.

1) Graphical Setters (37%): Challenges with unidentified
setters (GBI) occurred when developers had visual behavior
they wished to achieve but did not know the setter or setters
required or the appropriate parameters. Questions often made
analogies to existing visual elements to describe the desired
behavior. Answers often provided the necessary setter(s).

Unobservable setters (GB2) occurred when, developers
wished to understand why visual changes seemed not take
place. Answers often explained differences among similar
methods offered by a framework (e.g., jQuery’s attr (),
prop (), data ()).

Indirect setters (GB3) involved graphical changes that oc-
curred through properties inherited from parent elements or
due to layout errors with other elements (e.g., an element oc-
cluded by a mispositioned element). Answers often explained
inheritance rules and suggested property changes.

Conflicted setters (GB4) occurred when, despite the query
being correctly formed, overlapping setters led to undesired
visual behavior, often due to undesired sequencing. Answers
suggested new setters or suggested the correct way to sequence
them depending on the events at hand.

2) Graphical Queries (21%): Challenges with Incomplete
queries (GB5) occurred when different selectors were required

to select the desired elements, which answers often suggested.
This frequently involved identifying property values that de-
sired elements shared and which could be selected.

Outdated queries (GB6) occurred when the set of elements
matching a query unexpectedly varied over time. Answers
often described alternative approaches to using a query instead
of adding logic to new elements when they were created.

Overwritten queries (GB7) occurred when more than one
query unexpectedly mutated the same element. Answers iden-
tified which queries were retrieving the same element and
sometimes suggested changes to the query expression to
avoid selecting the element. Underlying these were challenges
associating visual elements with code fragments.

3) Graphical Getters (8%): Posts reflected challenges with
unidentified getters (GB8) when selecting or identifying the
appropriate getter to retrieve specific information, particularly
when the available getters, identifiers, or behavior varied
between frameworks. Answers identified missed or misused
properties, and explained or contrasted framework API ra-
tionales. Of challenges with getters, 30% involved invalid
references.

E. Object-Interaction Idioms

40% of the posts involved challenges with object-interaction
idioms. Developers often illustrated challenges with execution
state from the console, or abstract descriptions of object
structures and properties.

1) Valid References (21%): Identifiers in JavaScript may
reference an object, object property, variable, or function and
may refer to definitions in user code or in framework code.
References may occur directly as code or embedded in a string,
which may then be parsed in code located elsewhere.

Inactionable reference errors (OBI) occurred when de-
velopers received a parse or runtime error message lacking
sufficient detail for the developer to understand how to resolve
the issue (e.g., "cannot determine value of undefined"). Fre-
quent causes included misuse of framework-specific wrappers
around HTML attributes, incorrect use of naming conven-
tions, and typographical mistakes. Causes sometimes involved
correctly referencing identifiers in HTML, React’s JSX, or
other template representations, references to objects defined
only later in the execution, or accesses to elements that had
not yet been appended to the DOM. Answers clarified these
causes, identifying how the framework imposed constraints on
fragments of user code.

Silent invalid references (OB2) forced developers to man-
ually locate the source of the defect. For example, a refer-
ence to an object property in JavaScript that is not present
(e.g. undefined, null) determines the execution of code
without the need to throw an exception (e.g., optional chains
such as objRef?.doMethod () or conditional expressions
such as objRef.prop? do(): otherDo()). Answers
often indicated code depending on these references not being
executed and provided changes to do so. Rarely, references
were invalid due to being overwritten.

2) Collections and Formats (20%): A fifth of the posts
involved challenges with the properties on objects and expec-
tations imposed about properties by frameworks.

Unidentified iteration constructs (OB3) involved challenges
related to collections, often to differentiate among similar
methods offered by a technology that were applicable to
different types of objects or that exposed a different collection,
such as using JavaScript to iterate based on keys or in-
dexes, for 1in, and values, for of; jQuery’s each () and
map (); or Angular’s ng-repeat. Answers differentiated
constructs based on the object’s properties, whether changes
to element membership in the collection would be reflected in
the same object or a new one, and if the object was declared
in user code or obtained from a framework.

Occluded modifications (OB4) involved a collection which
was unexpectedly mutated between iterations. Answers high-
lighted unexpected framework calls that occurred between iter-
ations or unsatisfied requirements to invoke specific framework
functions or methods.

Confused formatting (OB5) occurred when converting a
JavaScript Object to DOM object or converting a DOM
object’s data into an object in the format of a framework’s
data model (e.g., Angular, React). Answers explained the
relationship between properties in alternative representations.

3) Back-End Requests (16%): Back-end request challenges
concerned sending and receiving data from a back-end server.

Misconfigured requests (OB6) involved selecting the desired
yet unknown correct parameters for specific services (e.g,
routes for RESTful services) or using timers to correctly
schedule requests.

Unclear transmissions (OB7) involved data received by the
server differing from what was sent. For example, a NoSQL
store omitted storing properties with undefined or null,
requiring them instead to be 0.

Mishandled responses (OB8) involved listening for and
sequencing responses from the server. Answers provided code
and described the appropriate mechanism to listen for re-
sponses (e.g., promises or async functions) and to correctly
sequence response listeners.

4) Method Chains (8%): A method chain is a sequence
of method calls where each method returns an object
that is the receiver of the subsequent method call (e.g.,
[...array] .fi11(0) .map (f)). A method cascade is
a form of method chain where each method returns the
same object on which it was invoked. Method cascades may
themselves be chained through a bridge method which returns
a different object, enabling a sequence of actions to be invoked
on multiple related objects (example above).

Incomplete sequences (OB9) occurred when the sequence
produced no error but required one or more additional methods
to achieve the desired behavior. Answers often related specific
methods to documentation and identified desired methods.

Incorrect sequences (OB10) occurred when a method was
misplaced or misused. Answers explained ordering constraints
on actions within cascades or differentiated closely related

methods (e.g., D3’s enter (), select (), and datum()),
or identified methods as bridge ones (e.g. jQuery’s £ind ()).

In an overridden effect (OBI11), unexpected effects clob-
bered intended effects. Answers identified overlaps in changes
to object properties, often correctly rearranging the chain.
These changes involved replacing valid references with others.

5) Scope Contexts (8%): In JavaScript, the this keyword
refers to the current lexical scope’s execution context. Posted
questions often reflected on unclear scopes (OB12), a lack of
awareness that this varies within enclosing scopes, standard
and arrow functions, or passing it as a parameter. Answers
explained the use of this in the specific context or when it
changed within scopes.

V. LIMITATIONS AND THREATS TO VALIDITY

Our study has several important limitations and potential
threats to validity. Rather than directly observe the activities
of developers through a lab study or field observations, which
are rich in details, we observed their activities indirectly
through their interactions with Stack Overflow, which offers
the potential for a larger sample.

However, indirect studies, including ours, also have impor-
tant limitations. An important threat to validity is the potential
bias introduced by coding posts manually. We reduced possible
reviewer bias by coding a subset of posts with two independent
raters and discarding codes not within Cohen’s Kappa perfect
agreement threshold.

Our study was limited to an analysis of posts on Stack
Overflow. While broadly used, it may be that only specific
types of challenges are posted to Stack Overflow (e.g, popular
frameworks, "medium" difficulty questions). By considering
only answered questions, we limited our sample to those that
were able to attract the attention of Stack Overflow users and
elicit an answer. It may be that there are contexts in which
developers are unable to formulate a satisfactory answer,
offering an opportunity for future study of these barriers.

By focusing on what the top answer attributed the challenge
to be, we may have disregarded better answers. We aimed
to reduce the bias that might occur in attributing causes
ourselves. Rather than focus on the most popular and widely
read posts, we investigated a representative sample taken from
a six-month period available at the time. However, the web
technologies present in our sample may not be representative
of current trends. Interestingly, since 2016, the most significant
change in web technology popularity has been the rise of
React.js and the decline of jQuery?. To partially mitigate this,
we analyzed the challenges at the idiom level, which may
be less impacted by changes in APIs. We captured emergent
barriers in Stack Overflow posts to partially mitigate already
reported findings, or challenges already addressed by tools.

VI. DISCUSSION AND FUTURE WORK
Table I summarizes our design recommendations as infor-
mation needs based on the programming barriers we identified

3https://insights.stackoverflow.com/trends ?tags=jquery%2Creactjs %2Can-
gular%?2Ccss%2Chtml%2Cjavascript%2Cangularjs

TABLE I
INFORMATION NEEDS FOR FRONT-END WEB DEVELOPMENT

Information Need Programming Barriers Technique Opportunities for future tools
Debugging Barriers
Map from code fragment to cor- silent invalid reference, unclear scope Live Show live output with live execution state and
responding runtime state programming linkages from code to runtime state.
Map from visual elements or all graphical barriers, inactionable WhyLine Support broad range of outputs and platforms.

cues to corresponding code reference error

Identify order of callbacks and
framework state changes

improper scheduling, missed callbacks

Identify unexpected or overwrit-

all graphical setter barriers, overridden effect, out-

Software visu- framework state

alization

Depict function calls,
changes, and callbacks.

Software visu- Show effects related a code fragment. Identify

ten effects in execution trace dated & overwritten query, occluded alization unexpected effects related to state change his-

from code fragments modification tory.

Data Barriers

Generate code fragment from in- all collection & format idioms, unidentified target ~ Program Suggest code completions from intent based

tent and runtime context & state, mishandled response, synthesis on runtime context accompanied with ratio-
incomplete sequence nale.

Generate code fragment from vi- all graphical barriers Program Generate code from intent as well as a specific

sual elements or properties synthesis visual queries.

Edit code fragment to achieve all graphical setter barriers, incorrect sequence & Automatic Generate code edits only to specific fragment

specific intent
work, constrained & confused target

bind parameters, misconfigured request & frame-

based on desired intent or effects rather than
only on existing unit tests.

software repair

(Figure 2). Our results suggest the opportunity for program-
ming tools to more effectively help developers work with com-
plex APIs. Idioms might help Stack Overflow better capture
execution information, and teaching idioms before frameworks
might improve developers’ awareness of their code and its
execution. Knowledge repositories and tools may follow these
recommendations by offering idiom-centric features such as
idiomatic documentation, views, and transformations.

A. Idiomatic Knowledge

Idioms have a direct connection with robust API knowl-
edge [16]: their semantic roles act as rationale which recur
among APIs, and their code fragments act as code patterns.
An idiom groups similar API usage patterns, facilitating
communication of idioms to developers. Previous studies have
shown that developers struggle recognizing the concepts they
commonly use [36], and remembering vast amounts of details
as they determine the behavior of their code [46].

The search for ever better framework designs may itself
be part of the problem in forcing developers to constantly
learn new APIs. To facilitate obtaining this knowledge, idioms
may be introduced when developers first learn to program and
included in the documentation and other repositories they visit.

Our findings suggest important opportunities for improving
learning resources for novice web developers. We found a
relatively small number —11— of idioms that are frequently
associated with challenges in front-end web development.
While most web developers quickly gain at least a passing
familiarity with these concepts, there are many corner cases
of how these idioms work, which together were responsible
for the entirety of the barriers we observed. By learning the
nature of the programming barriers we identified, novice web
developers might become more aware of the potential causes

of the issues they face, formulate better hypotheses, and more
effectively pursue strategies to test these hypotheses. It may be
possible to develop content for courses that can communicate
idiomatic knowledge in ways that generalize across the many
varying frameworks that exist.

In facing challenges with data barriers, developers some-
times drew on their existing expectations of what an alternative
framework offered. A taxonomy of idioms may offer future
API templates to follow, so their fragments are familiar to de-
velopers. Debugging barriers might, in some cases, be caused
by variations in effects, timing, or other behavior between
equivalent functionality in different frameworks. Given the
rapid evolution and change of web development technologies,
it is important to support developers in documenting migra-
tions between frameworks and versions either by maintaining
consistency or offering clear mechanisms to map from one to
another using idioms.

B. Idiomatic Views

Idiomatic knowledge can be provided by tools as developers
need help understanding the behavior of complex APIs. To
illustrate this, consider a hypothetical scenario depicted in
Figure 3. Developers asked questions through reference to
idioms, describing specific code (78%), execution state (32%),
and program output (42%) responsible for observed behavior.
Tools might better support developers in mapping from code
to state to output in accordance to idiomatic views, where
behavior can be tracked across representations. Tools might
better enable an idiomatic view of code in a number of ways.

Live programming tools help developers rapidly see output
changes following code changes, but less frequently show
information about execution state. For example, our results

Unobservable Setter (GB2): The setter did not affect last executed setter|l.

Try replacing with: self.disabled = false;

Program Output Execution State

button#sendButton
data|

isend

disabled:true

data

User Code

.addEventListener ("click",
function a(event) {

"'ﬂself .disabled = true;

send -

button#sendButton

Please, describe the issue:

Clicking the “send” button fails, it
should be enabled again rather
than being disabled

_i---|]] disabled:true -r-

S.ajax ({
type:"GET", url:“url", data:"",
success: function request (html) {
self.disabled = ;
} }, false, true); 1});

O

Fig. 3. Idiomatic views maintain unrestricted navigation across representations: from program output (left, 1) to execution state (center, 2, 5) to code (right,
3, 4). Adriana notices an unexpected behavior after interacting with an app (0). An idiomatic diagnostic system identifies a relevant graphical barrier and
asks the developer for the desired behavior based on the visual selection (1). It then shows how to overcome the barrier, GB2. A step-by-step explanation of
relevant APIs summarizes the current behavior: the style property (2) is not mutating in-between graphical setters (3, 4), as logged by the system (2, 5). A

code change is suggested to achieve the desired behavior.

suggests the value of tool support for highlighting the execu-
tion context related to this references.

Tools such as the WhyLine [17] enable developers to track
output back to code, but may need to be extended to apply to
the full range of outputs that caused challenges.

Tools such as Sahand [25] offer timeline visualizations of
asynchronous interactions between browser and server. But
few tools yet focus on front-end interactions rather than
back-end interactions or support finding ordering relationships
amongst events related to a code fragment.

To help understand effects, tools such as Kanon [29] and
Python Tutor [47] offer live visualizations of the shape of the
heap. But such tools do not yet scale to framework interactions
or support understanding interacting effects related to code.

C. Idiomatic Transformations

Idiomatic knowledge on changing the behavior of code may
be offered within idiomatic views. To examine how to address
data barriers, consider again the idiomatic views in Figure 3.
At step (3), the barrier (GB2) diagnostic shows how program
synthesis might be used to generate potential solutions.

Idiomatic program synthesis [23] provides a starting point
to address data barriers. Program synthesis [23], [48] and code
search may help address data barriers by assisting developers
in crafting code fragments. For example, CodeMend [49]
automatically suggests functions and arguments based on a
developer query. These tools might make a substantial impact
for some of the challenges we observed. In other cases, our
results suggest an additional need to take runtime context
into account. For example, a key challenge with the iteration
barrier was correctly choosing between several closely related
iteration constructs based on the runtime type of the collection

to be iterated over. Synthesis tools might help here, but require
runtime information.

Many scenarios involved visual output, raising challenges
in how developers might precisely specify the desired output
without already writing the code to create it. Tools such as
Cassius [31] and LED [28] offer the ability to synthesize
styling for element layouts. Tools such Falx [32] and Ivy [33]
provide rich direct manipulation of data sources to generate
visualizations. But tools do not yet enable generating code
for programmatic manipulation of properties or support the
full range of visual behavior developers wish to generate.
Challenges also involved editing existing code to achieve a
specific behavior change, much as an automatic software repair
system might do (e.g., API migration scripts may be provided
as idiomatic transformations).

VII. CONCLUSION

Studying the challenges developers face during front-end
web app development is still hard, as developer discussions
in Stack Overflow showed. We found that several of these
challenges can be explained as data and debugging barriers
strongly tied to the nature of APIs present in discussed
code, where most developers struggled changing the program
behavior. Such code often was dominated by complex APIs
external to the standard API bundled in browsers, and proved
to be richly diverse. Using code idioms, we categorized such
diverse and complex API interactions within a set of 11 idioms
while preserving the intention of the developer discussions,
and defined 28 concrete programming barriers anchored to
these idioms. Such catalog helped us issue a set of idiomatic
design guidelines, and whether they are followed by existing
research or offer opportunities for new frameworks and tools.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under grant CCF-1845508.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

REFERENCES

C. Treude, O. Barzilay, and M. D. Storey, “How do programmers
ask and answer questions on the web?” in International Conference
on Software Engineering, 2011, pp. 804-807. [Online]. Available:
https://doi.acm.org/10.1145/1985793.1985907

M. Linares-Vdsquez, B. Dit, and D. Poshyvanyk, “An exploratory
analysis of mobile development issues using Stack Overflow,” in
Proceedings of the 10th International Working Conference on Mining
Software Repositories. 1EEE, 2013, pp. 93-96. [Online]. Available:
https://ieeexplore.ieee.org/document/6624014

S. Beyer, C. Macho, M. Pinzger, and M. Di Penta, “Automatically
classifying posts into question categories on stack overflow,” in
Proceedings of the 26th Conference on Program Comprehension, ser.
ICPC ’18. Gothenburg, Sweden: ACM, May 2018, pp. 211-221.
[Online]. Available: https://doi.org/10.1145/3196321.3196333

S. M. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What makes a good
code example?: A study of programming q&a in stackoverflow,” in
28th IEEE International Conference on Software Maintenance, ICSM
2012, Trento, Italy, September 23-28, 2012, 2012, pp. 25-34. [Online].
Available: https://dx.doi.org/10.1109/ICSM.2012.6405249

C. Treude and M. P. Robillard, “Understanding stack overflow code
fragments,” in 33rd International Conference on Software Maintenance
and Evolution, ser. ICSME °17. 1IEEE, 2017. [Online]. Available:
https://ieeexplore.ieee.org/document/8094452

M. Allamanis and C. Sutton, “Mining idioms from source code,”
in Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. FSE 2014. Hong
Kong, China: ACM, Nov. 2014, pp. 472-483. [Online]. Available:
https://doi.org/10.1145/2635868.2635901

——, “Why, when, and what: Analyzing stack overflow questions by
topic, type, and code,” in 2013 10th Working Conference on Mining
Software Repositories (MSR), 2013, pp. 53-56. [Online]. Available:
https://ieeexplore.ieee.org/document/6624004

A. J. Ko, B. A. Myers, and H. H. Aung, “Six learning barriers in
end-user programming systems,” in 2004 IEEE Symposium on Visual
Languages - Human Centric Computing, Sept 2004, pp. 199-206.
[Online]. Available: https://ieeexplore.ieee.org/document/1372321

A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in Proceedings of the 29th International
Conference on Software Engineering, ser. ICSE 07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 344-353. [Online]. Available:
https://dx.doi.org/10.1109/ICSE.2007.45

S. Letovsky, “Cognitive processes in program comprehension,” in
Papers Presented at the First Workshop on Empirical Studies of
Programmers on Empirical Studies of Programmers. Norwood, NJ,
USA: Ablex Publishing Corp., 1986, pp. 58-79. [Online]. Available:
https://dl.acm.org/citation.cfm?id=21842.28886

K. Bajaj, K. Pattabiraman, and A. Mesbah, “Mining questions
asked by web developers,” in Working Conference on Mining
Software Repositories, 2014, pp. 112-121. [Online]. Available:
https://doi.acm.org/10.1145/2597073.2597083

T. D. LaToza and B. A. Myers, “Hard-to-answer questions about
code,” in Workshop on the Evaluation and Usability of Programming
Languages and Tools, ser. PLATEAU ’10. New York, NY, USA:
ACM, 2010, pp. 8:1-8:6. [Online]. Available: https://doi.acm.org/10.
1145/1937117.1937125

F. S. Ocariza, K. Bajaj, K. Pattabiraman, and A. Mesbah, “A study
of causes and consequences of client-side javascript bugs,” [EEE
Transactions on Software Engineering, vol. 43, no. 2, pp. 128-144, Feb
2017. [Online]. Available: https://ieeexplore.ieee.org/document/7501855
T. Fritz and G. C. Murphy, “Using information fragments to answer
the questions developers ask,” in International Conference on Software
Engineering, ser. ICSE "10. New York, NY, USA: ACM, 2010, pp. 175—
184. [Online]. Available: https://doi.acm.org/10.1145/1806799.1806828
B. A. Myers, A. J. Ko, T. D. LaToza, and Y. Yoon, “Programmers
are users too: Human-centered methods for improving programming
tools,” Computer, vol. 49, no. 7, pp. 44-52, 2016. [Online]. Available:
https://ieeexplore.ieee.org/document/7503516/

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

K. Thayer, S. E. Chasins, and A. J. Ko, “A theory of robust api
knowledge,” ACM Trans. Comput. Educ., vol. 21, no. 1, Jan. 2021.
[Online]. Available: https://doi.org/10.1145/3444945

A. J. Ko and B. A. Myers, “Finding causes of program output
with the java whyline,” in Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, ser. CHI ’09. New
York, NY, USA: ACM, 2009, pp. 1569-1578. [Online]. Available:
https://doi.acm.org/10.1145/1518701.1518942

T. Barik, J. Smith, K. Lubick, E. Holmes, J. Feng, E. Murphy-Hill,
and C. Parnin, “Do developers read compiler error messages?”
in Proceedings of the 39th International Conference on Software
Engineering, ser. ICSE ’17. Buenos Aires, Argentina: IEEE Press,
May 2017, pp. 575-585. [Online]. Available: https://doi.org/10.1109/
ICSE.2017.59

T. D. LaToza and B. A. Myers, “Visualizing call graphs,” in 2011
IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC). Pittsburgh, PA: IEEE, Sep. 2011, pp. 117-124. [Online].
Available: https://ieeexplore.ieee.org/document/6070388/

D. Loksa, A. J. Ko, W. Jernigan, A. Oleson, C. J. Mendez, and M. M.
Burnett, Programming, Problem Solving, and Self-Awareness: Effects of
Explicit Guidance. New York, NY, USA: ACM, 2016, p. 1449-1461.
[Online]. Available: https://doi.org/10.1145/2858036.2858252

(2021) Stack Overflow Developer Survey 2021. [Online]. Available:
https://insights.stackoverflow.com/survey/202 1

(2021) The State of the Octoverse | the state of the octoverse
explores a year of change with new deep dives into writing
code faster, creating documentation and how we build sustainable
communities on github. [Online]. Available: https://octoverse.github.
com/#top-languages-over-the-years

E. C. Shin, M. Allamanis, M. Brockschmidt, and A. Polozov,
“Program synthesis and semantic parsing with learned code
idioms,” in Advances in Neural Information Processing Systems,
H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds., vol. 32. Curran Associates,
Inc., 2019. [Online]. Available: https://proceedings.neurips.cc/paper/
2019/file/ctt34ad343b069ea6920464ad17d4bct-Paper.pdf

T. Lieber, J. R. Brandt, and R. C. Miller, “Addressing misconceptions
about code with always-on programming visualizations,” in Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems,
ser. CHI ’14. New York, NY, USA: ACM, 2014, pp. 2481-2490.
[Online]. Available: https://doi.acm.org/10.1145/2556288.2557409

S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman,
“Understanding javascript event-based interactions with clematis,” ACM
Trans. Softw. Eng. Methodol., vol. 25, no. 2, pp. 12:1-12:38, May
2016. [Online]. Available: https://doi.acm.org/10.1145/2876441

B. Burg, A. J. Ko, and M. D. Ernst, “Explaining visual changes in
web interfaces,” in Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology, ser. UIST ’15. New
York, NY, USA: ACM, 2015, pp. 259-268. [Online]. Available:
https://doi.acm.org/10.1145/2807442.2807473

J. Hibschman and H. Zhang, “Telescope: Fine-tuned discovery of
interactive web ui feature implementation,” in Proceedings of the 29th
Annual Symposium on User Interface Software and Technology, ser.
UIST ’16. New York, NY, USA: ACM, 2016, pp. 233-245. [Online].
Available: https://doi.acm.org/10.1145/2984511.2984570

K. Bajaj, K. Pattabiraman, and A. Mesbah, “Synthesizing web
element locators,” in Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE
Computer Society, 2015, p. 11 pages. [Online]. Available: https:
/lsalt.ece.ubc.ca/publications/docs/ase15-1ed.pdf

A. Oka, H. Masuhara, T. Imai, and T. Aotani, “Live data structure
programming,” in Companion to the First International Conference on
the Art, Science and Engineering of Programming, ser. Programming
’17. New York, NY, USA: ACM, 2017. [Online]. Available:
https://doi.org/10.1145/3079368.3079400

J. Hibschman and H. Zhang, “Unravel: Rapid web application reverse
engineering via interaction recording, source tracing, and library
detection,” in Proceedings of the 28th Annual ACM Symposium
on User Interface Software & Technology, ser. UIST ’15. New
York, NY, USA: ACM, 2015, p. 270-279. [Online]. Available:
https://doi.org/10.1145/2807442.2807468

P. Panchekha and E. Torlak, “Automated reasoning for web page layout,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

ser. OOPSLA 2016. New York, NY, USA: ACM, 2016, pp. 181-194.
[Online]. Available: https://doi.acm.org/10.1145/2983990.2984010

C. Wang, Y. Feng, R. Bodik, 1. Dillig, A. Cheung, and A. J.
Ko, Falx: Synthesis-Powered Visualization Authoring, ser. CHI
’21. New York, NY, USA: ACM, 2021. [Online]. Available:
https://doi.org/10.1145/3411764.3445249

A. M. McNutt and R. Chugh, Integrated Visualization Editing via
Parameterized Declarative Templates, ser. CHI ’21. New York,
NY, USA: ACM, 2021. [Online]. Available: https://doi.org/10.1145/
3411764.3445356

J. Sillito, G. C. Murphy, and K. De Volder, “Asking and answering
questions during a programming change task,” IEEE Trans. Softw.
Eng., vol. 34, no. 4, pp. 434451, Jul. 2008. [Online]. Available:
https://dx.doi.org/10.1109/TSE.2008.26

T. H. Park and S. Wiedenbeck, “Learning web development: Challenges
at an earlier stage of computing education,” in Proceedings of the
Seventh International Workshop on Computing Education Research, ser.
ICER ’11. New York, NY, USA: ACM, 2011, p. 125-132. [Online].
Available: https://doi.org/10.1145/2016911.2016937

B. Dorn and M. Guzdial, Learning on the Job: Characterizing the
Programming Knowledge and Learning Strategies of Web Designers.
New York, NY, USA: ACM, 2010, p. 703-712. [Online]. Available:
https://doi.org/10.1145/1753326.1753430
(2022) Programming Idioms. [Online].
programming-idioms.org/

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in Proceedings
of the International Conference on Human Factors in Computing
Systems, CHI 2011, Vancouver, BC, Canada, May 7-12, 2011, 2011, pp.
2857-2866. [Online]. Available: https://doi.acm.org/10.1145/1978942.
1979366

C. Parnin, C. Treude, and L. Grammel, “Crowd documentation:
Exploring the coverage and the dynamics of api discussions on
stack overflow,” Georgia Institute of Technology, Tech. Rep., 2012.
[Online]. Available: https://larsgrammel.de/publications/parnin_2012_
crowd_documentation.pdf

R. K. Saha, A. K. Saha, and D. E. Perry, “Toward understanding
the causes of unanswered questions in software information sites: A
case study of stack overflow,” in Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, ser. ESEC/FSE 2013.
New York, NY, USA: ACM, 2013, p. 663—-666. [Online]. Available:
https://doi.org/10.1145/2491411.2494585

Available: https://www.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

T. Zhang, G. Upadhyaya, A. Reinhardt, H. Rajan, and M. Kim,
“Are code examples on an online Q&A forum reliable? a study
of API misuse on Stack Overflow,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: ACM, 2018, p. 886-896. [Online]. Available:
https://doi.org/10.1145/3180155.3180260

M. J. Islam, H. A. Nguyen, R. Pan, and H. Rajan, “What do
developers ask about ML libraries? A large-scale study using stack
overflow,” CoRR, vol. abs/1906.11940, 2019. [Online]. Available:
http://arxiv.org/abs/1906.11940

A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? an analysis of topics and trends in stack overflow,”
Empirical Softw. Engg., vol. 19, no. 3, p. 619-654, Jun. 2014. [Online].
Available: https://doi.org/10.1007/s10664-012-9231-y

C. Rosen and E. Shihab, “What are mobile developers asking
about? a large scale study using stack overflow,” Empirical Softw.
Engg., vol. 21, no. 3, p. 1192-1223, Jun. 2016. [Online]. Available:
https://doi.org/10.1007/s10664-015-9379-3

J. L. Fleiss, B. Levin, and M. C. Paik, The Measurement of
Interrater Agreement. John Wiley & Sons, Ltd, 2003, ch. 18, pp.
598-626. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/
10.1002/0471445428.ch18

W. Crichton, M. Agrawala, and P. Hanrahan, The Role of Working
Memory in Program Tracing. New York, NY, USA: ACM, 2021.
[Online]. Available: https://doi.org/10.1145/3411764.3445257

P. J. Guo, “Online python tutor: Embeddable web-based program
visualization for cs education,” in Proceeding of the 44th ACM
Technical Symposium on Computer Science Education, ser. SIGCSE
’13. New York, NY, USA: ACM, 2013, pp. 579-584. [Online].
Available: https://doi.acm.org/10.1145/2445196.2445368

S. Gulwani, “Dimensions in program synthesis,” in Proceedings of
the 12th International ACM SIGPLAN Symposium on Principles
and Practice of Declarative Programming, ser. PPDP ’10. New
York, NY, USA: ACM, 2010, pp. 13-24. [Online]. Available:
https://doi.acm.org/10.1145/1836089.1836091

X. Rong, S. Yan, S. Oney, M. Dontcheva, and E. Adar, “Codemend:
Assisting interactive programming with bimodal embedding,” in
Proceedings of the 29th Annual Symposium on User Interface Software
and Technology, ser. UIST *16. New York, NY, USA: ACM, 2016,
pp. 247-258. [Online]. Available: https://doi.acm.org/10.1145/2984511.
2984544

