Crowdsourced Behavior-Driven Developmen

t*,**

Emad Aghayi®*, Thomas D. LaToza%**, Paurav Surendra® and Seyedmeysam Abolghasemi”

Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, VA 22030
b0ld Dominion University, 1112 Monarch Hall, Norfolk, VA 23529

ARTICLE INFO

Keywords:

Microtask Programming
Programming Environments
Behavior-Driven Development
Crowdsourcing

Workflow

Microservices

ABSTRACT

Key to the effectiveness of crowdsourcing approaches for software engineering is workflow design,
describing how complex work is organized into small, relatively independent microtasks. This pa-
per, we introduce a Behavior-Driven Development (BDD) workflow for accomplishing programming
work through self-contained microtasks, implemented as a preconfigured environment called Crowd-
Microservices. In our approach, a client, acting on behalf of a software team, describes a microservice
as a set of endpoints with paths, requests, and responses. A crowd then implements the endpoints,
identifying individual endpoint behaviors that they test, implement, debug, create new functions, and
interact with persistence APIs as needed. To evaluate our approach, we conducted a feasibility study
in which a small crowd worked to implement a small ToDo microservice. The crowd created an im-
plementation with only four defects, completing 350 microtasks and implementing 13 functions. We
discuss the implications of these findings for incorporating crowdsourced programming contributions

into traditional software projects.

1. Introduction

Crowdsourcing software engineering offers developers
new ways to contribute to software projects, enabling work-
ers outside a traditional software development team to take
part in building software [26]. One form of crowdsourcing
is microtask crowdsourcing, in which a workflow is used to
decompose tasks into a sequence of microtasks. By reducing
the necessary task context for newcomers to learn, microtask
programming reduces the cost of onboarding and enables
developers to contribute more quickly. Small contributions
also open the possibility of increasing parallelism in soft-
ware development. As many hands make light work, decom-
posing software development tasks into microtasks might
enable some of this work to be completed in less time by
parallelizing work across many developers.

A variety of systems have explored the promise of ap-
plying microtask crowdsourcing to programming [7, 13, 12,
23,24, 25, 27, 28, 29, 34, 40, 33]. For example, in Appari-
tion [23], a client developer narrates a description for a user
interface in natural language, and crowd workers translate
this description into user interface elements, visual styles,
and behavior. In CodeOn [7], a client developer narrates a
request for help from their IDE, and crowd workers use this
request and relevant context to author answers and code.

A long-term vision of microtask programming is to en-
able software to be built entirely through microtasks [29].
This differs from current approaches in scale: rather than

*This research project was supported in part by the National Science
Foundation under grants CCF-1414197 and CCF-1845508.
** CrowdMicroservices: Crowdsourced Behavior-Driven Development
*Corresponding author
*Principal corresponding author
<] eaghayi@gmu.edu (E. Aghayi); tlatozaegmu.edu (T.D. LaToza);
psurendr@gmu.edu (P. Surendra); sabolgha@cs.odu.edu (S. Abolghasemi)
2 www.mason. gmu.edu/~eaghayi (E. Aghayi); www.cs.gmu.edu/~tlatoza
(T.D. LaToza)
ORCID(S): 0000-0003-0607-4257 (E. Aghayi)

facilitating individual tasks to be manually requested and
managed by a requester, mechanisms must be found for the
crowd to coordinate and work more effectively together. In
microtasking, required coordination is described through a
workflow, describing the microtasks which developers will
complete, the handoffs that occur between microtasks, and
the resulting dependencies between microtasks [21]. A key
challenge in applying microtask crowdsourcing approaches
to the domain of software engineering is the decontextual-
ized nature of microtask work. Developers work without
awareness of the complete program, reducing the necessary
context which must be learned to contribute but increasing
the potential for work going off track. Key to the success of
microtasking approaches is to ensure effective mechanisms
for coordination and aggregation exist, enabling workers to
obtain feedback as quickly as possible to ensure their con-
tributions are beneficial and coordinate contributions so that
they do not conflict. When this does not occur, problems
may ensue. Developers may write code which references
fields and functions that do not exist, making poor imple-
mentation choices, or making implementation choices which
conflict with other choices [28, 25]. As aresult, time and ef-
fort are wasted, as further work is required to fix these issues,
and the potential for undetected defects increases.

In this paper, we introduce a new approach for feedback
based on behavior-driven development. In contrast to exist-
ing approaches which rely on either a client or manager (e.g.,
[23, 12]) or later crowd contributions (e.g., [28, 25]), we en-
able developers to receive initial feedback within the micro-
task itself. We accomplish this by re-envisioning the scope
of the microtask. In our workflow, developers receive feed-
back from three different sources while they are program-
ming: through syntax errors, through running unit tests, and
through the ability to debug their code. Adapting the idea of
behavior-driven development to crowdsourcing work [35,
3], each microtask encompasses the work to test and imple-
ment a behavior, a specific identifiable use case of a func-

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 1 of 17

www.mason.gmu.edu/~eaghayi
www.cs.gmu.edu/~tlatoza

Crowdsourced Behavior-Driven Development

tion. Developers work on a behavior end-to-end, identifying
it from a high-level description of a function, writing a test
to exercise it, implementing it in code, and debugging any is-
sues that emerge. Through the use of stubs, developers can
work on an individual function in isolation from the rest of
the program being constructed while still receiving informa-
tion about how their code executes. As developers join a new
project, they complete a tutorial and can immediately begin
making small contributions to the project.

We apply our behavior-driven approach to microtask pro-
gramming to implementing a microservice. Large and com-
plex web applications are often built as an interconnected
network of smaller single-function microservices. Microser-
vices offer a well-defined interface between a client (e.g., a
team consuming a future microservice) and a crowd of de-
velopers, defined by the behavior of a set of HTTP endpoints
handled by the microservice. Microservices offer a natu-
ral decomposition boundary in large web applications, offer-
ing a mechanism for a traditional software project to quickly
crowdsource a module within a larger project. Rather than
require an extended onboarding process for new developers
to become familiar with a large software project, our ap-
proach enables a team to simply describe the desired func-
tionality and it to be constructed separately by a crowd.

We instantiated our approach in a novel cloud IDE, Crowd-
Microservices'. CrowdMicroservices includes an editor for
clients to describe requirements for the system as a set of
endpoints, a web-based programming environment in which
crowd workers can identify, test, implement, and debug be-
haviors, and an infrastructure for automatically generating
and managing microtasks. Persistence is exposed through
an external API, which supports a sandboxed environment
for development. After completion, the microservice may
be automatically deployed to a hosting site.

To evaluate our approach, we conducted a user study
in which 9 crowd workers implemented a simple 7oDo mi-
croservice. Our results offer initial evidence for the feasibil-
ity of the approach. Participants submitted their first micro-
task 24 minutes after beginning, successfully submitted 350
microtasks, implemented 13 functions and 36 tests, com-
pleted microtasks in a median time under 5 minutes, and
correctly implemented 27 of 34 behaviors.

In this paper, we contribute

1. anovel behavior-driven microtask programming which
offers immediate feedback from syntax errors, unit tests,
and debugging.

2. CrowdMicroservices, the first programming precon-
figured environment for implementing microservices
through microtasks

3. initial evidence that behavior-driven microtasks can
be quickly completed by developers and used to suc-
cessfully implement a microservice.

4. evidence that the approach has low onboarding time
and a high potential for parallelism.

Ihttps://youtu.be/mIn2EOqsDYw

In the rest of the paper, we review related work, present our
approach, illustrate the approach with an example, and report
on a user study evaluation. We conclude with a discussion
of limitations and threats to validity as well as opportunities
and future directions.

2. Related work

Our work builds on a broad body of work in crowdsourc-
ing, particularly prior approaches to crowdsourcing software
development. This work has investigated several key aspects
of microtask workflow design, which we focus on below: de-
composition and context, parallelism and conflicts, enabling
fast onboarding, and achieving quality. A summary of these
approaches is presented in Table 1.

2.1. Decomposition, context, and scope

A key challenge in microtasking in all domains is the
manner in which work is decomposed into the tasks or mi-
crotasks which are completed by crowd workers. The choice
of decomposition determines the workflow of the approach,
encompassing the individual steps, the context and infor-
mation offered in each step, and the types of contributions
which can be made [37, 22, 4, 16, 21, 19].

Within approaches for crowdsourcing software engineer-
ing work, several points in the design space have been ex-
plored [33]. Depending on the choice of microtask bound-
aries, contributions may be easier or harder, may vary in
quality, and may impose differing levels of overhead. Ap-
proaches to crowdsourcing programming explore novel work-
flows designed specifically for accomplishing specific soft-
ware development tasks.

Techniques for decomposing programming work into fine-
grained microtask may be either manual or automatic (Ta-
ble 1). Manual approaches rely on a developer or client to au-
thor each microtask[39, 23, 7]. For example, in CodeOn [7],
a developer working in a project requests small microtasks
for others to complete. In Apparition [23], a similar work-
flow is used to build user interface prototypes. Requestors
describe desired user interface elements and their user inter-
action through natural language todo items. Workers then
view the output of the complete program, select a microtask
from the todolist, and implement the requested functionality
for a Ul element. While working on the microtask, work-
ers interact with an individual element, but otherwise have
a global view of the entire codebase. In Crowd Design [34],
work for building a web application is broken down by com-
ponent. Crowd members work individually in an isolated
environment on each component and complete design and
testing tasks. Manual decomposition of work limits the scal-
ability of a crowdsourcing system. As microtasks are gen-
erated manually by a single individual with a global view of
the project, scalability is limited.

Other systems automatically generate microtasks from
work finished previously by the crowd, reducing the work
imposed on the client to create and manage microtasks. In
CrowdCode, programming work is done through a series of
specialized microtasks in which participants write test cases,

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 2 of 17

Crowdsourced Behavior-Driven Development

Applying the dimensions of crowdsourcing to concrete collaboration examples.

Table 1
o> - Ve e Task context Task length
composition dependence
CrowdMicroservices Automatic Low A deSCI.'IptIOI’!, function <=5 minutes
and unit tests
CrowdCode [25] Automatic Low A function <= 5 minutes
Apparition [23] Manual Low Whole design <=1 minute
CrowdDesign [34] Manual Low (R eEEE <= 15 minutes
to a module
CrowdForge [22] Manual Low A partition Minutes - hours
CodeOn [7] Manual Low e <= 11 minutes
to whole codebase
Collabode [12] Manual High Whole codebase Minutes - days
CodePilot [46] Manual High Whole codebase Minutes - hours
Open-source Manual Medium - high Whole codebase Hours - days

A function

TopCoder to a module

Manual Low Minutes - hours

implement tests, write code, look for existing functions to
reuse, and debug [28, 25]. Other work has automatically
generated microtasks through puzzle games, formulating com-
plex tasks such as testing and verification as puzzles which
can be completed with little or no programming knowledge
[6, 40, 31, 5].

Task interdependence relates to the degree to which a
task requires organizational units to affect the activities and
work outcomes of other units [14, 2]. Increasing task in-
terdependence forces team members to integrate their con-
tributions with others. When task interdependency is low,
the contributions of each unit or team member is additive.
There exists arelation between the degree of task interdepen-
dency and the productivity of units or team members [44].
Higher degrees of task interdependencies require more infor-
mation exchange, more task clarification in task assignment,
creating more shared mental models, and more effort to in-
tegrate tasks [44]. Productivity decreases because of time
spent establishing shared mental models and resolving con-
flicts among contributors. Studies have shown productivity
dramatically declines when a team member needs the output
of other units or team members as an input to their task [2].
In designing microtask workflows, it can thus be beneficial
to decrease the degree of the interdependency of software
development tasks by creating tasks with scopes that devel-
opers can work on with less interdependency. In our work-
flow, microtasks are largely self-contained and independent
of the other microtasks, which provided a low level of de-
pendency. Moreover, implementing tests and implementing
behaviors are completed by the same crowd worker, which
helps to reduce time spent resolving conflicts.

The context of a task in crowdsourcing software develop-
ment systems may vary from several statements in a function
to the whole codebase (Table 1). For instance, in Apparition,
each contributor can see the entire codebase to complete a
task. In CrowdMicroservices, the context is a function’s de-
scription, implementation, and unit tests and descriptions of
external APIs and data types.

B n Quality Locus of Preconf-
A q
ctties ORbeaiiing control control igured IDE

Crowd develop/debug/test <= 15 minutes Um.t tests & Client Yes
reviews by crowd

Crowd develop/debug/test <= 15 minutes Um.t sty & Client Yes
reviews by crowd

Real-time Ul design None Designer Yes

Implement Ul element - Revftss Ly Manager Yes
manager

. Reviews by

Crowdsourcing complex tasks Manager Yes
manager

Help seeking in development None Requester Yes

Sythronous collaborative None Collaborators Yes

coding

h Il i .

Syn.c ronous co Hieretie Unit tests Collaborators ~ Yes

coding for novices
Unit tests & Senior

I H - . X N
Crowd develop/debug/test ours - days reviews by crowd contributors o
Design/development Minutes - hours Manager Client No

2.2. Parallelism and conflicts

By decomposing large tasks into smaller tasks, work can
be assigned to several workers and completed more quickly
in parallel. For easily parallelizable software engineering

tasks, like writing a test, this paradigm has achieved widespread

adoption in commercial platforms. Crowdsourced testing
platforms such as UserTesting 2, TryMyUI 3, and uTest* en-
able software projects to crowdsource functional and usabil-
ity testing work by utilizing the crowd of tens or hundreds of
thousands of contributors on these platforms.

Microtasking approaches for programming envision re-
ducing the necessary time to complete programming tasks
through parallelism. A key challenge occurs with conflicts,
where two overlapping changes to an artifact are submitted
at the same time. For example, in traditional software de-
velopment, each contributor may edit the same artifacts at
the same time, resulting in a merge conflict when conflicting
changes are committed. This is an example of an optimistic
locking discipline, where any artifact may be edited by any-
one at any time. Due to the increased parallelism assumed
and greater potential for conflicts, microtasking approaches
often apply a pessimistic locking discipline, where micro-
tasks are scoped to an individual artifact and further work
on these artifacts is locked while they are in progress. For
example, in Apparition [23] workers acquire write-locks to
avoid conflicts. Similarly, in CrowdCode [25] contributions
are made on an individual function or test, which is locked
while a microtask is in progress. However, conflicts may still
occur when decisions made in separate microtasks must be
coordinated and are not [48, 27]. For example, conflicts may
occur when microtasks are separately required to translate
function descriptions into an implementation and tests and
differing interpretations of a function description are made
[25]. In this paper, we explore an approach for limiting con-
flicts by decomposing work around behaviors, removing the
potential for conflicts caused by tests and code written by
different developers.

Zhttps://www.usertesting.com
3https://www.trymyui.com
“https://www.utest.com

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 3 of 17

Crowdsourced Behavior-Driven Development

2.3. Achieving quality

Crowdsourcing approaches to programming have explored
a variety of approaches for ensuring the quality of the result-
ing software artifacts. The quality is ultimately determined
by the quality of individual contributions. There are many
causes of low-quality contributions, including workers who
do not have sufficient knowledge, who put forth little effort,
or who are malicious [20]. A study of the TopCoder’ crowd-
sourcing platform revealed six factors related to project qual-
ity, including the average quality score on the platform, the
number of contemporary projects, the length of documents,
the number of registered developers, the maximum rating
of submitted developers, and the design score[32]. In Top-
Coder, senior contributors assist in managing the process of
creating and administering each task and ensuring quality
work is done [43]. Studies of software crowdsourcing com-
panies identified 10 methods used for addressing quality, in-
cluding ranking and ratings, reporting spam, reporting unfair
treatment, task pre-approval, and skill filtering [38].

In microtask systems, crowd members are often assumed
to be minimally invested in the platform or community. Crowd
programming systems have addressed this problem by as-
signing the responsibility of feedback and management to
the client or the developers requesting the work [12, 7, 23,
30]. Systems where the requestor is less directly involved in
work and microtasks are automatically generated may have
crowd members review and offer feedback after contribu-
tions are made [25]. However, this approach is limited, as
contributors who do not receive the traditional feedback of-
fered in programming environments, such as syntax errors,
missing references, and unit test failures, may submit work
which contains these issues, which other contributors must
then address later at higher cost [28].

In this paper, we investigate approaches for offering im-
mediate feedback within a microtask. Developers receive
feedback by executing unit tests, by syntax errors, and by
observing the execution of the program through debugging.

2.4. Fast onboarding

Another challenge in using crowd work within a soft-
ware project is the process of onboarding. A number of
studies have documented the joining scripts used and bar-
riers that open source software developers face when on-
boarding onto a new project. These include installing neces-
sary tools, downloading code from a server, identifying and
downloading dependencies, and configuring the build envi-
ronment [42, 45, 18, 10]. As a result, onboarding onto open
source projects can require weeks of time, creating a sub-
stantial barrier dissuading casual contributors from joining.

Researchers have explored programming environments
which aim to alleviate these barriers. Codepilot [46] reduces
the complexity of programming environments for novice pro-
grammers by integrating a preconfigured environment for
real-time collaborative programming, testing, bug reporting,
and version control into a single, simplified system. In Col-
labode, multiple developers synchronously edit code at the

Shttps://www.topcoder.com/

Behavior-driven Development Microtask Workflow

Identifying 1 Identifying 2 Identifying n

Testing 1 Testing 2 Testing n |

Implementing 1 Implementing 2 Implementing n |

SMO[J}IOM YSBI0IOIN [euOnIpEIL

Debuging 1 Debuging 2 Debuging n |
Behavior 1 Behavior 2 Behavior n
Figure 1: Traditional microtask programming decomposes

large programming tasks into separate microtasks in which
different types of contributions can be made, such as identify-
ing all of the behaviors which should be tested in a function
or writing a test. In behavior-driven microtask programming,
work is instead decomposed by behavior, where an individual
microtask incorporates work of several types for an individual
behavior.

same time, enabling new forms of collaborative program-
ming [13, 12]. Apparition offers an online environment for
building UI mockups, offering an integrated environment for
authoring, viewing, and collaborating on the visual look and
feel and behavior of Ul elements [23]. CrowdCode offers
an online preconfigured environment for implementing li-
braries, enabling developers to onboard quickly onto pro-
gramming tasks [25].

In this work, we build on these approaches, offering a
preconfigured environment for fast onboarding specifically
designed for implementing microservices.

2.5. Behavior Driven Development (BDD)
In this paper, we apply behavior-driven development to

microtask programming. BDD focuses on defining fine-grained

specifications of a system’s behavior in a way that they can
be tested [41]. This enables writing executable specifica-
tions of a system [15]. An acceptance test in BDD is a
specification of the system’s behavior that verifies its behav-
ior rather than its state. A survey of literature and current
BDD toolkits identified several characteristics of BDD, in-
cluding ubiquitous language, iterative decomposition, plain
text descriptions of user stories and scenario templates, auto-
mated acceptance testing with mapping rules, and readable
behavior-oriented specification code [15].

There are few studies investigating the impact of apply-
ing BDD. One reason may be that the original version of
BDD is highly similar to test-driven development. Several
proponents believe BDD helps teams to generate and deliver
higher quality software quickly [41, 17, 35, 36, 41]. One
study of 22 developers analyzed BDD’s impact on the soft-
ware life cycle [13]. The study found that BDD increased
the quality of software products by 2% and 5% in relation to
TDD and traditional iterative tests, respectively [15].

3. CrowdMicroservices workflow

In this section, we describe a behavior-driven approach
to microtask programming. The main goal of the workflow

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 4 of 17

Crowdsourced Behavior-Driven Development

° Define microservice

aTest, implement, and debug microservice

e Deploy microservice

function 1 of function 1

Implement first behavior of } Implement second behavior}

Definition of '{
Endpoints 1

__{ Review the behavior of |_

_| Review the behavior of
function 1

function 1

Request
anew
function

Definition of
Endpoints n

T

First behavior of function 2 calls function n

Defini
ADT(1)

Definition
ADT(m)

Implement first behavior of
function n

Implement second behavior
of function n

Review the behavior of
function n

Review the behavior of
function n

mplement first behavior of |

I i
1 created function i
L Review the behavior of |__ E
created function

Implement last behavior of
7 function 1

4
i
f
i i
i
f
i

i__ Review the behavior of |_
function 1
Implement last behavior of

created function i

HTTP
Endpoint 1

HTTP

Endpoint
.| Review the behavior of | nEk

created function

Implement last behavior of
function n

Review the behavior of
function n

Function n calls the
third-party API function 2

HTTP
Endpoint n

Done by the Client

Done by the crowd

Done by the system
Function n calls the
third-party API

Third-party APIs function n

| Function 1 U

[ronconz [} Furctons]

Figure 2: (1) Define microservices: The client first writes a Client-Request to define a microservice to implement.(2) Test,

implement, and debug microservice: The system generates microtasks as necessary to implement each endpoint.

(3) Deploy

microservice: After implementation is complete, the client may deploy the microservice.

is to reduce onboarding time and increase the potential for
parallelism. In behavior-driven development, developers first
write a unit test for each behavior they will implement, of-
fering a way to verify that their implementation works as
intended by running a test. As a workflow for microtask-
ing, behavior-driven development offers a number of poten-
tial advantages. As developers work, they receive feedback
before submitting, enabling the developer to revise their own
work. Rather than requiring separate developers to test, im-
plement, and debug a function through separate microtasks
and coordinate this work to ensure consistency, a single con-
tributor focuses on work related to an individual behavior
within a function (Fig. 1).

We apply our approach to implementing microservices.
Web application back-ends are often decomposed into nu-
merous microservices, offering a natural boundary for crowd-
sourcing a module that is part of a larger system. In our ap-
proach, a client, for example a software development team,
may choose to crowdsource the creation of an individual mi-
croservice. In situations where teams lack sufficient devel-
oper resources to complete work sufficiently quickly, a devel-
opment team might choose to delegate this work to a crowd.
A client, acting on behalf of the software development team,
may define the desired behavior of the microservice by defin-
ing a set of endpoints.

In the following sections, we describe our behavior-driven
workflow and its application to implementing a microser-
vice. Fig. 2 surveys our approach.

3.1. Microtasks

In our behavior-driven microtask workflow, contributions
are made through two microtasks: Implement Function Behavior
and Review. Table. 2 summarizes the context and possible

contributions of each.

3.1.1. Interacting with microtasks

After logging in, workers are first taken to a welcome
page which includes a demo video and a tutorial describ-
ing basic concepts in the CrowdMicroservices environment.
After completing the tutorial, workers are taken to a dash-
board page, which includes the client’s project description, a
list of descriptions for each function, and the currently avail-
able microtasks. The system automatically assigns workers a
random microtask, which the worker can complete and sub-
mit or skip. When workers begin a type of microtask which
they have not previously worked on, workers are given an
additional tutorial explaining the microtask. When partici-
pants work and become confused about a design decision to
be made or about the environment itself, they may use the
global Question and Answer feature to post a question, mod-
eled on the question and answer feature in CrowdCode [27].
Posted questions are visible to all workers, who may post
answers and view previous questions and answers. Each
project defined in the Client-Request (Figure.4) has its own
Question and Answer.

As workers complete microtasks, each contribution is
given a rating through a Review microtask. Ratings are then
summed to generate a score for each worker. This score is
visible to the entire crowd that participated on the project
on a global leaderboard, helping to motivate contributions
and higher quality work. As workers probably watched the
scores of others, they might be motivated to increase their
score and increase their ranking above other workers. Crowd
workers could achieve higher scores by submitting more ei-
ther Review or Implement Function Behaviors, submitting each
Review task worth five scores for the reviewer. Submitting

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 5 of 17

Microtask types

Crowdsourced Behavior-Driven Development

Table 2

CrowdMicroservices enables workers to make contributions through two microtask types.
Each offers editors for creating content, context views that make the task self-contained
by offering necessary background information, and contributions the worker may make.

Editor

Context view

Possible contributions

Implement Function
Behavior

Review

1) Function and test editor,
2) test runner, 3) stub editor

Rating and review text

1) Description and signature of func-
tion 2) Description of requesting
function 3) ADTs

1) Description and signature of func-

1) Implement behavior 2) Re-
port an issue in function 3)
Mark function as completed
Rating and review

tion 2) Implementation of function 3)
function unit tests 4) ADTs

an Implement Function Behavior gets a score based on the
number of rating stars it received by a review. Each star is
worth 2 points. Consequently, each Implementation Function

Behavior based on its quality could collect score 2 to 10 scores.

3.1.2. Implement Function Behavior microtask

Workers perform each step in the Implement Function
Behavior Microtask through the CrowdMicroservices envi-
ronment (Fig.5).

Step 1.

Step 2.

Step 3.

Identify a Behavior. Workers first identify a sin-
gle behavior that is not yet implemented. From the
comments above each function body, workers may
identify behaviors (see (1) in Fig. 5). Workers may
then read the function’s unit tests and body to deter-
mine which of these are not yet implemented. When
the function has been completely implemented, and
no behaviors remain, the worker may indicate this
through a checkbox.

Test the Behavior. In the second step, workers au-
thor a test, either as a simple input/output pair, spec-
ifying inputs and an output for the function under
test, or as an assertion-based test (see (2) in Fig. 5).
The worker does this using the test editor. Workers
may also invoke other functions, including those de-
fined in third-party APIs. The worker may run the
test to verify that it fails with the current implemen-
tation. If workers find that the test passes, indicating
the behavior they identified in Step 1 is already im-
plemented, they may return to Step 1 to identify a
new behavior.

Implement the Behavior. The worker next imple-
ments their behavior using the code editor (see (3)
in Fig.5). When the behavior to be implemented is
complex, the worker may choose to create a new
function, specifying a description, name, parame-
ters, and return type. They may then call the new
function in the body of their main function. After
the microtask is submitted, this new function will
be created, and a microtask generated to begin work
on the function. In some cases, the signature of the
function that a worker is asked to implement may not
match its intended purpose, such as missing a nec-
essary parameter. In these cases, the worker cannot
directly fix the issue, as they do not have access to

Step 4.

Step 5.

the source code of each call site for the function. In-
stead, they may report an issue, halting further work
on the function. The client can see that this issue has
been created, resolve the problem, and begin work
again.

Debug the Behavior. A worker may test their im-
plementation by running the function’s unit tests.
As it is shown in Fig. 6 when a test fails, workers
may debug by using the Inspect code feature to view
the value of any expression in the currently selected
test. Hovering over an expression in the code in-
vokes a popup listing all values held by the expres-
sion during execution. In cases where a function
that is called from the function under test has not
yet been implemented, any tests exercising this func-
tionality will fail. To enable the worker to still test
their contribution, a worker may create a stub for
any function call. Creating a stub replaces an actual
output (e.g., an undefined return value generated by
a function that does not yet exist) with an intended
output. Using the stub editor (Fig. 7), the worker can
view the current output generated by a function call
and edit this value to the intended output. This then
automatically generates a stub. Whenever the tests
are run, all stubs are applied, intercepting function
calls and replacing them with stubbed values.

In pilot studies, we found that requiring workers to
only submit microtasks that did not contain errors
decreased the productivity of workers dramatically.
In those cases, contributors spent the entire 15 min-
utes, the maximum, before being forced to skip the
microtask, losing their work. We therefore enable
workers to submit incomplete work and get feedback
on incomplete implementations from reviewers.
Submit the microtask. Once finished, the worker
may submit their work. To ensure that workers do
not lock access to an artifact for extended periods
of time, each microtask has a maximum time limit
of 15 minutes. We derived the 15 minutes from our
previous research [25], where the average time for
each microtask was less than 5 minutes. This con-
straint helps the crowd to focus on their microtask to
complete or skip it in less than 15 minutes. Work-
ers are informed by the system when time is close
to expiring. When the time has expired, the system

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 6 of 17

Crowdsourced Behavior-Driven Development

informs the worker and skips the microtask.

3.1.3. Review microtask

In the Review microtask, workers assess contributions sub-
mitted by other workers. Workers are given a diff comparing
the code they submitted with the previous version as well as
the tests of the function. Instead of being asked to make a
binary choice to accept or reject the contribution, workers
are asked to assign a rating of 1 to 5 stars. If the worker
evaluates the work with 1 to 3 stars, the work is marked as
needing revision. The worker then describes aspects of the
contribution that they feel need improvement, and a micro-
task is generated to do this work. If the worker evaluates the
submitted contribution with 4 or 5 stars, the contribution is
accepted as is. In this case, the assessment of the work is
optional, which will be provided back to the crowd worker
that made the contribution. When a contributor is notified
that his or her contribution is accepted but it did not receive
full stars, the workers receive a notification with feedback
which they may use for increasing the quality of their future
contributions.

3.2. Assembling microservices

Our approach applies the behavior-driven development
workflow to implementing microservices. Fig. 2 depicts the
steps in our process. The microservice is first described by
a client through the Client-Request page (Fig 4). Clients de-
fine a set of endpoints describing HTTP requests which will
be handled by the microservice. Each endpoint is defined
as a function, specifying an identifier, parameters, and a de-
scription of its behavior. As endpoints may accept complex
JSON data structures as input and generate complex JSON
data structures as output, clients may also describe a set of
abstract data types (ADTs). Each ADT describes a set of
fields for a JSON object, assigning each field a type which
may be either a primitive or another ADT. In defining end-
points, clients may specify the expected data by giving each
parameter and return value a type.

After a client has completed a Client-Request, they may
then submit this Client-Request to generate a new CrowdMi-
croservices project. As shown in Step 2 of Fig. 2, submitting
a Client-Request generates an initial set of microtasks, gen-
erating an Implement Function Behavior microtask for each
endpoint function. Workers may then log into the project to
begin completing microtasks. As workers complete micro-
tasks, additional microtasks are automatically generated to
review contributions, continue work on each function, and
implement any new functions requested by crowd workers.

Microservices often depend on external services exposed
through third-party APIs. As identifying, downloading, and
configuring these dependencies can serve as a barrier to con-
tributing, CrowdMicroservices offers a pre-configured envi-
ronment. As typical microservices often involve persisting
data between requests, we chose to offer a simplified API
for interacting with a persistence store. Through this API,
workers can store, update, and delete JSON objects in a per-
sistence store. Workers may use any of these API functions
when working with functions and unit tests in the Implement

Firebase

Microtask data

Backend ; Express.js

Microtask service

Microtask queue Firebase service

| Function editor ~ Test editor Leaderboard i i Deploy i

1

! ! ! 1
I ! I

i Stub editor Debugger Q/A ! Hll Client-Request i
| ! |

Crowd workers
Web client IDE ; Angular

Figure 3: CrowdMicroservices is implemented as a client-server
application with a backend, a real-time datastore, and web
clients.

Function Behavior microtask. Any schema-less persistence
store may be used as an implementation for this API. In our
prototype IDE, a development version used by workers sim-
ulates the behavior of a persistence store within the browser
and clears the persistence store after every test execution.
In the production version used after the microservice is de-
ployed, the API is implemented through a Firebase store.
After the crowd finishes the implementation of a microser-

vice, the client may choose to create and deploy the mi-
croservice to a hosting site (step 3 in Fig. 2). Invoking the
Publish command first creates a new node.js GitHub project
which includes each function implemented by the crowd.
For endpoint functions, the environment automatically gen-
erates an HTTP request handler function. An example is

shown in Fig.8. In this example, a signature function fetchTodosBasedOnSt

status) would generate a GET /fetchTodosBasedOnStatus end-
point with the parameters as fields in the body of the request.
Each endpoint then contains the implementation of the func-
tion defined by the crowd. Next, this GitHub project is de-
ployed to a hosting site (Heroku in our prototype implemen-
tation). A new project instance is created, and the project is
deployed. After this process has completed, the client may
begin using the completed microservice by making HTTP
requests against the deployed, publicly available microser-
vice. As some projects may require private rather than pub-
lic deployment, the client may also provide information for
a private repository to deploy to through the Client-Request
(GitHub Info in Fig. 4).

3.3. Implementation

We implemented our approach as a prototype CrowdMi-
croservices IDE °. As shown in Figure. 3, CrowdMicroser-
vices is a client-server application with three layers: 1) a web
client, implemented in AngularJS, which runs in a worker’s
browser, 2) a back-end, implemented in Express.js, and 3)
a persistence store, implemented using the Firebase Real-

Shttps://youtu.be/qQe YOsRaxHc

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 7 of 17

Crowdsourced Behavior-Driven Development

time Database /. CrowdMicroservices automatically gener-
ates microtasks based on the current state of submitted work.
After a Client-Request defines endpoints, the system auto-
matically generates a function and microtask to begin work
on each. After an Implement Function Behavior microtask
is submitted, the system automatically creates a Review mi-
crotask. After a Review microtask is submitted, an Implement
Function Behavior is generated to continue work, if the con-
tributor has not indicated that work is complete. If a review
of an Implement Function Behavior contribution indicates is-
sues that need to be fixed, a new Implement Function Behavior
microtask is generated, which includes the issue and an in-
struction to fix it. After a microtask is generated, it is added
to a queue. When a worker fetches a microtask, the system
automatically assigns the worker the next microtask and re-
moves it from the queue.

4. Example

We illustrate using CrowdMicroservices to build a mi-
croservice through an example. A client first requests a mi-
croservice (Section 4.1), crowd workers implement behav-
iors, review contributions, and create new functions (Sec-
tion 4.2), and the client may then deploy the microservice
(Section 4.3).

4.1. The client requests a microservice

Bob decides that he would like to add a ToDo widget
to his app. Hoping to add it as soon as possible, he de-
cides to create the UI himself and to crowdsource imple-
menting the back-end through CrowdMicroservices. Using
the Client-Request page (Fig. 4), he creates a new ToDo mi-
croservice project, providing a brief description, defining a
set of endpoints, and describing the format of the JSON data
used in the request and responses through the data structures
editor. He then goes back to implementing the UI while the
crowd begins implementing the back-end.

4.2. The crowd develops the microservice
4.2.1. Implementing behaviors

Alice, the first contributor, logs in to CrowdMicroser-
vices, notices the ToDo microservice project has several open
microtasks, and decides to contribute. She watches a short
video ® and reads a short tutorial to familiarize herself with
the environment. Viewing the dashboard for the project, she
quickly reads the brief description from the client and a list
of descriptions of the functions created by the crowd so far.
She clicks Fetch a Microtask, and CrowdMicroservices as-
signs her an Implement Function Behavior microtask (Figure
5). Following the behavior-driven workflow, she first reads
the function’s description in the comments above the body.
Then she reads the unit tests and the body of the function
to identify a behavior that does not yet seem to be imple-
mented. To test this behavior, she writes a traditional unit
test, writing test code with assertions and running the test to

"https://firebase.google.com
8https://youtu.be/mIn2EOgsDYw

verify that it fails. Alice then implements the behavior using
the function editor. Alice tests her implementation, running
the function’s tests, but one fails. To understand why, Alice
using the debugger to inspect values in the function’s exe-
cution, hovering over several variables to see their values.
Identifying the issue, Alice fixes the problem, finds that all
of the tests now pass, and submits.

As Alice works, the crowd simultaneously completes other
microtasks. After logging in, Dave is assigned an Implement
Function Behavior microtask. Unsure how to implement any
of the remaining behaviors, he clicks skip and fetches an-
other microtask. This time, he thinks that he can complete
this microtask and writes a test and implementation. Af-
ter a test fails, he realizes he does not know how to cor-
rectly call a third-party API function. Using the Question and
Answer feature, he asks, “How can I store a todo object in the
database?” A worker responds, and he figures out how to
fix the problem. However, he then sees an alert: ““You have
spent more than 14 minutes on the current microtask, so try
to submit your task in one minute before the system automat-
ically skips it”. Wanting to submit his partially completed
work, Dave submits with failed tests. Fetching another mi-
crotask and inspecting the implementation, he sees that that
all behaviors have already been implemented. So he clicks
the corresponding checkbox and submits.

4.2.2. Reviewing contributions

After logging in, Oliver is assigned a Review microtask
which asks him to assess the behavior implemented by Alice.
Oliver reads the description of the function, a diff of the code
written by Alice, and the tests. Looking at the implementa-
tion, he finds it seems incomplete, so he rates her contribu-
tion a 2 on a 5 point scale and gives her feedback, “The be-
havior asked you to evaluate all input arguments of the func-
tion, but you just checked the validity of the date.” Oliver
submits, and Alice receives a notification that her work was
reviewed and received 2 stars.

4.2.3. Creating a new function

After being assigned an Implement Function Behavior mi-
crotask, Jon decides to implement a format check for the
todoDate parameter. Believing this to be fairly complex, he
decides it would be best implemented in a separate function.
He invokes the create a new function feature, creating the
function checkTodoDataFormat for others to implement. Spec-
ifying its behavior, he writes a description and signature. He
then calls this new, currently empty, function from the body
of the function he is working on. To verify his work, he
runs the tests. But as checkTodoDateFormat is not yet imple-
mented, his tests fail (Fig. 6). Jon uses the stub editor (Fig.
7) to replace the actual output with a stub value representing
the desired output. This automatically replaces all calls to
this function with the inputs and output Jon specifies. Jon
runs the tests again, they pass, and he submits.

As the crowd works, each is assigned a score based on
the ratings of their contributions. These scores are visible
on a global leaderboard visible to the project’s entire crowd,

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 8 of 17

Crowdsourced Behavior-Driven Development

Enter a project name in the input text below to retrieve the client request for the project. If it exists you have to choose a new name for it. Otherwise, it will be created!
Project Name

Load or Create

DESCRIPTION

Describe the Project with the its intended use cases and briefly explain its requirements

ADTS

Describe ADTs with a description, name, structure, and some example. The JSON structure should be of the form fieldA: TypeName, where each TypeName is either defined separately as
an ADT or is one of the three primitives String, Number, Boolean. To indicate an n-dimensional array, add n sets of brackets after the type name (e.g., 2 dimensional array - TypeName[][]). The
description should describe any rules about the ADT and include an example of a value of the ADT in JSON format.

description briefly describe the purpose and the behavior of the ADT -

ADT name insert the ADT name

JSON structure: Field Name Field Type

Examples: Example Name Insert the value of the example delete Example

Add Example

Add new ADT

FUNCTIONS

Describe End points of your micro service with a name, list of parameters, description.

Description | List the requirements of the function and describe its behavior Delete this Function

Return type insert the return data type
Endpoint name insert the endpoint name
Third party API

parameters name type description Delete this Param
Add new Param

Add new function

GITHUB INFO

After the crowd finishes the implementation of a microservice, you may choose to push the microservice to an existing GitHub repository by invoking Publish. Invoking the Publish command
(http://crowdcode5.herokuapp.com//deploy (http://crowdcode5.herokuapp.com//deploy)) creates a microservice which includes each function implemented by the crowd. For the functions
you listed as an endpoint, an HTTP request handler will be automatically generated.

By default, your project will be pushed to an existing GitHub repository. If you would like to push to a different GitHub repository, please first download (/clientReqg/template.zip) the template
Node.js project and push it to a repository, then enter information for the repository below.

Use the default GitHub project: https://github.com/Microtasking/microservice-template.git (https://github.com/Microtasking/microservice-
template.git)
User first name First name
User last name Last name
User email Email
https://github.com/ User or Organization ID / Repository name git
Access Token Access token

Figure 4: In the Client-Request, a client defines a microservice they would like created.

Emad Aghayi et al.: Preprint submitted to Elsevier Page 9 of 17

Crowdsourced Behavior-Driven Development

pane, and write a test for this behavior. You can run the tests for the function by clicking "RunTests" button; Step 3: implement the behavior in function editor. Step 4: once you're finished, click “Submit”
button.

Qnama imnartant Natae: ramamhar vnii anly hava anhs 18 minitac en ha eiira ta ciihmit uniir wark hafara tima riine At Vai dan't naad ta (and nrahahly dan't hava tima) ta finich tha fiinatinn

Here’s a function method1 that needs some work. Step 1: identify a behavior in its description(in the comments above the function) that is not yet implemented; Step 2: click “Add a new test” in the test ‘

Write your code in the function editor below Report an issue with the function o

1§ /**

2f It adds a todo item QIt calls the 3rd party persistent libraries to store todo in the databasef It should check the input arguments valuesu
in the todo object T N N e W11 or empty. It throws

TypeError ('Illegal Argument Exception') if one of them is empty or null. If the values of createdTIN\g or createdDate are empty or null

S§ it should set the current date (ex: 02/24/2018) and time (ex: 19:25) as their values. If the dueDate vNue is not empty or null,

6ff It should check the value of dueDate properties to be in the format of "MM/DD/YYY,HH:MM", example: "05/0.Q018,23:25". If the value of dueDate
78 is not in the desired format,

8] it should throw TypeError ('Illegal Argument Exception'). Identified behavior
9 *

0

1

*

@param {Todo} todo - nothing
@return {Todo}

1

1

1

13§ function addTodo(q{

1. //Implementation code here
1

1

1

SaveObject (todo) ;

return todo;

Edit Tests : Run Tests a
=

Description of the choosen behavior. Type | assertion 4

calls the 3rd party persistent for saving
ICode

1~ var param ={ "title": "coding","description": "work on the crowd cod",
2 "dueDate": "03/14/2018","dataStoreId": "todo3","userId": "quElEEEd , "id": 1,"status": 1,
"groupId": "schoolworks","createdTime": "13:51","createdDate": "05/21/2018", "priority": 1,"address": "Fairfax,VA,US 22032"

var resultl= addTodo(param);
var fetched = FetchObjectImplementation(1);

7 exgecti fetched i StON deeg o eﬁual‘ resultl);

3
4
5
6

All behaviors of this function are completely implemented

Send Us Feedback! Confused? Skip

Figure 5: In the Implement Function Behavior microtask, workers first (1) identify a behavior from the description of a function.
They then (2) write a test in the test editor to verify the behavior. and (3) edit the code for the function to implement it.
Finally, they (4) test it by running the tests, fixing issues they identify.

encouraging everyone to work hard to place higher. takes for a new crowd worker to onboard and make a con-
tribution. Specifically, we investigated (1) the feasibility of
4.3. The client deploys the microservice crowd workers to make contributions through a behavior-
While the crowd was working, Bob implemented the front- driven microtask workflow, (2) the time necessary to on-
end, inserting requests based on the behavior of the end- board and make a contribution, (3) the feasibility of imple-
points he specified. After all the microtasks have been com- menting and testing a microservice entirely through micro-
pleted and the implementation finished, he clicks a button tasks.
to deploy the microservice. He loads his web app in his We recruited 9 participants to build a small microservice
browser, seeing the ToDo interactions handled by the mi- for a ToDo application and then analyzed their environment
croservice. interactions and the resulting code they created.

5.1. Method

We recruited nine participants by advertising on Face-

To investigate the feasibility of applying behavior-driven book, LinkedIn, and Twitter and through flyers (referred to
microtask programming to implementing microservices, we as P1-P9). Participants connected to our system from the
conducted a user study in which a crowd of workers builta g, Spain, England, and India. Each had prior experience
small microservice. Since there are no prior systems forim- j JavaScript. Participants included one undergraduate stu-
plementing microservices through microtasks, we conducted dent in computer science or a related field (P5), one instruc-
a study evaluating the feasibility of the system rather than tor (P9), and seven graduate students in computer science or
comparing it against existing approaches. A key goal of rejated fields. As typical in open contribution platforms, par-
microtask programming is to enable short contributions by ticipants exhibited a diverse range of experience, with prior
transient contributors. Therefore, we evaluated how long it experience in JavaScript including less than 6 months (P1

5. Evaluation

Emad Aghayi et al.: Preprint submitted to Elsevier Page 10 of 17

Crowdsourced Behavior-Driven Development

10 function markTodoAsDone(:){

11 //Implementation code here
12 var todoRes = fetchffodo(id);
13 if (todoRes === null fetchTodo(id) x|=== JSON.stringify({})){
14 return false;
15 } stub this function call
16 return true;
17 }
Edit Tests P> Run Tests
4=Back

STATUS) FAILED - 4ms
DESCRIPTION it It returns false if it can not find the todo, todo with id 22 exist in the database
MESSAGE expected true to deeply equal false
CODE var resultl= markTodoAsDone(22);

expect(true).to.deep.equal(resultl);

0 Report an issue anspectcode > Run Tests O

EXPECTED ACTUAL

false
true

Figure 6: Workers can debug failed tests by using the Inspect code feature to view the value of any expression. In cases where a
function that is called from the function has not yet been implemented, any tests exercising this functionality will fail. To enable
the worker to still test their contribution, a worker may create a stub for any function call.

Stub Editor Cancel Save stub

* @return {Todo}
*/
function fetchTodo(id)

id {Number}
22

Output {Todo}

Te {

2 "title": "coding",

3 "description": "work on the crowd cod",
4 "dueDate": "03/14/2018 15:29",

5 "dataStoreId": "todo3",

6 userld": (NNNEGEED

7 "id": 22,

8 "status": 1,

9 "groupId": "schoolworks",

10 "createdTime": "13:51",

1l “createdbate”: "05/21/2018",

12 "priority": 1,]

13 “address": "(EEEEG—,
14 "repeat": "2"

15 }

Figure 7: Workers can view the current output generated by a
function call and edit this value to the intended output. This
then automatically generates a stub with the new value, which
is applied when the tests are run.

and P2), 7-12 months (P3, P4, and P5), and more than 4
years (P6, P7,P8, and P9).

We split our study into two sessions to reduce partici-
pant fatigue as well as to simulate participants returning to
work after a delay, as is common in microtask work. All
nine participants participated in the first session and five (P1,
PS5, P6, P8, and P9) participated in the second session. The
first session was 150 minutes, and the second 120 minutes.
One participant (P8) left the second session early after ap-
proximately one hour. All worked entirely online at their
own computers, and their interactions with other participants
were only via the Question and Answer feature. Participants

were paid 20 dollars per hour for their time through gift cards.

The crowd worked to build a microservice for the back-
end functionality of a ToDo app. We first examined several
ToDo applications to identify common functionality. We
then wrote a client request containing 12 endpoints which

asked developers to implement functionality for creating, delet-
ing, updating, fetching, reminding, and archiving todo items.

We gathered data from several sources. Before begin-
ning the study, participants completed a short demographics
survey. During the study session, all participant interactions
with CrowdMicroservices were logged with a timestamp and
participant id. This included each microtask generated, sub-
mitted, and skipped as well as each change to a function or
test. At the end of the first session, participants completed a
survey on their experiences with CrowdMicroservices, fo-
cusing specifically on their experience with the behavior-
driven development workflow. At the end of the study, five
participants participated in a short 15 minute semi-structured
interview. The open-ended questions focused on onboard-
ing challenges, the granularity of microtasks, the ability to
choose a task, motivation working using microtask program-
ming, and interactions between crowd workers.

At the beginning of the study, participants logged in to
CrowdMicroservices and worked through tutorial content,
watching a tutorial video, reading the welcome page, and
reading a series of 6 tutorials on using the individual micro-
tasks. Participants then began work by fetching a microtask.
Participants were allowed to use Internet searches as they
saw fit.

The study replication package is publicly available °. It
includes the study materials, client requests, and test suite
used to evaluate contributions as well as the code written by
the crowd in our study.

5.2. Results
5.2.1. Feasibility of behavior-driven microtasks
To investigate the ability of participants to use the behavior-
driven microtask workflow, we examined the log data to de-
termine how many microtasks participants were able to suc-
cessfully complete during the two sessions as well as the
functions and tests they created. Overall, participants suc-
cessfully submitted 350 microtasks and implemented 13 func-

9https://github.com/devuxd/crowd-microservices-
output/tree/master/replication-package/todo

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 11 of 17

Crowdsourced Behavior-Driven Development

Table 3

Number of microtask completions, skips, and completion times.

Completed Skipped Median Time (mm:ss)
Microtasks Types Session 1 Session 2 Session 1 Session 2 Session 1 Session 2
Implement Function Behavior 112 63 39 22 4:12 3:27
Review 112 63 5 9 2:41 2:25
Total 350 75 -

tions, one of which was defined by the crowd (Table 3). Par-
ticipants created a test suite of 36 unit tests, writing an av-
erage of 3 unit tests per function. We analyzed the number
of lines of code in each function and test, counting the final
numbers of lines in each at the end of the study. Participants
wrote 216 lines of code, approximately 16 lines per function.
Participants wrote 397 line of code in their test suite.

Several participants reported that identifying a behavior
was not difficult. Three participants reported that they pre-
ferred to focus on easy behaviors first:

"I chose the easiest behavior to implement first.
This was usually to check if the input was null or
empty. If that was already implemented, I just
went in order." - (P5)

Others reported that some behaviors were not clear, leading
them to focus first on those which were:

"I chose based on being more clear and simple
to me. Sometimes it wasn’t clear what exactly
that behavior means." - (P8)

The interview and survey results revealed positive im-
pacts of the leaderboard on crowd workers. Firstly, two par-
ticipants in the interview shared since there was a direct rela-
tionship between the quality of contributions and scores that
reviewers gave to those contributions, we tried to submit our
task with higher quality. Crowd workers tried to submit mi-
crotasks that be accepted by reviewers and receive 8 or 10
scores. Secondly, workers reported that it motivated them to
achieve higher scores to achieve a higher ranking.

"The leaderboard was good for team KPIs [key
performance indicator] and healthy competition.
" _ (P4)

The acceptance rate of Implementation Function Behavior
tasks by reviewers was lower in the second session than in
the first. In the first session 85% were accepted by reviewers
while in the second session 40% were accepted by reviewers.
This was also reflected in the leaderboard scores. The aver-
age scores in the leaderboard were 129.5 points for the first
session and 103.2 for the second, with minimum and maxi-
mum scores of 54 and 241 and 13 and 151 (the participant
with the score of 13 contributed only two microtasks before

experiencing technical issues). Accepted Implementation Function

Behavior contributions were worth 8 to 10 points, rejected
contributions were worth 2 to 6 points, and Review tasks were
worth 5 points.

There are several potential explanations as to why accep-
tance rates were lower in the second session. In the second
session, participants continued work on incomplete behav-
iors left from the first session which may have been harder to
complete. Survey data revealed that 3 participants preferred
writing easier behaviors first and harder behaviors later. For
example, easier behaviors like calling a third-party API, “It
calls the 3rd party persistent libraries to store todo in the
database”, were implemented sooner in the first session (Fig-
ure 5, green box 1). Harder behaviors were implemented
in the second session, such as “It should check the value of

dueDate properties to be in the format of ' MM/DD/YY,HH:MM".

If the value of dueDate is not in the desired format, it should
throw TypeError (’Illegal Argument Exception’)”.

As participants were not strictly required by the work-
flow to test first, two participants in the post-task survey
shared with the experimenters that they chose to first imple-
ment the function body and then implement the test for the
function body.

"I usually implemented the body first just so I
could figure out how the function should work."-
(P5)

"I would interchange step 2 and 3 so that the
user first implements and then tests the behav-
ior." - (P7)

The workflow offered crowd workers the freedom to de-
compose a complex function into two or more functions.
Participants implemented 13 functions, including creating
one function. P8 created a function checkDateFormat. As it
was not yet implemented by the other participants, he used
the stub feature to simulate its behavior.

One participant, confused about the creation of a todo
object, asked a question using the Question and Answer fea-
ture. Other participants responded to this question. Another
participant asked a question about a function description, to
which the other participants replied.

Throughout both sessions, workers iteratively implemented
and revised function implementations, reflecting contribu-
tions from several participants. Participants submitted 175
Review microtasks. In 82 of these, they accepted the contri-
bution by giving it a rating of 4 or more stars. One partici-
pant reported wanting more feedback:

"The feedback offered was helpful. But some-
times I would get 4 stars with no feedback, which
was not helpful at all. I think it should be manda-
tory to write some feedback just so I can know
where to improve." - (P5)

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 12 of 17

Crowdsourced Behavior-Driven Development

5.2.2. Speed of onboarding and contributing

After participants completed the tutorials and began work,
participants spent additional time familiarizing themselves
with the environment. On average, participants submitted
their first microtask after 24 minutes.

The median completion time for each microtask was ap-
proximately 4 minutes for Implement Function Behavior and
3 minutes for Review microtasks (Table 3). These completion
times are similar to the approximately 5 minute median com-
pletion times of prior microtask programming systems [25],
despite requiring developers to test, implement, and debug
their behavior.

Participants skipped 18% of all microtasks. Participants
used the skip feature for several reasons. In some cases, par-
ticipants skipped multiple microtasks to find an easy one
with which to begin. In other cases, participants skipped
harder microtasks that were challenging to complete. Partic-
ipants skipped Implement Function Behaviors tasks roughly
ten times more often than Review tasks. 0.5% of all micro-
tasks were automatically skipped due to the 15 minute time
limit, all of which were Implement Function Behavior micro-
tasks. These occurred in the first microtask completed by
each participant in the study.

During the two sessions, participants worked for a total
of 31.5 hours. Participants spent 21 hours on microtasks that
were submitted, including 39% of their time on Implement
Function Behaviors microtasks and 27% on Review micro-
tasks. The remaining time was spent familiarizing them-
selves with the CrowdMicroservices environment, complet-
ing the post-task survey, and working on microtasks that
were skipped rather than submitted.

5.2.3. Feasibility of implementing microservices

After the participants finished implementing the microser-
vice, the project was deployed to a hosting service by Crowd-
Microservices. To assess the feasibility of using a behavior-
driven microtask workflow to implement microservices, we
investigated the success of the crowd in building an imple-

application front-end as a React application, using the de-
ployed microservice as the back-end. We found that, apart
from the defects we described above, the ToDo application
worked correctly.

CrowdMicroservices offers an API for interacting with
a persistence store, which participants made use of in their
implementation. For example, in Fig.8, fetchAllTodos is an
example of an invocation of the persistence API. Partici-
pants made a total of 15 calls to the persistence API, or 1.25
per function. In some cases, participants interacted with the
persistence store indirectly, by calling other functions im-
plemented by the crowd which made use of the persistence
store. When asked in the post-task survey, most partici-
pants reported that they used the persistence API without any
problems. Some participants reported that additional docu-
mentation would be beneficial:

"I used the API a little bit, and I felt like the
documentation could be better with more exam-
ples." - (P5)

6. Limitations and threats to validity

Our study had several limitations and potential threats to
the internal and external validity of the results.

In our study, we chose to recruit a wide range of par-
ticipants, recruiting participants locally from our university
as well as globally through social networking sites. This
yielded participants with a wide range of backgrounds, with
their experience in JavaScript ranging from 2 months to 6
years. We chose this process as it mirrors the process of
an open call, where contributors with a wide range of back-
grounds may contribute. However, in practice crowdsourc-
ing communities may exist in many forms, attracting many
novice contributors looking for an entry point into more chal-
lenging work or attracting experienced workers who attract
other experienced workers. Our results might differ if work-
ers were exclusively more or less experienced.

mentation consistent with the described behavior in the C1 ient—Reques“t\.nOther potential threat to external validity is the choice

We first constructed a unit test suite, generating a set of 34
unit tests (written and visible only to the experimenters, not
participants), which is publicly available as part of our repli-
cation package!’. Overall, unit tests for 79% (27) of the be-
haviors passed, and unit tests for 7 of the behaviors failed.
To investigate the causes of the failing tests, we examined
the microservice implementation created by the participants.
We found that four of the failures were caused by a defect in
one function involving a missing conditional, and the three
remaining failures were either due to defects with behaviors
not implemented correctly or not implemented. After we
fixed these defects, all unit tests passed.

To further assess the implementation of the microservice
built by the crowd, we used the final code written by par-
ticipants to build a functioning ToDo application. We first
used the deploy feature in CrowdMicroservices to deploy
and host the microservice. We then implemented a ToDo

10nttps://github.com/devuxd/crowd-microservices-output

of task. In selecting a task, we sought to identify a task that is
representative of typical microservices that workers create.
We chose the ToDo application as a canonical example of a
web application, often used to compare different approaches
to building web applications. Larger microservices may in-
volve more complex endpoints where individual behaviors
are more challenging to identify.

Our results might also vary with different contexts in
which work took places. To simulate the constant process
of hand-offs that occur in microtask work, where workers
complete tasks that others began, we chose to have partici-
pants work synchronously, maximizing the number of hand-
offs that occur. To simulate participants coming back to
work that they had begun earlier, we divided our study into
two sessions. Of course, in practice, microtask work in-
volves less predictable schedules, where contributors may
come and go at arbitrary times. This may introduce addi-
tional challenges, where new participants that are unfamil-
iar with either the environment or anything about the project

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 13 of 17

Crowdsourced Behavior-Driven Development

router.get('/fetchTodosBasedOnStatus', async (regq, res, next) => {

var userId = req.query.userld;
var status = reg.query.status;
if (userId == null || userId === "") {
throw new TypeError('Illegal Argument Exception');

var result = [];
var allTodos = fetchAllTodos(userId);
if (allTodos.length > 0) {
for (var i = 0; i < allTodos.length; i++) {

if (!(allTodos[i].status !==1 ||
allTodos[i].status !== 2 ||
allTodos[i].status !== 3)) {
throw new TypeError("Illegal Argument Exception");
else {
if (allTodos[i].status === status) {

result.push(allTodos[il);

}
}
res.json(result);
s
Figure 8: An example of a microservice endpoint implemented

by the crowd.

are constantly introduced. On the one hand, this might re-
duce performance, as such participants are less experienced.
On the other, compared to participants in our study who had
access to no workers who were already familiar with the en-
vironment and project, such participants might have an eas-
ier time onboarding, as more experienced workers would be
available to answer their questions. Better understanding the
impact of transient behavior on microtasking in program-
ming is an important focus for future work.

In microtask work, workers are assumed to not have any
prior information about the environment, the project, or other
workers. However, in practice, participants may over time
gain experience with the project as well as the development
environment itself. Over time, a contributor to our envi-
ronment would experience fewer challenges using the envi-
ronment and become more productive, reducing the average
time for completing microtasks or increasing the amount of
work contributors complete in each microtask.

7. Discussion

Microtask programming offers a software development
process in which large crowds of transient workers build soft-
ware through short and self-contained microtasks, reducing
barriers to onboarding and increasing participation in open
source projects. In this paper, we explored a novel workflow
for organizing microtask work and offered the first approach
capable of microtasking the creation of web microservices.
In our behavior-driven microtask workflow, each microtask
involves a worker identifying, testing, implementing, and
debugging an individual behavior within a single function.
We found that, using this approach, workers were able to
successfully submit 350 microtasks and implement 13 func-
tions, quickly onboard and submit their first microtask in
less than 24 minutes, contribute new behaviors in less than
5 minutes time, and together implement a functioning mi-
croservice back-end containing only 4 defects. Participants
were able to receive feedback on their contributions as they
worked by running their code against their tests and debug-

ging their implementation to address issues.

While our method has demonstrated success in imple-
menting an individual microservice, there remain a number
of additional challenges to address before a large software
project could be built entirely through microtasks. The client
is responsible for the high-level design tasks of determining
the endpoints, designing data structures, and other design
work. Moreover, while microtasking reduces the context a
worker must learn to successfully contribute to a project, this
context is not zero. Workers must still learn about the func-
tion they are working on and the current state of its imple-
mentation. This overhead is visible in the productivity data.
In 21 hours working on submitted microtasks, 9 participants
wrote only 216 lines of code and 397 lines of test code.

In adopting behavior-driven development, our approach
benefits from the shared understanding among developers it
can create. Creating this shared understanding is particularly
critical in crowdsourced development, as there is no syn-
chronous face-to-face communication to help synchronize
understanding. This understanding may be created through
the act of writing unit tests, which makes shared knowledge
concrete, as well as through asking and answering questions.
As the client has already made some of the key design choices
through creating the client request, there may also be less
need to coordinate, as there may be fewer design decisions
that the crowd must make. Exploring techniques for achiev-
ing shared understanding of crowd workers is an important
area for future work.

Other work has explored techniques for decomposing de-
sign work into microtasks, such as through structuring work
around tables of design dimensions and design alternatives[47].
Such techniques might be adapted to a microtask program-
ming workflow to enable the crowd to design the initial end-
points and data structures, as well as other high-level deci-
sions, which might then be handed off to others who then
implement this design. Similar to workflows such as Top-
Coder’s, a senior crowd worker might also help ensure con-
sistency across the design. Beyond upfront design, support
is also necessary for maintenance situations where require-
ments change. This might result in changes in endpoints,
data structures, and design decisions, requiring further down-
stream changes in the implementation. This might be ad-
dressed through new microtasks which identify changes, map
these changes to specific impacted artifacts, and ask workers
to update the corresponding implementation.

A key advantage of microtask programming approaches
which incorporate automatic microtask generation is the po-
tential to scale to large crowds and incorporate synchronous

contributions from thousands or tens of thousands of developers|[9,

1]. Rather than requiring a single worker acting as a client
to manually generate each microtask, microtasks are gener-
ated automatically as the crowd works. Rather than poten-
tially exposing contributors to the entire codebase and all of
its ongoing changes, contributors must only understand an
individual function. In this way, in principle, large crowds
might be able to work together to build large applications
quickly. For example, if a microservice ultimately resulted

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 14 of 17

Crowdsourced Behavior-Driven Development

in 1,000 behaviors being identified, each behavior could then
be worked on by a separate worker in a separate microtask.
To the extent that these 1,000 microtasks can be done in par-
allel, this would then enable software development to occur
with 1,000 concurrent microtasks, dramatically decreasing
the time to complete work. Of course, many sequential de-
pendencies might still exist, where, for example, the neces-
sary existence of a function is not revealed until a previous
function has already been implemented. Understanding just
how many sequential dependencies exist in software devel-
opment work and how much parallelism is truly possible is
thus an important focus for future work.

While we developed our system in the context of imple-
menting microservices, our approach could be adapted to
apply to other types of software. For example, rather than
beginning work with a set of endpoints, work might instead
be begun with publicly visible methods in an API. Our tech-
nique could also be applied to building interactive applica-
tions, such as front-end web applications. However, such
applications often make more extensive use of global state
to, for example, render output or keep track of shared data
entered by users. This raises additional challenges in effec-
tively coordinating microtasks with only a local view of the
system, requiring new techniques for surfacing appropriate
information to workers.

There are many mechanisms for achieving quality in crowd-

sourcing systems. One common approach in Mechanical
Turk crowdsourcing systems is replication, where multiple
workers do the same work and a voting mechanism is used
to aggregate these contributions [8]. In microtask program-
ming, this might be used to review contributions. This ap-
proach has the advantage of being less susceptible to incor-
rect or poor quality reviews. But it requires additional work
to generate these reviews. Another approach is to rely more
on iteration. Even if a contribution is incorrect, subsequent
contributions can update the artifact to address it. There may
be more effective ways to combine these approaches, such as
offering contributors the ability to appeal reviews they per-
ceive to be of low quality and explicitly request replicated
reviews.

A wide range of volunteers, paid developers, or contract

developers might participate in microtask programming projects.

Our approach could be used to support open source projects.
Studies have identified several motives for developers to join
open-source projects, including a desire to learn and develop
new skills, share knowledge and skills, and participate in
a new form of cooperation[11]. However, developers face
barriers to joining these projects, including installing neces-
sary tools, downloading code from a server, identifying and
downloading dependencies, and configuring the build envi-
ronment [42, 45, 18, 10]. Consequently, onboarding can re-
quire weeks, discouraging casual contributors from joining.
CrowdMicroservices may reduce these barriers by providing
a preconfigured environment that helps developers onboard
quickly. In our study, we found that developers could submit
their first microtask in less than 24 minutes.

Microtask programming might also be used by compa-

nies to develop software[39]. While crowdsourcing involves
recruiting contributors from outside a company or organiza-
tion, it may also be possible to apply crowdsourcing inside a
company. For companies with closed-source code and confi-
dential information and intellectual property to protect, this
model offers many of the potential crowdsourcing benefits
of lower onboarding costs and greater resource fluidity with
fewer of the potential drawbacks.

8. Conclusion

In this paper, we offer a novel behavior-driven approach
for microtasking programming work and apply this approach
to implementing microservices. Our results offer initial ev-
idence for its feasibility. Workers were able to successfully
complete a microtask which asked them to identify, test, im-
plement, and debug a behavior in less than 5 minutes as well
as onboard onto a project in less than 30 minutes. Together,
these contributions were able to be aggregated into a func-
tioning microservice that was implemented entirely through
microtask contributions. Important future work remains to
investigate how this approach might be incorporated into a
larger software project as well as exploring how a higher de-
gree of parallelism might reduce the time to market in build-
ing software.

References

[1] Aghayi, E., 2020. Large-scale microtask programming, in: Sympo-
sium on Visual Languages and Human-Centric Computing, pp. 1-2.
[2] Andres, H.P., Zmud, R.W., 2002. A contingency approach to software
project coordination. Journal of Management Information Systems ,
41-70.
Beck, K., 2003. Test-driven development: by example. Addison-
Wesley Professional.
Bernstein, M.S., Little, G., Miller, R.C., Hartmann, B., Ackerman,
M.S., Karger, D.R., Crowell, D., Panovich, K., 2010. Soylent: a word
processor with a crowd inside, in: Symposium on User Interface Soft-
ware and Technology, pp. 313-322.
Bounov, D., DeRossi, A., Menarini, M., Griswold, W.G., Lerner, S.,
2018. Inferring loop invariants through gamification, in: Conference
on Human Factors in Computing Systems, pp. 231:1-231:13.
Chen, N., Kim, S., 2012. Puzzle-based automatic testing: Bringing
humans into the loop by solving puzzles, in: Automated Software
Engineering, pp. 140-149.
Chen, Y., Lee, S.W., Xie, Y., Yang, Y., Lasecki, W.S., Oney, S., 2017.
Codeon: On-demand software development assistance, in: Confer-
ence on Human Factors in Computing Systems, pp. 6220-6231.
Doan, A., Ramakrishnan, R., Halevy, A.Y., 2011. Crowdsourcing
systems on the world-wide web. Communications of the ACM , 86—
96.
[9] Dubey, A., LaToza, T., Aghayi, E., 2019. Crowd microservices
hackathon: Utilizing crowdsourcing for microtask programming on
a large-scale. Journal of Student-Scientists’ Research .
[10] Fagerholm, F., Guinea, A.S., Borenstein, J., Miinch, J., 2014. On-
boarding in open source projects. IEEE Software , 54-61.
[11] Ghosh, R.A., 2005. Understanding free software developers: Find-
ings from the floss study. Perspectives on Free and Open Source Soft-
ware , 23-47.
[12] Goldman, M., 2012. Software Development with Real-time Collabo-
rative Editing. Ph.D. thesis. Massachusetts Institute of Technology.
[13] Goldman, M., Little, G., Miller, R.C., 2011. Real-time collaborative
coding in a web ide, in: Symposium on User Interface Software and
Technology, pp. 155-164.

[3

—_

[4

=

[5

—_

[6

—_

~
—

[8

—

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 15 of 17

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

(23]

[24]

[25]

(26]

[27]

[28]

(29]

[30]

[31]

(32]

(33]

[34]

Crowdsourced Behavior-Driven Development

Goldman, M., Stockbauer, J.W., McAuliffe, T.G., 1977. Intergroup
and intragroup competition and cooperation. Journal of Experimental
Social Psychology , 81-88.

Goémez, L.A.C., et al., 2018. Analysis of the impact of test based
development techniques (TDD, BDD, AND ATDD) to the software
life cycle. Ph.D. thesis.

Hoseini, M., Saghafi, F., Aghayi, E., 2018. A multidimensional model
of knowledge sharing behavior in mobile social networks. Kybernetes

InnerSourceCommons, 2020. Behavior driven development. URL:
https://rb.gy/410ym6.

Jergensen, C., Sarma, A., Wagstrom, P., 2011. The onion patch: mi-
gration in open source ecosystems, in: Special Interest Group on Soft-
ware Engineering Symposium and the European Conference on Foun-
dations of Software Engineering, pp. 70-80.

Jiang, H., Matsubara, S., 2014. Efficient task decomposition in crowd-
sourcing, in: International Conference on Principles and Practice of
Multi-Agent Systems, pp. 65-73.

Kim, J., Sterman, S., Cohen, A.A.B., Bernstein, M.S., 2017. Me-
chanical novel: Crowdsourcing complex work through reflection and
revision, in: Conference on Computer Supported Cooperative Work
and Social Computing.

Kittur, A., Nickerson, J.V., Bernstein, M., Gerber, E., Shaw, A., Zim-
merman, J., Lease, M., Horton, J., 2013. the future of crowd work,
in: Conference on Computer Supported Cooperative Work, pp. 1301—
1318.

Kittur, A., Smus, B., Khamkar, S., Kraut, R.E., 2011. Crowdforge:
Crowdsourcing complex work, in: Symposium on User Interface
Software and Technology, pp. 43-52.

Lasecki, W.S., Kim, J., Rafter, N., Sen, O., Bigham, J.P., Bernstein,
M.S., 2015. Apparition: Crowdsourced user interfaces that come to
life as you sketch them, in: Human Factors in Computing Systems,
pp. 1925-1934.

LaToza, T.D., Chen, M., Jiang, L., Zhao, M., Van Der Hoek, A.,
2015a. Borrowing from the crowd: A study of recombination in soft-
ware design competitions, in: International Conference on Software
Engineering, pp. 551-562.

LaToza, T.D., Di Lecce, A., Ricci, F., Towne, B., Van der Hoek, A.,
2018. Microtask programming. Transactions on Software Engineer-
ing , 1-20.

LaToza, T.D., van der Hoek, A., 2016. Crowdsourcing in software
engineering: Models, motivations, and challenges. IEEE software ,
74-80.

LaToza, T.D., Lecce, A.D., Ricci, F., Towne, W.B., van der Hoek, A.,
2015b. Ask the crowd: Scaffolding coordination and knowledge shar-
ing in microtask programming, in: Symposium on Visual Languages
and Human-Centric Computing, pp. 23-27.

LaToza, T.D., Towne, W.B., Adriano, C.M., Van Der Hoek, A., 2014.
Microtask programming: Building software with a crowd, in: Sym-
posium on User Interface Software and Technology, pp. 43-54.
LaToza, T.D., Towne, W.B., van der Hoek, A., Herbsleb, J.D., 2013.
Crowd development, in: Workshop on Cooperative and Human As-
pects of Software Engineering, pp. 85-88.

Lee, S.W., Krosnick, R., Park, S.Y., Keelean, B., Vaidya, S.,
O’Keefe, S.D., Lasecki, W.S., 2018. Exploring real-time collabora-
tion in crowd-powered systems through a ui design tool. Computer-
Supported Cooperative Work and Social Computing , 104:1-104:23.
Lerner, S., Foster, S.R., Griswold, W.G., 2015. Polymorphic blocks:
Formalism-inspired ui for structured connectors, in: Conference on
Human Factors in Computing Systems, pp. 3063-3072.

Li, K., Xiao, J., Wang, Y., Wang, Q., 2013. Analysis of the key fac-
tors for software quality in crowdsourcing development: An empiri-
cal study on topcoder. com, in: Computer Software and Applications
Conference, pp. 812-817.

Mao, K., Capra, L., Harman, M., Jia, Y., 2017. A survey of the use
of crowdsourcing in software engineering. Journal of Systems and
Software , 57 — 84.

Nebeling, M., Leone, S., Norrie, M.C., 2012. Crowdsourced web

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

engineering and design, in: Web Engineering, pp. 31-45.

North, D., 2006. Introducing behaviour driven development. Better
Software Magazine .

Rahman, M., Gao, J., 2015. A reusable automated acceptance test-
ing architecture for microservices in behavior-driven development, in:
Symposium on Service-Oriented System Engineering, pp. 321-325.
Retelny, D., Bernstein, M.S., Valentine, M.A., 2017. No workflow
can ever be enough: How crowdsourcing workflows constrain com-
plex work. Conference on Computer-Supported Cooperative Work
and Social Computing , 1-23.

Saengkhattiya, M., Sevandersson, M., Vallejo, U., 2012. Quality in
crowdsourcing-How software quality is ensured in software crowd-
sourcing. Master’s thesis. Department of Informatics, Lund Univer-
sity.

Saito, S., limura, Y., Aghayi, E., LaToza, T.D., 2020. Can microtask
programming work in industry?, in: European Software Engineering
Conference and Symposium on the Foundations of Software Engi-
neering, pp. 1-11.

Schiller, T.W., Ernst, M.D., 2012. Reducing the barriers to writing
verified specifications. Special Interest Group on Programming Lan-
guages Notices , 95-112.

Smart, J.F., 2014. BDD in Action. volume 12. Manning Publications
New York.

Steinmacher, 1., Silva, M.A.G., Gerosa, M.A., Redmiles, D.F., 2015.
A systematic literature review on the barriers faced by newcomers to
open source software projects. Information and Software Technology
, 67 —85.

Stol, K.J., Fitzgerald, B., 2014. Two’s company, three’s a crowd: A
case study of crowdsourcing software development, in: Conference
on Software Engineering, pp. 187-198.

Straus, S.G., McGrath, J.E., 1994. Does the medium matter? the
interaction of task type and technology on group performance and
member reactions. Journal of applied psychology .

Von Krogh, G., Spaeth, S., Lakhani, K.R., 2003. Community, joining,
and specialization in open source software innovation: a case study.
Research Policy , 1217-1241.

Warner, J., Guo, PJ., 2017. Codepilot: Scaffolding end-to-end col-
laborative software development for novice programmers, in: Confer-
ence on Human Factors in Computing Systems, pp. 1136-1141.
Weidema, E.R.Q., Lopez, C., Nayebaziz, S., Spanghero, F., van der
Hoek, A., 2016. Toward microtask crowdsourcing software design
work, in: Workshop on CrowdSourcing in Software Engineering, pp.
41-44.

Zanatta, A.L., Machado, L., Steinmacher, I., 2018. Competence, col-
laboration, and time management: Barriers and recommendations for
crowdworkers, in: Workshop on Crowd Sourcing in Software Engi-
neering, pp. 9-16.

Emad Aghayi is currently a Ph.D. student in the
Department of Computer Science at George Ma-
son University. He received degrees in informa-
tion technology from University of Tehran and Shi-
raz University of Technology in 2014 and 2010
respectively . He is a member of the Developer
Experience Design Lab, which studies how hu-
mans interact with code and designs new ways
of building software. He works at the intersec-
tion of software engineering and human-computer
interaction. His research goal is to make devel-
opers more productive by providing better devel-
opment tools and approaches. To achieve this
goal, his research involves understanding devel-
oper behaviors, identifying problems, and de-
signing tools and approaches to help with those
problems using various HCI methods at each
stage.

Emad Aghayi et al.: Preprint submitted to Elsevier

Page 16 of 17

https://rb.gy/41oym6

Crowdsourced Behavior-Driven Development

Thomas D. LaToza received a Ph.D. in software
engineering from Carnegie Mellon University in
2012 and degrees in psychology and computer
science from the University of Illinois, Urbana-
Champaign in 2004. He is currently an Assistant
Professor of Computer Science at George Mason
. University. He serves as director of the Devel-
| oper Experience Design Lab, which studies how
humans interact with code and designs new ways
of building software. He has conducted over 20
studies of software developers and designed nu-
merous programming tools, including tools for de-
signing, understanding, reusing, editing, and de-
bugging code. His recent work has focused on pro-
gramming environments which crowdsource in-
sights. He served as co-chair of the Workshop on
Crowdsourcing in Software Engineering and the
Workshop on the the Evaluation of Programming
Languages and Tools. He is a recipient of the NSF
CAREER award for his research and teaching on
debugging mental models.

Paurav Surendra received a Masters degree in Soft-
ware Engineering at George Mason University,
Virginia and his Bachelors degree in Information
Science and Engineering at Visvesvaraya Techno-
logical University in India. He is currently working
as a Software Engineer at the Student Opportunity
Center. His interests are in Software Architecture,
Software Design, and Software Development for
‘Web Platforms.

Seyedmeysam Abolghasemi received a Masters
degree in Computer Science at Old Dominion Uni-
versity in 2017 and a Bachelors degree in Informa-
tion Technology and Systems from Monash Uni-
versity in 2012. He is currently working as a Se-
nior Software Developer at Old Dominion Univer-
sity. His area of interests are Software Architecture
and High-Performance Computing.

Emad Aghayi et al.: Preprint submitted to Elsevier Page 17 of 17

