
30 IEEE SOFTWARE | PUBLISHED BY THE IEEE COMPUTER SOCIETY 0 7 4 0 - 7 4 5 9 / 1 7 / $ 3 3 . 0 0 © 2 0 1 7 I E E E

Crowdsourcing
for Software
Engineering
Klaas-Jan Stol, Lero—the Irish Software Research Centre

Thomas D. LaToza, George Mason University

Christian Bird, Microsoft Research

THE NATURE OF work is changing
dramatically through trends such
as the commodification of exper-
tise and democratization of partici-
pation.1 For example, professional
stock photographers used to be able

to charge hundreds of dollars for a
picture.2 Today, sites such as www
.istockphoto.com offer professional-
quality images for as low as one dol-
lar. Any amateur photographer can
offer images through this platform.

Another example is Foldit, a game
in which thousands of players work
to solve puzzles; the aggregated out-
put helps solve protein-folding prob-
lems.3 Using results from Foldit,
researchers solved in just 10 days a
complex problem that had stumped
them for 15 years.

These are just two instances of
work being crowdsourced, disrupt-
ing existing business models and
work practices. Tapping into the
“wisdom of crowds”4 has become
common, offering numerous op-
portunities to benefit software engi-
neering practice. Today, companies
can use a range of crowdsourcing
platforms to have software devel-
oped or tested.5 A recent survey by
Ke Mao and his colleagues reported
the many ways in which develop-
ers can use crowds throughout the
development life cycle.6 (Mao also

FOCUS: GUEST EDITORS’ INTRODUCTION

 MARCH/APRIL 2017 | IEEE SOFTWARE 31

maintains an online index of pub-
lications on crowdsourcing in soft-
ware engineering at crowddev.kemao
.uk/cse_repository.)

Because crowdsourcing ap-
proaches could have a far-reaching
impact on future software devel-
opment, this theme issue explores
various ways developers and man-
agers can benefit from these new
opportunities.

What Is Crowdsourcing?
Crowdsourcing isn’t new (see the
sidebar “Crowdsourcing through the
Ages”), but the term “crowdsourc-
ing” was only coined in 2005 by Jeff
Howe and Mark Robinson. Howe
defined it as

the act of a company or institution
taking a function once performed
by employees and outsourcing it to
an undefined (and generally large)
network of people in the form of an
open call.7

Following this definition, you
could think of crowdsourcing as
outsourcing to an alternative work-
force.8,9 Basically, crowdsourcing
leverages the intelligence and con-
tributions of a large group of people
to achieve a specific goal, whether
it’s software development, software
testing, or simply sharing knowl-
edge. Crowdsourcing typically in-
volves three parties: a customer who
posts a task or a question, a crowd
of people who respond by perform-
ing the task or answering the ques-
tion, and a platform that facilitates
these interactions. Contributions are
often explicitly requested through
an open call, mechanisms such as is-
sue trackers in open source projects,
or requests for content or editing on
Wikipedia. In other contexts, the
open call might be implicit because

the contributors themselves deter-
mine what to contribute.

Crowdsourcing is part of a wider
phenomenon in software engineer-
ing, characterized by the increasing
use of social networks. Developers
employ a variety of social networks,
including microblogging platforms
such as Twitter,10 code-sharing
repositories that facilitate social
networks such as GitHub,11 and
question-and-answer (Q&A) plat-
forms such as Stack Overflow.12

Ways to Use Crowdsourcing
Crowdsourcing can be used in vari-
ous ways. Amazon Mechanical Turk
facilitates crowdsourcing through

microtasks—for example, labeling
an image. Unsurprisingly, such sim-
ple, quick tasks typically compen-
sate contributors only a few cents
or perhaps dollars. On the other
end of the spectrum are challenges
such as the Netflix Prize contest.13
That contest offered $1M to anyone
who could improve Netflix’s movie
recommendation system by 10 per-
cent; it attracted more than 5,000
submissions.

To better understand how crowd-
sourcing can be used, David Gei-
ger developed a 2D taxonomy (see
Figure 1).14 The first dimension is
whether the crowd’s output is emer-
gent or nonemergent. Emergent

CROWDSOURCING
THROUGH THE AGES

Even though the term “crowdsourcing” was coined only about a decade ago, nu-
merous examples exist of crowdsourcing throughout history. Here are three.

THE LONGITUDE ACT
In 1714, the British Parliament passed the Longitude Act, which offered a series of
rewards to anyone who invented a practical method to determine longitude at sea.1

NAPOLEON’S CANS
When Napoleon was expanding his empire in Europe, he employed large armies
of soldiers, who needed to be fed. As the armies moved away from the proxim-
ity of French farms, he needed a way to preserve food. The French government
offered 12,000 francs to anyone who invented a practical method to store food
without it going to waste—a prize that was awarded in 1810 for canned food.

SYDNEY’S OPERA HOUSE
In 1955, the Prime Minister of New South Wales, Australia offered £5,000 for
the winning design of a building for Sydney’s harbor. The winner was one of 233
submissions. Sydney’s Opera House is one of many examples of crowdsourced
architectural designs.

Reference
1. D. Sobel, Longitude: The True Story of a Lone Genius Who Solved the Greatest Scientific

Problem of His Time, Walker Books, 2007.

32 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

value results from the combination
of contributions; nonemergent value
is derived from the individual contri-
butions themselves. The second di-
mension is whether contributions are
homogeneous or heterogeneous.

The two dimensions lead to four
types of crowdsourcing tasks. The
� rst type is rating, which is when
the crowd is asked to offer a judg-
ment. An example is user ratings of
apps in mobile-app stores such as
Google Play. A single rating offers
little value, but a large group of rat-
ings can give considerable insight.14

The second type of task is process-
ing; contributions represent actions
the crowd can perform. An example
of this is bug reporting. Although
bugs vary in complexity, each bug
report is basically the same in that it
provides new insight on a software

product and thus adds value on its
own. Labeling images on Mechanical
Turk also falls in this category.

The third type of task is creation,
which relies on a set of heteroge-
neous contributions that together
generate something of value. An
example of this is open source soft-
ware. Contributions are heteroge-
neous because each contribution dif-
fers in nature, size, and complexity.
The value is generated through com-
bining all contributions; the result is
an open source software system.

The fourth type of task is prob-
lem solving, which yields heteroge-
neous contributions, each of which is
judged in its own regard and useful
on its own. This category represents
dif� cult tasks requiring signi� cant
creativity. The Net� ix Prize contest
falls in this category.

Some crowdsourcing platforms
feature all four types. One such
example is Topcoder, the largest
crowdsourcing platform for software
development, with over one million
members. Creation happens when a
customer crowdsources a complete
solution through a large number of
crowdsourcing competitions. Rating
happens when participants evaluate
the submissions. An example of pro-
cessing is Topcoder’s bug hunt com-
petitions, which pay participants for
each new bug they � nd. Finally, Top-
coder’s design challenges represent
problem solving.

These differences in crowdsourc-
ing approaches affect the size of the
crowd that’s involved. Rating tasks
involve many individuals; the result
is an aggregation of the individual
contributions (for example, a mobile
app’s average score). Creation tasks’
outputs are also meant to be com-
bined into a single outcome. Problem-
solving tasks might involve many in-
dividuals or teams, but typically only
one solution is selected. Consequently,
only the winning team receives a re-
ward, as was the case with the Net � ix
Prize. Thomas LaToza and his col-
leagues suggested a hybrid approach,
proposing recombinations of interme-
diate results in software design tasks
so that crowd members can “borrow
from the crowd.”15

Other dimensions are impor-
tant in shaping crowdsourcing plat-
forms.1 Such dimensions include
the locus of control in soliciting
contributions, the nature of incen-
tives offered to contributors, and
the amount of context required for
someone to contribute.

Reasons for Using Crowdsourcing
Companies can use crowdsourc-
ing approaches to address various
needs.1,6 First, crowdsourcing can

Heterogeneous
contributions
Contributions are qualitatively
judged differently and independently.

Homogeneous
contributions
Contributions are
valued equally.

Emergent
Value is derived

from a set of
contributions.

Nonemergent
Contributions

are
independently

valuable.

Rating

Processing

Creation

Problem solving

Example:
Open source
software

Example:
Stack Over�ow
 Q&A forum

Example:
Bug reporting

Example:
User ratings
of mobile apps

 FIGURE 1. A taxonomy of crowdsourcing tasks.14 Two dimensions (emergent–

nonemergent and homogeneous–heterogeneous) lead to four types of tasks: rating,

processing, creation, and problem solving.

MARCH/APRIL 2017 | IEEE SOFTWARE 33

be considered an alternative to out-
sourcing, similar to open-sourcing
and inner-sourcing.6,16 Companies
simply might not have suf� cient in-
ternal resources or expertise to get a
certain job done and thus might seek
help from the crowd. Or, companies
might want early releases of their
software evaluated on a range of het-
erogeneous systems.17

A second reason for crowdsourc-
ing is to reduce the time to market
by splitting a large task into smaller
tasks that an equal number of work-
ers perform in parallel. A third reason
is to generate a range of solutions—
effectively drawing on ideas from a
range of people. A fourth reason is
to employ speci� c experts to � nd the
best solution to a given problem.

In This Issue
We received 18 submissions for this
theme issue. On the basis of a thor-
ough review process, we selected
six articles that demonstrate how

software development can ben-
e� t from crowdsourcing as either a
source of knowledge needed to de-
velop new software or a source for
ideas and feedback on existing soft-
ware. Interestingly, each chosen arti-
cle deals with a different development
phase (see Table 1). Furthermore, the
authors are from research groups
across the globe, including North
America, South America, Europe,
and the Middle East.

In “Barriers Faced by Newcom-
ers to Software-Crowdsourcing Proj-
ects,” Alexandre Zanatta and his
colleagues examine how new devel-
opers join software crowdsourcing
projects and, as the title suggests,
the variety of barriers they face. By
discovering what the barriers are in
a project, its owners and other in-
volved developers can take appropri-
ate action to remove those barriers,
which in turn can help to involve
more people. Ultimately, crowd-
sourcing aims to involve a large

number of developers—that’s what
makes it crowdsourcing. If suf� cient
people are involved, success will be
more likely.

In “The Crowd in Requirements
Engineering: The Landscape and
Challenges,” Eduard Groen and his
colleagues discuss how to engage the
crowd in requirements elicitation. Re-
quirements elicitation is a key activity
in software development—after all,
getting system requirements right early
during a project can prevent much re-
work. Groen and his colleagues distin-
guish between pull feedback, which is
initiated by a software supplier, and
push feedback, which is initiated by a
crowd of customers. Engaging users—
the crowd—to elicit feedback that
leads to new system requirements em-
phasizes the need for the continuous
evolution of systems. However, this
approach has its challenges, as the au-
thors discuss.

In “What Do Developers Use the
Crowd For? A Study Using Stack

TA
B

L
E

 1 Software development phases, challenges, and related research in this issue.

Phase Challenge Related research

Onboarding How can developers overcome the
dif� culties of joining new projects?

Alexandre Zanatta and his colleagues discuss the barriers to joining
new projects and de� ne strategies to overcome them.

Requirements
elicitation

How can developers identify and validate
software requirements, and how can they
effectively involve users in this process?

Eduard Groen and his colleagues present a vision of requirements
elicitation with the crowd. They discuss factors such as the crowd’s
motivation to participate, feedback elicitation, and feedback analysis.

Development How can developers leverage the wisdom
of the crowd to learn about technologies
needed for software development?

Rabe Abdalkareem, Emad Shihab, and Juergen Rilling study why
and how developers use the Stack Over� ow question-and-answer
platform.

Testing What’s an effective way to test software
that should run on a variety of hardware
platforms?

Niklas Leicht, Ivo Blohm, and Jan Marco Leimeister present three
approaches to leveraging different types of crowds in software
testing.

Maintenance How can developers quickly develop an
understanding of a code base during
software maintenance?

Sahar Badihi and Abbas Heydarnoori present CrowdSummarizer,
an approach that leverages crowdsourced input to help developers
understand code bases during software maintenance.

Evolution How can developers incorporate feedback
from a large number of users to determine
the future evolution of software?

María Gómez and her colleagues present the architecture for
App Store 2.0, a mobile-software ecosystem that incorporates
crowdsourced feedback to support mobile-app evolution.

34 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Overflow,” Rabe Abdalkareem and
his colleagues report on one of the
most popular Q&A sites for devel-
opers. Q&A sites such Stack Over-
flow are basically crowdsourcing
platforms that let developers ben-
efit from the wisdom of the crowd.
Abdalkareem and his colleagues

performed a study that linked data
from Stack Overflow to commit
data on GitHub to better understand
why and how developers use Stack
Overflow.

In “Leveraging the Power of the
Crowd for Software Testing,” Nik-
las Leicht and his colleagues argue
that testing is becoming increasingly
challenging because of the increased
variety of hardware configurations.
They present three crowdsourced
software-testing approaches, each
illustrated with a real-world case
study. The article concludes with
concrete steps for getting started.

In “CrowdSummarizer: Auto-
mated Generation of Code Sum-
maries for Java Programs through
Crowdsourcing,” Sahar Badihi and
Abbas Heydarnoori propose an ap-
proach that leverages the crowd to
generate code summaries and em-
ploys gamification to motivate de-
velopers to contribute. The result-
ing summaries can help developers
quickly gain a good understanding
of a code base when they perform
software maintenance.

In “App Store 2.0: From Crowd-
sourced Information to Actionable
Feedback in Mobile Ecosystems,”

María Gómez and her colleagues
describe an architecture for future
mobile-app stores. They discuss how
they implemented several of this ar-
chitecture’s key components (and
provide links to their earlier research
that offers technical details). App
stores are a prime example of a soft-

ware ecosystem, a trend that’s be-
coming increasingly important to the
software industry.18 Software eco-
systems consist of a platform (for ex-
ample, Android, iOS, or the Eclipse
IDE), third-party extension or plug-
in providers (app developers), and us-
ers. The article demonstrates that a
software ecosystem that’s designed
to leverage different types of crowds
greatly benefits all the stakeholders
in the ecosystem.

S ome examples of crowd-
sourcing such as Stack Over-
flow, bug bounties, and open

source development are already firmly
established. But we believe that many
additional forms of crowdsourcing
have the potential to further dis-
rupt software development practice.
Such emerging topics might seem ir-
relevant to the daily practice of soft-
ware engineering, in which project
deadlines are common and devel-
opers have little time to experiment
with new approaches. One goal of
this theme issue is to help overcome
that mind-set by showcasing a vari-
ety of visions and practical use cases
of crowdsourcing.

The practice of software engi-
neering is continually changing.
New best practices emerge at com-
panies that are willing to experi-
ment, and researchers are propos-
ing new techniques and models
that could help software companies
achieve their goals. The future of
software engineering will involve a
variety of collaborations beyond tra-
ditional organizational boundaries,
including crowd communities. The
articles in this theme issue offer a
taste of what this future might look
like. We hope they inspire software
professionals to consider how tomor-
row’s software systems can benefit
from crowdsourcing.

For a list of useful crowdsourcing
resources, see the related sidebar.

Acknowledgments
We thank all the authors who submitted

to this theme issue. We’re also grateful to

the many expert reviewers who carefully

evaluated the submissions. Science Foun-

dation Ireland grants 15/SIRG/3293 and

13/RC/2094 partly supported this work.

References
1. T.D. LaToza and A. van der Hoek,

“Crowdsourcing in Software Engi-

neering: Models, Motivations, and

Challenges,” IEEE Software, vol. 33,

no. 1, 2016, pp. 74–80.

2. J. Howe, “The Rise of Crowdsourc-

ing,” Wired, 1 June 2006; www

.wired.com/2006/06/crowds.

3. S. Cooper et al., “Predicting Protein

Structures with a Multiplayer Online

Game,” Nature, vol. 466, no. 7307,

pp. 456–460.

4. J. Surowiecki, The Wisdom of

Crowds, Anchor, 2005.

5. A.L. Zanatta et al., “Software

Crowdsourcing Platforms,” IEEE

Software, vol. 33, no. 6, 2016,

pp. 112–116.

Many forms of crowdsourcing have the
potential to further disrupt software

development practice.

 MARCH/APRIL 2017 | IEEE SOFTWARE 35

6. K. Mao et al., “A Survey of the Use of

Crowdsourcing in Software Engineer-

ing,” J. Systems and Software, 2016;

doi:10.1016/j.jss.2016.09.015.

7. J. Howe, “Crowdsourcing: A

Definition,” blog, 2 June 2006;

 crowdsourcing.typepad.com

/cs/2006/06/crowdsourcing_a.html.

8. K. Stol and B. Fitzgerald, “Two’s

Company, Three’s a Crowd: A Case

Study of Crowdsourcing Software

Development,” Proc. 36th Int’l Conf.

Software Eng. (ICSE 14), 2014, pp.

187–198.

9. P.J. Ågerfalk, B. Fitzgerald, and K.

Stol, “Not So Shore Anymore: The

New Imperatives When Sourcing

in the Age of Open,” ECIS 2015

Completed Research Papers, 2015,

paper 2.

10. X. Wang et al., “Microblogging in

Open Source Software Development:

The Case of Drupal Using Twitter,”

IEEE Software, vol. 31, no. 4, 2014,

pp. 72–80.

11. L. Dabbish et al., “Social Coding in

GitHub: Transparency and Collabo-

ration in an Open Software Reposi-

tory,” Proc. ACM 2012 Conf. Com-

puter Supported Cooperative Work

(CSCW 12), 2012, pp. 1277–1286.

12. A. Begel, J. Bosch, and M.A. Storey,

“Social Networking Meets Software

CROWDSOURCING RESOURCES
A variety of resources about crowdsourcing are available;
here’s a small selection.

ARTICLES AND BOOKS
Much has been written on crowdsourcing. The following
publications are excellent introductions to the topic:

• J. Howe, “The Rise of Crowdsourcing,” Wired, 1 June
2006; www.wired.com/2006/06/crowds. This seminal
article discusses several examples of crowdsourcing.

• J. Surowiecki, The Wisdom of Crowds, Anchor, 2005.
• J. Howe, Crowdsourcing: Why the Power of the Crowd Is

Driving the Future of Business, Crown Business, 2008.
• D.C. Brabham, Crowdsourcing, MIT Press, 2013. This is

one of the first academic books on the topic.
• W. Li et al., eds., Crowdsourcing: Cloud-Based Software

Development, Springer, 2015. This is a collection of
chapters by a variety of researchers.

• T.W. Malone and M.S. Bernstein, eds., Handbook of Col-
lective Intelligence, MIT Press, 2015. This is a thorough
academic treatment of the many crowdsourcing-related
models.

EVENTS
A wide range of scientific events publish research on crowd-
sourcing in a computing context; here are just a few.

Dedicated Conferences and Workshops

• Crowdsourcing in Software Engineering (CSI-SE). The
CSI-SE workshop series will run its fourth edition in

May 2017, colocated with the International Confer-
ence on Software Engineering. See csise2017
.github.io.

• International Symposium on Software Crowdsourcing
(ISSC). ISSC has had two editions (2015 and 2016).

• Conference on Human Computation and Crowdsourc-
ing (HCOMP). The fifth edition will take place in
October 2017. See humancomputation.com/2017.

General Conferences

• Computer-Supported Cooperative Work and Social
Computing (CSCW). CSCW is the premier conference on
the design and use of technologies for individuals and
communities. The 20th edition of CSCW was in Febru-
ary 2017. See cscw.acm.org/2017.

• Conference on Human Factors in Computing Systems
(CHI). CHI is the top conference for research on human–
computer interaction. CHI 2017 will take place in May
2017. See www.sigchi.org/conferences.

• International Conference on Software Engineering (ICSE).
ICSE is the primary conference on software engineering
research and covers a range of software development
topics. The 39th edition of ICSE will occur in May 2017.
See www.icse-conferences.org.

• International Conference on Information Systems (ICIS).
ICIS is the main conference on information systems
research, which is concerned with the development
of information systems and their impact on users and
society. The 38th edition of ICIS will be in December
2017. See aisnet.org/?ICISPage.

36 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

FOCUS: GUEST EDITORS’ INTRODUCTION

Development: Perspectives from

GitHub, MSDN, StackExchange, and

TopCoder,” IEEE Software, vol. 30,

no. 1, 2013, pp. 52–66.

13. K. Boudreau, N. Lacetera, and K.R.

Lakhani, “Incentives and Problem

Uncertainty in Innovation Contests:

An Empirical Analysis,” Manage-

ment Science, vol. 57, no. 5, 2011,

pp. 843–863.

14. D. Geiger, Personalized Task Recom-

mendation in Crowdsourcing Sys-

tems, Springer, 2016.

15. T.D. LaToza et al., “Borrowing from

the Crowd: A Study of Recombi-

nation in Software Design Com-

petitions,” Proc. 37th Int’l Conf.

Software Eng. (ICSE 15), 2015;

doi:10.1109/ICSE.2015.72.

16. K. Stol and B. Fitzgerald, “Inner

Source—Adopting Open Source De-

velopment Practices within Organiza-

tions: A Tutorial,” IEEE Software,

vol. 32, no. 4, 2015, pp. 60–67.

17. R. Musson et al., “Leveraging the

Crowd: How 48,000 Users Helped

Improve Lync Performance,” IEEE

Software, vol. 30, no. 4, 2013,

pp. 38–45.

18. J. Bosch, “Speed, Data, and Ecosys-

tems: The Future of Software Engi-

neering,” IEEE Software, vol. 33,

no. 1, 2016, pp. 82–88.

A
B

O
U

T
 T

H
E

 A
U

T
H

O
R

S

KLAAS-JAN STOL is a Research Fellow with Lero—the

Irish Software Research Centre. His research focuses on new

software development approaches that involve communities

of developers, such as inner-sourcing and crowdsourcing. Stol

received a PhD in computer science from the University of

Limerick. Contact him at klaas-jan.stol@lero.ie .

THOMAS D. LATOZA is an assistant professor of computer

science at George Mason University. His research focuses on

human aspects of software development, including empirical

studies of practice and the design of novel tools for program-

ming, software design, and collaboration. LaToza received a

PhD in software engineering from Carnegie Mellon University.

Contact him at tlatoza@gmu.edu.

CHRISTIAN BIRD is a researcher in Microsoft Research’s

Empirical Software Engineering group. He’s interested primarily

in the relationship between software design, social dynamics,

and processes in large development projects and in develop-

ing tools and techniques to help software teams. Bird received

a PhD in computer science from the University of California,

Davis. Contact him at christian.bird@microsoft.com.

Read your subscriptions
through the myCS
publications portal at

http://mycs.computer.org

IEEE Software seeks practical, readable

articles that will appeal to experts and nonexperts

alike. The magazine aims to deliver reliable

information to software developers and managers

to help them stay on top of rapid technology

change. Submissions must be original and no

more than 4,700 words, including 250 words

for each table and � gure.

Author guidelines:
www.computer.org/software/author

Further details: software@computer.org

www.computer.org/software

Call Articles
 for

See www.computer.org
/software-multimedia
for multimedia content
related to this article.

/software-multimedia
for multimedia content
related to this article.

