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Figure 1: In Hypothesizer, a developer frst demonstrates a defect while Hypothesizer records the program behavior. The 
developer then works collaboratively with Hypothesizer to fnd relevant hypotheses, answering questions to clarify the defect’s 
symptoms. The developer tests a hypothesis by investigating behavior using a timeline of key events and follows step-by-step 
instructions to implement a fx. 

ABSTRACT 
When software defects occur, developers begin the debugging pro-
cess by formulating hypotheses to explain the cause. These hypothe-
ses guide the investigation process, determining which evidence 
developers gather to accept or reject the hypothesis, such as parts 
of the code and program state developers examine. However, exist-
ing debugging techniques do not ofer support in fnding relevant 
hypotheses, leading to wasted time testing hypotheses and exam-
ining code that ultimately does not lead to a fx. To address this 
issue, we introduce a new type of debugging tool, the hypothesis-
based debugger, and an implementation of this tool in Hypothesizer. 
Hypothesis-based debuggers support developers from the begin-
ning of the debugging process by fnding relevant hypotheses until 
the defect is fxed. To debug using Hypothesizer, developers frst 
demonstrate the defect, generating a recording of the program 
behavior with code execution, user interface events, network com-
munications, and user interface changes. Based on this information 
and the developer’s descriptions of the symptoms, Hypothesizer 
fnds relevant hypotheses, analyzes the code to identify relevant 
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evidence to test the hypothesis, and generates an investigation plan 
through a timeline view. This summarizes all evidence items re-
lated to the hypothesis, indicates whether the hypothesis is likely 
to be true by showing which evidence items were confrmed in the 
recording, and enables the developer to quickly check evidence in 
the recording by viewing code snippets for each evidence item. A 
randomized controlled experiment with 16 professional developers 
found that, compared to traditional debugging tools and techniques 
such as breakpoint debuggers and Stack Overfow, Hypothesizer 
dramatically improved the success rate of fxing defects by a factor 
of fve and decreased the time to debug by a factor of three. 
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1 INTRODUCTION 
When a program behaves unexpectedly, developers often ask them-
selves, “Why is the program not working as expected?” They then 
begin to formulate hypotheses to explain the cause of the defect 
(e.g., “I think I may not have properly parsed the data coming from 
the server”) [26, 33, 45]. These hypotheses serve as a guide for the 
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rest of the debugging process, during which developers gather evi-
dence to accept or reject the hypothesis. Evidence may be found 
in many places, such as source code, program state as observed 
through the debugger or logs, or network communications [4, 26]. 
If a developer has a hypothesis that correctly explains the cause of 
the defect, their chances to fx the defect increase signifcantly [2]. 

However, identifying a correct hypothesis can be a daunting task 
for developers. Instead, developers often formulate many incorrect 
hypotheses, leading to time-consuming investigation gathering 
evidence to test hypotheses that do not yield any progress towards 
a fx [2, 8, 20]. For example, when a program fails to respond to 
a user’s click, developers may struggle to determine the correct 
hypothesis due to the numerous possible causes of such a defect [36]. 
A button may not work as expected for many reasons, ranging 
from an improperly implemented click event handler to broken 
asynchronous communication between servers triggered after the 
click. Investigating each hypothesis they formulate, developers may 
waste valuable time and resources investigating hypotheses that do 
not advance the debugging process. In some cases, developers may 
become stuck, unable to identify any further hypotheses, making it 
even more challenging to fx the defect. 

While traditional debuggers assist developers in more easily 
observing runtime values or in localizing the defect to a specifc 
line of code, these tools do not explicitly help to fnd a hypothesis. 
Developers must frst still rely on their knowledge to formulate a 
hypothesis and then use these tools to test it. Without a hypothe-
sis, developers may end up stepping through the entire program 
without progressing toward a fx [22]. The most efective tool for 
developers to fnd the correct hypothesis is to seek help from ex-
perienced developers [19, 26]. Hypotheses that explained a defect 
in one program may be applied to other programs with the same 
underlying issue. Expert developers who have encountered defects 
before leverage this experience to formulate a hypothesis. However, 
these hypotheses reside in experts’ heads, and current methods for 
sharing and searching for them such as Stack Overfow often do 
not work efectively [7, 30, 37]. 

This raises an important question: How can a debugger di-
rectly assist in fnding and testing hypotheses? To address this 
question, we propose the concept of hypothesis-based debuggers, 
which support developers in working with hypotheses throughout 
the debugging process. Hypothesis-based debuggers work collabo-
ratively with the developer throughout the debugging process to 
fnd and test relevant hypotheses until the defect is fxed. We have 
implemented this approach in Hypothesizer (Figure 1). 

To begin debugging with Hypothesizer, a developer demonstrates 
a defect by interacting with the program. Hypothesizer records 
program behavior during this interaction, encompassing code exe-
cution, user interface events, network communications, and user 
interface changes. Hypothesizer then fnds relevant hypotheses by 
loading a dataset of hypotheses and querying the recording for 
evidence which confrms or contradicts each hypothesis. Each hy-
pothesis consists of a description (e.g., "You may not have parsed the 
data coming from the server correctly"), a set of labels describing 
the defect’s symptoms (e.g., "clicking a button does nothing"), and 
a list of conditions (e.g., a user clicks on a button, a click event is 
triggered, data is loaded from the server, but the parsing API is not 
used). When a program behavior satisfes a condition, it provides 

evidence that the hypothesis is relevant. Hypothesizer reports rele-
vant hypotheses matching at least 50% of its conditions within the 
recorded behavior. To further narrow down relevant hypotheses, 
the developer may select labels describing defect symptoms. Hy-
pothesizer then presents an investigation plan to test a hypothesis 
in the form of a timeline view. This summarizes evidence identifed 
in the recording which confrms or contradicts each condition and 
allows the developer to quickly examine evidence by viewing code 
snippets for each evidence item. The investigation plan includes 
potential code locations for modifcations to fx the defect. 

Hypothesizer’s ability to fnd relevant hypotheses stems from its 
access to and use of a dataset of hypotheses capturing the knowl-
edge of experienced developers. For this study, the frst author 
populated a dataset with ten hypotheses based on discussions of 
defects on Stack Overfow. To evaluate Hypothesizer’s ability to 
utilize the hypotheses dataset, we introduced ten defects relevant to 
these hypotheses into separate open-source web applications. We 
found that Hypothesizer successfully identifed the most relevant 
hypothesis for all of the defects in multiple programs. 

In a randomized controlled experiment with 16 professional 
developers, we examined the efectiveness of Hypothesizer in as-
sisting developers with debugging. The fndings indicate that when 
developers employed Hypothesizer, they were signifcantly more 
successful in fxing defects than when they relied on traditional 
tools such as breakpoints debugger and Stack Overfow. Developers 
with Hypothesizer fxed the defect within eight minutes. In con-
trast, without Hypothesizer, developers struggled, with only 19% 
of developers successfully fxing the defect, taking an average time 
of 21 minutes. Hypothesizer helped developers to identify relevant 
hypotheses and fx the defect with fewer code navigation and pro-
gram reruns. Even with limited knowledge of the program being 
debugged, the timeline view and step-by-step plan provided by Hy-
pothesizer enabled developers to investigate relevant hypotheses 
and fx defects more efciently. 

The contributions of this paper are : 

• The concept of hypothesis-based debuggers, and an initial 
prototype for web debugging in Hypothesizer. Hypothesis-
based debugging supports the developer throughout the de-
bugging process to demonstrate the defect, fnd relevant 
hypotheses, gather evidence to test hypotheses, and imple-
ment a fx. 

• Evidence from a technical evaluation demonstrating the abil-
ity to successfully identify relevant hypotheses for defects 
in open source applications within a few seconds. 

• Evidence from a randomized controlled experiment on the 
impact of hypothesis-based debugging on the debugging 
process. 

2 MOTIVATING EXAMPLE 
Sara is a software engineer on a team building a movie search 
app using modern web technologies. Her current task involves 
implementing a fltering feature for the search interface. While she 
has managed to implement the basic fltering functionalities and UI 
elements, she notices that clicking the search button after typing 
any movie in the search input does not show any results. 
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Figure 3: Developers clarify their intent by selecting one or 
more symptom labels. Hypothesizer categorizes labels into 

) and less likely descriptions ( most likely ( ). Hypothe-
sizer then lists relevant hypotheses ( ).Figure 2: Developers click the “Start REC” button to start 

the recording, demonstrate the defect within a fully in-
strumented Chrome web browser, and generate a record-
ing until ending the session. 

“Why does clicking the search button not show any movies?”, 
Sara asks. Rather than formulate and investigate hypotheses with 
a traditional debugger, Sara decides to start with Hypothesizer. 

When Sara opens Hypothesizer, two panels immediately ap-
pear (Figure 2). The frst panel is an instrumented Chrome browser 
running the movies search app, as shown in Figure 2 ( ). The 
second panel is the Hypothesizer recording interface, shown in 
Figure 2 ( ). Sara begins debugging with Hypothesizer by demon-
strating the defect. She clicks the “Start REC” button, moves her 
cursor to the movie app and types “Superman”, and clicks the search 
button. After demonstrating that the movies search button does 
not show any movie, she clicks “Stop REC” inside Hypothesizer. 

Hypothesizer prompts Sara to wait while identifying relevant hy-
potheses. After a few seconds, Hypothesizer asks Sara to select one 
or more labels describing the symptoms of the defect. These labels 
are grouped into most likely and less likely descriptions. Sara reads 
through the labels and selects two. The frst states that the defect 
is “Unable to render data fetched from the server” (Figure 3 ), 
which she picked because the movie search app communicates 
with a server to load the movie’s data. The second states, “No re-
sponse when moving the mouse out of an element” (Figure 3 ). 
Although Sara is unsure about the relation between the defect and 
this symptom, she selects it as she thinks the program may need to 
respond when the mouse moves from the search button. 

Based on these selections, Hypothesizer ofers Sara two relevant 
hypotheses that may explain the defect (Figure 3 ). Sara begins 
her investigation by selecting the hypothesis “You are only han-
dling the onmouseOver event, but not the onmouseOut event.” She 
reviews its description and examines the timeline view summariz-
ing the evidence supporting it. Sara notices that this hypothesis 

Figure 4: Evidence contradicting the hypothesis is indicated 
with a warning indicator ( ) in the timeline ( ). 

has a contradictory evidence item, indicated with a warning indica-
tor ( ) (Figure 4). The hypothesis expects a callback handler of a 
mouseOver event within the recorded program behavior. However, 
Hypothesizer did not fnd this in the program behavior, suggest-
ing the hypothesis may be incorrect. Sara quickly moves on to a 
diferent hypothesis. 

Sara continues debugging by selecting a hypothesis which sug-
gests that “The data received from the server is not being parsed, 
resulting in the program not rendering anything.” (Figure 5 ). 
She quickly skims the timeline view of the evidence and notices 
no contradictory evidence. She proceeds to review each item in 
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Figure 5: Developers test a hypothesis by expanding it, revealing an extended description( ) and timeline view summarizing 

evidence ( ) confrming (indicated with a ) or contradicting the hypothesis. Evidence items may also indicate that they 
contain a potential starting point for a fx (indicated with a )( ), with step-by-step instructions for implementing a fx ( ). 

the timeline, clicking and reading each item’s description and ex-
amining the associated details, such as source code, runtime state, 
network activities, and events (Figure 5 ). 

As she investigates the evidence, Sara sees that most items in the 

timeline are marked with a checkmark symbol ( ), indicating that 
these evidence items confrm the relevance of the hypothesis. How-
ever, one item is marked with a cross symbol ( ), which prompts 
Sara to wonder what it means. She clicks on it, and discovers that 
it indicates a potential starting point to fx the defect (Figure 5 ). 
Hypothesizer provides step-by-step instructions for fxing the de-
fect. Based on her investigation so far, Sara believes this hypothe-
sis is correct and decides to follow the plan to fx the defect. She 
opens the suggested code location by clicking “Show in Editor” (Fig-
ure 5 ). After making the suggested changes, Sara reruns the 
app and verifes that the defect is fxed. 

3 RELATED WORK 
Hypothesizer builds on decades of work examining the process by 
which developers debug as well as prior debugging tools that help 
developers debug more efectively. 

Early research on code comprehension and debugging demon-
strated the critical role of hypotheses in the debugging pro-
cess [9, 16, 27, 29, 39]. Brooks [9] introduced the idea of “global 
hypotheses” that drive developers to search for evidence and re-
fne their understanding of a program. Letovsky [27] observed 
professional developers as they asked questions and formulated 
hypotheses in the form of “conjectures” to guide their debugging 
eforts. A study by Jefries [16] found that experts were more likely 

to form correct hypotheses and efectively fnd relevant evidence. 
These early studies provide insight into the mental processes in-
volved in debugging and suggest that the ability to form and test 
hypotheses is important to efective debugging. 

Other research has focused on the specifc steps that develop-
ers take during the debugging process. Developers ask questions 
and form hypotheses about the cause of incorrect output and then 
test these hypotheses by examining code and inspecting program 
state [18, 19, 33]. However, most hypotheses that developers form 
are incorrect [2, 8, 19, 20], leading them to inspect irrelevant code 
and prolonging debugging. Information Foraging Theory has been 
used to explain how developers navigate through code while de-
bugging by focusing on the scent of relevant code and avoiding 
explicit reference to developers’ hypotheses [25]. 

When developers are unable to form hypotheses about the cause 
of a fault, they may turn to external resources for help. This often 
involves searching the internet for possible explanations or asking 
questions in online communities such as Stack Overfow [38, 44]. 
However, the success of this approach depends on the developer’s 
ability to ask precise and well-informed questions and formulate 
high-quality search queries [7, 30, 37]. Another source of hypothe-
ses is expert colleagues or coworkers [15]. In teams working on 
a large codebase, developers often communicate with each other 
to share knowledge and expertise. However, asking a teammate 
for help can introduce a context switch that wastes time and dis-
rupts the debugging process, especially when the teammate is not 
immediately available [24]. Rather than ask a teammate each time 
a challenge occurs, developers may also capture and externalize 
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this knowledge for later use. In particular, developers may share 
strategic knowledge, but face challenges in communicating this 
knowledge efectively [5]. Tools may ofer better support for this 
process, ofering ways to share, fnd, and request programming 
strategies [6]. 

Many fully automated debugging tools do not present their re-
sults in a way that provides enough information for developers to 
understand the problem, why it is a problem, and what to do difer-
ently [17]. Fault localization tools and techniques have been built 
to help developers search for fault locations. For example, program 
slicing tools [40] often display to the user a ranked list of poten-
tially faulty statements [12, 43, 46], shrinking the search space of 
potentially faulty statements developers must presumably consider. 
However, studies have found that developers often struggle to form 
correct hypotheses to explain the underlying cause of the fault and 
that fault locations alone do not support this [3, 32, 42]. Developers 
raise concerns about the usability of the output produced by such 
tools, reporting that false positives and a large volume of warn-
ings make it difcult to efectively use the tool and understand the 
defect [17]. Automated analysis tools may detect code syntax or 
style errors but may be unable to identify defects caused by the 
absence of certain code patterns [41]. In these cases, the absence of 
code patterns may be crucial evidence in formulating a hypothesis, 
but static analysis tools are not designed to identify this type of 
evidence. 

A variety of interactive techniques have been proposed to 
improve debugging. The Whyline [21] allows developers to ask 
questions about program output, enabling them to interactively 
trace dependencies backwards and locate the source of the fault 
without making any assumptions about the incorrect behavior. 
REACHER [23] provides an interactive call graph visualization that 
encodes various properties to assist developers in answering ques-
tions related to causality, ordering, type membership, repetition, 
choice, and other relationships, helping developers to stay oriented 
while navigating. Timelapse [10] is an omniscient [28] debugging 
tool designed for rapidly recording, reproducing, and debugging 
interactive behaviors in web applications, allowing developers to 
browse, visualize, and navigate within recorded program execu-
tions using familiar debugging tools. These tools primarily focus 
on answering questions about program behavior, and do not di-
rectly address the task of fnding hypotheses that explain the defect 
behavior. 

While forming and testing hypotheses is essential to debug-
ging, current debugging tools lack support for this critical process. 
Our paper seeks to bridge this gap by introducing a new type of 
debugging tool known as hypothesis-based debuggers which aid 
developers in identifying and testing hypotheses about the cause 
of a defect. 

4 HYPOTHESIS-BASED DEBUGGERS 
In this paper, we introduce hypothesis-based debuggers, which 
ofer assistance throughout the debugging process by helping the 
developer demonstrate a defect, clarify the symptoms of the defect, 
identify a debugging hypothesis, and quickly test a hypothesis by 
identifying relevant evidence to examine. 

4.1 Design Goals 
Hypothesis-based debuggers aim to address three key design goals: 

(1) D1. Help developers fnd relevant hypotheses early in 
the debugging process. Defect behavior can be complex, re-
quiring reasoning about and connecting together user input, 
program state, code execution, network activity, API calls, 
and user interface changes, before developers may formulate 
hypotheses. Hypothesis-based debuggers assist developers 
in fnding relevant hypotheses early in the debugging pro-
cess. This helps in two ways. First, ensuring that developers 
focus on the most relevant hypotheses from the beginning 
saves time and efort by reducing the need to explore unre-
lated hypotheses. Second, having hypotheses to investigate 
from the beginning prevents developers from feeling stuck 
or directionless, providing a clear starting point for the de-
bugging process. Hypothesizer addresses this design goal 
by letting developers demonstrate a defect, clarify the ex-
pected behavior, and then view hypotheses with supporting 
evidence found in the recording (Section 4.2.1). 

(2) D2. Help developers gather evidence to test hypothe-
ses. Developers test hypotheses by gathering a wide vari-
ety of evidence, such as by adding log statements or using 
breakpoint debuggers to manually set of breakpoints, step 
through code, and inspect variables [3, 33]. This process 
can be time-consuming, particularly when developers must 
stitch together information from multiple tools for their in-
vestigation. Hypothesis-based debuggers gather together 
and display the necessary information for developers to test 
a hypothesis. Hypothesizer achieves this by providing an in-
vestigation plan, shown through an interactive timeline view 
of the evidence for each relevant hypothesis (Section 4.2.2). 

(3) D3. Help developers fx the defect. Possessing a hypoth-
esis without a clear understanding of how to fx the defect 
hinders a developer’s progress. For instance, developers may 
be aware that incorrect data parsing causes the defect, but 
may not know where or how to parse the data correctly. 
Hypothesis-based debuggers ofer developers step-by-step 
instructions to implement a fx, suggesting potential code 
locations to start and a general description of what a fx 
might entail. Hypothesizer addresses this design goal by 
providing step-by-step instructions that guide developers 
toward fxing the defect. These instructions outline specifc 
evidence items and their connection to the fx, indicating a 
potential location of the fx based on a related evidence item. 
We discussed this further in Section 4.2.3. 

4.2 Hypothesizer 
We developed Hypothesizer, a prototype hypothesis-based debug-
ger which helps developers to fnd and test hypotheses for web 
applications. Hypothesizer is implemented as a stand-alone debug-
ger utilizing the Chrome DevTools Protocol [11]. 

4.2.1 Finding Relevant Hypotheses (D1). Hypothesizer draws inspi-
ration from the process developers use to formulate a hypothesis. 
Developers gather information from various sources to comprehend 
program behavior and formulate hypotheses [26]. As in omniscient 
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Figure 6: ( ) As the developer demonstrates the defect, Hypothesizer records the program behavior. ( ) For each hypothesis 
in the dataset, Hypothesizer then queries the recorded program behavior for the hypothesis’s conditions. ( ) Hypothesizer 
reports hypotheses with all conditions marked as confrming evidence as most likely and less likely if more than half but not 
all conditions marked as confrming evidence. 

debuggers [28], Hypothesizer simplifes this process by asking the 
developer to demonstrate the defect a single time, capturing a trace 
recording all of the entire program behavior, and then letting the 
developer gather evidence by inspecting the recorded program 
behavior. After beginning the recording, developers interact with 
the program within a fully instrumented version of the Chrome 
browser, which Hypothesizer manages. Hypothesizer constructs a 
recording with timestamps of all user interface events, code execu-
tion, network communications, and user interface changes, until 
the developer terminates the recording session. Figure 2 illustrates 
the recording interface. 

The recording captures the program’s behavior, including the 
demonstration of the defect. Hypothesizer analyzes the record-
ing, using a dataset of hypotheses to identify relevant hypotheses. 
This dataset embodies the knowledge possessed by expert devel-
opers, who use this knowledge to formulate hypotheses more ef-
fectively [13]. Each hypothesis contains a list of conditions that 
describe the program’s behavior that would make the hypothe-
sis relevant. When a recorded behavior of a program satisfes a 
condition, it provides supporting evidence for the hypothesis. 

The conditions list of a hypothesis comprises descriptions of 
specifc instances of program behavior and the order in which they 
must be satisfed in the recording. Incorporating an order for condi-
tions enables Hypothesizer to determine a hypothesis’s relevance 
more precisely. To identify relevant hypotheses, Hypothesizer it-
erates through all hypotheses in the dataset and searches for their 
conditions within the recorded program. Hypothesizer employs 
Semgrep [35], an open source pattern-matching engine, to search 
for condition items within the program behavior. For each condition 
item in a hypothesis, Hypothesizer generates a Semgrep pattern us-
ing the open source library to represent an instance of the program 
behavior and queries it against the recorded behavior. Semgrep’s 

robust pattern-matching capabilities allow Hypothesizer to efec-
tively search for a wide variety of patterns representing conditions 
in the program’s behavior. For instance, consider a hypothesis with 
a condition item involving a submit button click. This condition 
can be described as follows: 
{ 
"EvidenceType ": "click ", 
"evidenceShape ": { 
"inputType ": "submit ", 
"target ": "BUTTON " 
}, 
"shouldBeFound ": "true " 
} 

Hypothesizer creates a Semgrep pattern to search for an entry 
in the program behavior that corresponds to a submit button click 
event. Figure 6 provides an overview of the process involved in 
identifying relevant hypotheses. 

Hypothesizer categorizes each item in a hypothesis’ conditions 
list as either confrming or contradictory evidence. A condition item 
is considered confrming evidence if it meets one of two criteria: 
it must either be present in the program behavior and expected 
to be found, or not present in the program behavior and not ex-
pected to be found. If a condition item does not meet these criteria, 
it is marked as contradictory evidence. Hypothesizer identifes 
hypotheses as relevant if 50% or more of the conditions list con-
tains confrming evidence. Hypothesizer then presents relevant 
hypotheses to developers in two categories: most likely, if all of the 
hypothesis’s conditions are marked as confrming evidence, and 
less likely, if more than half but not all conditions are marked as 
confrming evidence in the recorded program behavior. 

After identifying relevant hypotheses, Hypothesizer further nar-
rows down potentially relevant hypotheses by letting developers 
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Table 1: Evidence Types in Recording and Timeline View 

Evidence Type Icon Information Displayed 
Pressed keys, associated code 

keyboard event snippets, and their correspond-
ing locations. 
Click count, associated code Click/Submit event snippets, code location 

Mouseover element count, asso-
MouseOver event ciated code snippets, code loca-

tion 
OnmouseOut element count, as-

OnmouseOut event sociated code snippets, code lo-
cation 

Code pattern/API API calls count, associated code 
call snippets, code location 

# network requests, request bod-
Network request ies, associated code snippets, 

code location 
# network responses, their re-

Network response sponse bodies, associated code 
snippets, code location 
# UI changes, types of changes, 

UI changes removed and added code snip-
pets, code location 

describe the symptoms of the defect. Developers can choose one 
or more symptom labels, where each label corresponds to at least 
one relevant hypothesis Hypothesizer has identifed. Clarifying the 
defect’s symptoms helps recover the developers’ intention, which 
may be difcult to deduce solely from the program’s behavior. For 
example, suppose a developer intends a part of the interface to 
animate after clicking a button. If the animation does not work as 
expected, the developer may then select a label stating “animation 
is not working ”. With this additional information about the de-
veloper’s intent, Hypothesizer can focus on hypotheses related to 
animation. This level of specifcity is challenging to achieve from 
the recorded program behavior alone. 

4.2.2 Testing a Hypothesis with an Investigation Plan (D2). After 
identifying relevant hypotheses, Hypothesizer helps developers 
quickly skim the list and decide which to investigate frst. Hy-
pothesizer displays those with the most confrming evidence frst, 
showing a collapsible list of relevant hypotheses with a heading 
summarizing the hypothesis (Figure 3). Clicking on a hypothesis 
expands the hypothesis detail pane, ofering the developer an inves-
tigation plan to test the hypothesis through an interactive timeline 
view of evidence items (Figure 5). 

The interactive timeline summarizes how evidence found in the 
program’s behavior confrms the hypothesis. By clicking on each 
item in the timeline, developers can examine the evidence and view 
related code snippets from the source code. To further investigate 
a specifc code snippet, a developer can click on it, opening the 
corresponding source code within the developer’s IDE. Evidence 
items include user interface events, network activity properties, 

method calls in the execution trace, code patterns, or user interface 
changes. Each evidence item displays information based on its type. 
For example, network communication items display the request 
and response payloads, and UI changes show the type of change 
and what was added or removed (Table 1). 

To enable developers to quickly skim the evidence items in the 
timeline view, the type of each evidence item is indicated through 
an icon. Whether the evidence item was found in the recorded 
behavior is indicated by its opacity. Evidence marked with a ( ) 
indicates confrming evidence, meaning the evidence satisfed the 

condition of the hypothesis. Evidence marked with a ( ) indicates 
contradictory evidence, where the condition was not identifed in 
the recorded behavior, making the hypothesis less likely to be true. 

4.2.3 Explaining How To Fix The Defect (D3). Hypothesizer iden-
tifes at least one evidence item as an initial step to fx the defect, 
indicated with a cross mark ( ) on the left corner of its icon. 
Clicking on this item opens the evidence information as well as a 
"How to Fix?" section ofering step-by-step instructions to fx the 
defect (Figure 5 ). These instructions are built from a template 
in the hypothesis. These step-by-step instructions serve two pri-
mary purposes. First, they clarify the relationship between specifc 
evidence items and a potential fx. Second, they suggest a location 
and plan to implement a fx, which developers can follow by using 
the link to open the corresponding code in their IDE. 

4.2.4 Authoring Hypotheses. Experienced developers can share 
their expertise in identifying the root cause of defects by contribut-
ing to the dataset of hypotheses used by Hypothesizer. To author 
a hypothesis, a developer writes text explaining the hypothesis 
and the conditions that determines when it will apply. Develop-
ers frst write text that captures how the hypothesis explains the a 
cause of a defect. Developers then specify the hypothesis conditions 
through a two-step process. Developers frst record the program 
while demonstrating the defect. This recording is then exported by 
Hypothesizer as a JSON fle, which contains an itemized represen-
tation of the execution where each event is represented as an object 
and its properties. This data serves as the foundation for identifying 
the conditions of the hypothesis. Developers can use this to craft 
conditions, deciding how specifc or general the hypothesis should 
be based on their understanding of the defect (e.g., narrowing to 
a click event from a submit button rather than any click event). 
These conditions are then combined to form a hypothesis. Each 
condition includes a description of its relevance and importance 
to the hypothesis and a pattern describing how it appears in the 
execution, which can be used to construct a Semgrep pattern. An 
example of a hypothesis is shown in Appendix A. 

4.2.5 System Scope and Limitations. While the scope of our Hy-
pothesizer prototype is web applications, Hypothesizer is open 
source and may be adapted to support other types of applications. 
Hypothesizer uses the Chrome DevTools Protocol [11] to instru-
ment the Chrome browser. To extend Hypothesizer to application 
types that are incompatible with the Chrome web browser, users 
may either extend the Chrome DevTools Protocol for custom run-
time instrumentation or employ alternative methods of instrumen-
tation. 
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Table 2: A summary of the hypotheses dataset used in the evaluation of Hypothesizer. 

ID Defect Symptom(s) Hypothesis Conditions 
H1 

H2 

H3 

H4 

Incorrect add/remove item of a 
list of items, Unexpected reload 
of the page 
Rendering an empty page, Un-
able to render data fetched from 
the server 
No response when pressing 
keys on the keyboard 
No response when moving the 
mouse out of an element 

You are not using “preventDefault” API to pre-
vent the default behavior of the submit button. 

The data received from the server is not being 
parsed, resulting in the program not rendering 
anything. 
You are not attaching the event listener for key-
board events to the correct element. 
You only handle onmouseOver event, not on-
mouseOut event. 

keyboard event, submit event, no pre-
vent API call, network communication, 
UI reload 
click event, Get network request, net-
work response with JSON, no re-
sponse.json() API call 
click event, keyboard event, no onKey-
down callback 
mouseover event, mouseover callback, 
onmouseOut event, no onmouseOut 
callback 

H5 Animation is not working or 
sluggish 

You are not applying the animation inside set-
Timeout. 

click event, setState API call, UI change, 
no setTimeout API call, transform ani-
mation API call 

H6 

H7 

H8 

H9 

Clicking on a button does some-
thing unexpected 
Clicking on a button does noth-
ing 
Clicking on a button does some-
thing unexpected 
Clicking on a radio button se-
lects the wrong choice 

You are not explicitly passing the props to the 
onClick event handler. 
You are not updating the state of the element(s) 
after the onClick event handler is called. 
You are not assigning a type to the button ele-
ment. 
You are not placing the label element for the 
radio elements correctly 

click event, onClick callback, no props 
passed to onClick callback 
click event, onClick callback, no setState 
API call 
click event, onClick callback, no button 
with type property = button 
radio elements UI rendering, click on 
a radio element event, no label on the 
radio element 

H10 Clicking on a button does noth-
ing 

You are not using currentTarget API to get the 
button value. 

click event, onClick callback, pass the 
button value inside the callback, no cur-
rentTarget API call, error handling API 
call 

Hypothesizer is designed to process codebases which generate 
tens of thousands of recorded program behavior entries. Hypoth-
esizer is multi-threaded, signifcantly reducing analysis time. Hy-
pothesizer’s scalability is primarily infuenced by the quantity of 
conditions to be evaluated rather than the number of hypotheses. 
Our observations revealed that many hypotheses share identical 
conditions (as shown in Table 3). Based on this insight, Hypothe-
sizer evaluates unique conditions once and caches the results. 

For defect recordings which are longer or contain numerous 
user interactions, processing time will increase. Several additional 
techniques may ofer the potential for further improving scaling 
behavior. The analysis of defect recordings may be ofoaded from 
developers’ local machines to more scalable cloud servers. This 
approach may introduce security and privacy risks by exposing 
information about the source code to servers not owned by the 
developer. But emerging commercial tools such as Replay [34] 
suggest that it is possible to ofoad computations to third-party 
servers while ensuring privacy. 

5 TECHNICAL EVALUATION 
To examine the ability of Hypothesizer to identify the cause of 
defects in real-world open source applications, we conducted a 
technical evaluation. The goal of this evaluation was to examine 

how efectively hypotheses represent a cause of a defect by inves-
tigating the extent to which conditions for hypotheses generalize 
efectively across programs. We applied each hypothesis to diferent 
programs, rather than new defects. We examined the size of the 
program behavior recording, performance of Hypothesizer in work-
ing with these recordings, and overall efectiveness in fnding the 
correct hypothesis. We inserted defects into each application and 
then examined the performance of Hypothesizer across these appli-
cations and defects. The study materials as well as the Hypothesizer 
source code are publicly available [1]. 

5.1 Method 
We aimed to select prevalent defects in web applications that pose 
challenges for developers. Modern web apps incorporate extensive 
interactive features, encompassing button clicks, keyboard inputs, 
mouse events, and server communications. We chose ten defects 
representing a broad spectrum of evidence types, adapted from 
Stack Overfow questions. Each defect was introduced into two 
open source web applications: a To-Do app and one of six addi-
tional applications, including applications for Movie Search, Tetris, 
Excalidraw, an Interactive Timeline, a Simple Survey, or Online 
Pizza Order. 

We assembled a dataset of ten hypotheses through a fve-step 
process. First, we began by investigating popular posts on Stack 
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Table 3: The result of the technical evaluation of Hypothesizer across multiple defects and web applications. For each defect 
(H1 to H10), the table lists the program name, time taken to demonstrate the defect, size of the program behavior recording 
(expressed in fles, LOC, events, and API calls, with fles and LOC presented as a percentage of the total), time taken to fnd 
relevant hypotheses, and the most likely and less likely hypotheses identifed. The fnal row displays the mean values of these 
metrics. 

Size of Program Behavior Recording (% of total) Relevant Hypotheses 
ID Program Name Time (s) Files LOC Events API Calls Time (s) Most Likely Less Likely 

H1 
To-Do 
Movies Search 

5 
6 

18 (72%) 
5 (50%) 

487 (71%) 
193 (62%) 

37 
109 

5263 
5974 

9 
10 

H1 
H1 

H2, H7 
H7 

H2 
To-Do 
Movies Search 

6 
6 

4 (16%) 
4 (40%) 

121 (17%) 
158 (51%) 

29 
37 

4934 
4743 

8 
8 

H2 
H2 

H7 
H7 

H3 
To-Do 
Tetris Game 

3 
3 

3 (12%) 
1 (4%) 

103 (14%) 
166 (4%) 

12 
10 

648 
598 

6 
6 

H3 
H3 

H5 
H5 

H4 
To-Do 
Movies Search 

4 
4 

15 (60%) 
5 (50%) 

495 (65%) 
208 (63%) 

16 
72 

1155 
1577 

7 
8 

H4 
H4 

H5, H7, H6 
H5, H7, H6 

H5 
To-Do 
Excalidraw 

3 
3 

2 (8%) 
34 (8%) 

61 (9%) 
16060 (12%) 

7 
9 

728 
1001 

6 
9 

H5 
H5 

H3 
H6 

H6 
To-Do 
Movies Search 

7 
7 

17 (68%) 
5 (50%) 

483 (69%) 
197 (62%) 

41 
102 

5965 
6109 

9 
9 

H6 
H6 

H5, H7 
H5, H7 

H7 
To-Do 
Interactive TimeLine 

4 
5 

17 (68%) 
1 (20%) 

498 (68%) 
88 (56%) 

45 
30 

5028 
2323 

9 
8 

H7 
H7 

-
H3, H5 

H8 
To-Do 
Simple Survey 

3 
3 

15 (60%) 
1 (50%) 

387 (55%) 
102 (94%) 

12 
12 

1160 
528 

7 
6 

H8 
H8 

H7 
H3, H5, H6 

H9 
To-Do 
Online Pizza Order 

3 
3 

5 (20%) 
2 (4%) 

240 (33%) 
106 (1%) 

12 
11 

805 
708 

6 
6 

H9 
H9 

H3, H5 
H3, H4, H5, H7 

H10 
To-Do 
Online Pizza Order 

3 
3 

5 (20%) 
1 (2%) 

243 (33%) 
74 (1%) 

12 
11 

714 
1421 

6 
8 

H10 
H10 

H3, H5 
H3, H4, H5 

Mean 4 8 (34%) 1024 (42%) 31 2569 8 

Overfow. We aimed to understand common issues that web devel-
opers frequently encounter. From our investigation, we selected 
posts that we believed to represent ten common defects, paying 
particular attention to the symptoms and causes discussed within 
these posts. Second, we locally reproduced these defects. Third, we 
utilized Hypothesizer’s recording functionality to capture program 
behavior associated with each defect and extract relevant evidence 
items. We then constructed a hypothesis for each defect. The com-
plete dataset includes 38 conditions across ten hypotheses. Finally, 
we validated the hypotheses through peer review with experienced 
developers. A summary of the hypotheses dataset can be found in 
Table 2. 

We instrumented Hypothesizer to collect additional information 
for the technical evaluation. Specifcally, we logged the time to 
record the defect demonstration steps and fnd relevant hypothe-
ses. Additionally, we collected information regarding the program 
behavior recorded, including the number of fles, lines of code, and 
API calls. We conducted our technical evaluation on a MacBook 
Pro with an Apple M1 Pro processor with 32GB of RAM running 
macOS 13.3. 

5.2 Results 
Across all ten defects in each of the two applications we examined, 
Hypothesizer was able to correctly identify the correct hypothesis 

as the single most likely hypothesis. On average, Hypothesizer 
identifed two less likely hypotheses for each defect, providing 
other possible explanations for developers to investigate. Table 3 
summarizes the results. 

Hypothesizer’s recording feature efciently captured program 
behavior in brief recordings, lasting just a few seconds. On average, 
each recording comprised 31 events and 2,569 API calls. Hypothe-
sizer extracted a smaller portion of the code, averaging at less than 
half of the codebase. As the program size increased, Hypothesizer 
demonstrated greater precision. In one of the largest programs in 
the study (Online Pizza Order) with 14,000 lines of code, Hypoth-
esizer managed to narrow down the collected lines of code to a 
mere 74 lines. On average, Hypothesizer’s analysis to fnd relevant 
hypotheses took 8 seconds. 

6 EVALUATION 
We conducted a controlled experiment with 16 professional devel-
opers to assess the infuence of Hypothesizer on the debugging 
process. The primary aim of this evaluation was to investigate the 
system’s efcacy in supporting debugging tasks rather than exam-
ine the breadth of its applicability. In particular, we focused on the 
case where there exists a hypothesis which explains the defect, in 
addition to other unrelated hypotheses, and did not examine the 
case where there is no such hypothesis. 
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Table 4: Participant background, including years of profes-
sional and web development experience. 

ID Occupation Pro. Exp. Web Dev. Exp. 
D1 Software Engineer 2 2 
D2 Software Engineer 1.5 0.25 
D3 Software Developer 2 1.2 
D4 Software Engineer 2 1 
D5 Data Scientist 2 2 
D6 Mobile Application Engineer 3 3 
D7 Graduate Student (MS) 3 3 
D8 Graduate Student (PhD) 3 3 
D9 Graduate Student (PhD) 1 10 
D10 Front-end Developer 7 4 
D11 Software Engineer 2 2 
D12 Software Engineer 5 3 
D13 Software Engineer 1.5 1.5 
D14 Software Engineer 2 3 
D15 Web Developer 1 1 
D16 Software Engineer 1 2 

Mean 2.5 2.5 

6.1 Method 
The experiment was conducted online through a video conference, 
and participants were given access to the experimenter’s computer 
where Hypothesizer was installed. Participants were asked to debug 
two defects in open source web applications. Participants were 
randomly asked to use Hypothesizer as the only debugging tool on 
one debugging task. For the other task, participants were free to use 
any debugging tools or web resources, including Stack Overfow. 

6.1.1 Participants. After obtaining IRB approval, we started re-
cruiting participants on social media platforms such as Twitter, 
Slack, mailing lists, and personal contacts. We utilized the snowball 
sampling technique to recruit additional participants through the 
existing participants’ contacts. We included participants with at 
least one year of professional experience and who were familiar 
with web development. A total of 16 professional developers were 
recruited, with an average of 2.5 years of professional experience in 
the industry and web application development. Table 4 summarizes 
participants’ occupations and years of experience. 

6.1.2 Tasks. The goal of the debugging tasks in this study was to 
fx the defects successfully. Participants were given 30 minutes for 
each task, and the task ended when they demonstrated that the 
defect was fxed and the program functioned correctly. Participants 
in the control group were allowed to use any debugging tools, 
including the debugger, DOM viewer, logging, network analyzer, 
and any online resources. Half of the participants were assigned to 
debug the frst task using Hypothesizer (D4, D5, D6, D8, D10, D11, 
D14, D16), while the other half were asked to use Hypothesizer for 
the second task (D1, D2, D3, D7, D9, D12, D13, D15). 

Both tasks were based on a defect from the technical evaluation. 
In the frst task, participants were asked to fx a defect that caused 
a movie search app not to render the search results. In the second 
task, participants were asked to fx a defect in a Tetris game that 

Figure 7: Time spent debugging for participants with and 
without Hypothesizer. The maximum debugging time per 
task is 30 minutes. 

Table 5: Debugging work with and without Hypothesizer. 

Control Experimental 
Tools Used Logs, Breakpoints, DOM inspec- Hypothesizer 

tor, Network inspector, React 
devtools, Online resources 

% Success 19% 100% 
Avg. Time to Fix 21 minutes 8 minutes 
Avg. Files Viewed 4 1 
Avg. Program Reruns 11 3 

prevented the game from correctly responding to keyboard input 
to move and rotate blocks. The correct hypotheses for these defects 
are listed in Table 2 as H2 and H3. 

6.1.3 Post-task interview. Following each debugging task, the frst 
author conducted informal, open-ended interviews with the partici-
pants. These interviews aimed to gain insights into their experience 
with the debugging process, including the most challenging aspects 
of the task and any tools or techniques that were particularly help-
ful. Once participants had completed both tasks, we asked them to 
refect on the diferences they noticed in their debugging process 
when using Hypothesizer compared to debugging without it. 

6.2 Results 
Participants employing Hypothesizer managed to fx defects within 
an average debugging time of eight minutes. In contrast, only three 
participants (D6, D7, and D12) were successful without Hypothe-
sizer, taking an average of 21 minutes to fx the defects. These results 
highlight the substantial impact of Hypothesizer when compared 
to existing tools such as breakpoint debuggers and Stack Overfow 
(two-sided Wilcoxon signed-rank test, p-value < 0.001). Figure 7 
and table 5 summarize the diferences in debugging between the 
two groups. 
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6.2.1 Hypothesizer enabled developers to more eficiently identify 
relevant hypotheses with less efort. Participants without Hypothe-
sizer spent more time examining the program behavior. On average, 
they navigated four times the number of code fles and reproduced 
the defect four times more often. These participants relied on a 
broad range of tools, such as console logs (D1-D16), breakpoints 
(D1, D4, D6, D7, D10), the DOM inspector (D5, D10, D13), the 
network inspector (D1, D3, D9, D12-D15), and the React devtools 
(D1, D4, D9, D11). All, except for D1 and D3, searched the web for 
documentation, Stack Overfow posts, and code snippets. 

One of the main difculties that participants encountered was 
that the defects did not generate an explicit error message, which 
made the defect behavior “hidden”. Participant D2 expressed, 
“When working without Hypothesizer, the issue remained hidden. 
The program did not provide any feedback or error messages, and al-
though Stack Overfow was somewhat helpful, I felt like something 
was missing that prevented me from making progress. I appreciate 
how Hypothesizer addresses this by requiring me to replicate the 
bug.” 

A shared sentiment among the participants was that Hypothe-
sizer streamlined the process of observing the defect behavior. D5 
commented, “Hypothesizer summarizes what happened, so I didn’t 
need to set up breakpoints. All I had to do was reproduce the bug.” 
D4 mentioned that Hypothesizer required less efort than usual to 
observe the defect and come up with a hypothesis, stating, “I didn’t 
have to think deeply into the problem or create a description of 
the defect. I simply recorded my actions, and the tool handled the 
rest. Describing the defect behavior is often a problem for me, but 
Hypothesizer eliminated that requirement.” 

D1 and D3, in particular, did not seek assistance from online 
resources such as Stack Overfow to search for relevant hypotheses. 
They thought that the defect was “specifc” to their program, mak-
ing it impossible to fnd any helpful information on the internet. 
D3 explained, “I did not use Stack Overfow because the defect was 
linked to many specifc implementations you cannot express to 
Google or Stack Overfow.” Nonetheless, both defects encountered 
in our study were typical in web applications. 

6.2.2 The Timeline View aided developers in testing hypotheses, 
despite limited knowledge of the codebase. Participants found the 
Hypothesizer timeline view valuable in quickly focusing on related 
program behavior, replacing the traditional method of exploring 
the codebase while debugging. D5 reported, “The way I often debug 
is by setting up breakpoints and stepping through the program. 
Hypothesizer did not require that as it presents a timeline and 
made me check diferent things quickly.” D9 reported that “having 
the timeline right here and getting the information immediately” 
helped them test the relevant hypotheses faster. 

Participants appreciated the new experience Hypothesizer of-
fered in supporting testing hypotheses. D7 noted that “using Stack 
Overfow was like guessing my way through it,” In contrast, Hy-
pothesizer ofered “a complete thesis, explaining what was causing 
the problem and why,” which helped them test relevant hypothe-
ses more quickly. D8 and D12 explained how Hypothesizer made 
debugging more interactive, with D8 stating, “The step-by-step pro-
cess is very interactive and helpful for me. Without Hypothesizer, I 
would frst have to understand the codebase and inspect other stuf, 

and I might end up looking in places with no issues.” D12 reported 
that they would typically test many incorrect hypotheses frst, but 
with Hypothesizer they were able to skip this guessing process. 

Participants (D5, D6, D8-D10, and D12) found that Hypothe-
sizer not only guided them toward the relevant hypotheses but also 
helped dismiss initial, incorrect ones they might have considered 
without its support. D10 highlighted that sorting relevant hypothe-
ses by evidence derived from defect behavior allowed them to "focus 
on the more likely frst, which avoided wasting time testing into 
other hypotheses." D6 appreciated how Hypothesizer visualized 
relevant evidence items in the program behavior, enabling them to 
quickly discard initial incorrect hypotheses: "I like how Hypothe-
sizer showed me that the event handler and networking worked as 
expected in the timeline. In the real world, these are the frst things 
I would check if I face a similar bug, but manually." 

6.2.3 The step-by-step instructions facilitated fixing the defect con-
tributed to a deeper understanding of the defect. All participants 
were successful in fxing the defect while using Hypothesizer. They 
utilized the step-by-step “how to fx?” instructions to understand 
and fx the defect. Participants reported that Hypothesizer helped 
them learn while debugging, improving their ability to fx future 
defects. D8 said, “I will be able to fx future similar defects more 
efectively because Hypothesizer helped me learn how to look at 
diferent evidence.” 

Participants D11 and D13 observed that Hypothesizer was sim-
ilar to working with an experienced developer who knows the 
codebase, facilitating a learning experience similar to pair program-
ming activities. D11 commented, “Hypothesizer would really help 
in working on a codebase that belongs to a teammate. It will make it 
easier for me to iterate faster with a limited program understanding 
without physically consulting that expert teammate.” D13 added 
that “Hypothesizer seems to work as we work with another more 
expert developer. You need to show it the defect by recording the 
reproduction step, and then it starts thinking. Then it ofers a list of 
hypotheses and a plan to fx the defect. This is much diferent than 
Stack Overfow, which requires you to give detailed questions.” 

7 DISCUSSION AND FUTURE WORK 
Efectively formulating and testing hypotheses has long been found 
to be crucial to successful debugging. However, current debugging 
tools lack direct support for this activity. In this paper, we introduce 
the concept of hypothesis-based debuggers, which collaboratively 
work with developers throughout the debugging process from iden-
tifying relevant hypotheses to fxing the defect. We found that a 
hypothesis-based debugger can substantially increase success fx-
ing defects by a factor of fve and reduce debugging time by a factor 
of three compared to traditional breakpoints debuggers and Stack 
Overfow. These promising results indicate the potential to dramat-
ically decrease the time developers devote to debugging. Further 
work is necessary to further scale hypothesis-based debugging as 
well as apply it outside the context of web applications. 

To efectively use hypothesis-based debuggers in the real-world, 
it is essential to facilitate the creation of an extensive database of hy-
potheses. Tools should aid developers in the process of identifying 
the conditions necessary to test a hypothesis. While Stack Overfow 
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provides a valuable resource for developers to learn from the expe-
riences of others, one challenge in using it as a starting point for 
populating datasets for hypothesis-based debuggers is that posts 
are often specifc to a particular problem or context. Hypotheses, 
on the other hand, need to be more general. Future research could 
explore methods to curate and cluster similar Stack Overfow posts 
into generalized hypotheses. Large language models such as Chat-
GPT by OpenAI [31] might aid this process by recognizing patterns 
and generating initial hypotheses. However, due to the potential for 
error in these techniques, it is likely to remain important to have a 
human in the loop to review and improve generated hypotheses. 

Hypothesis-based debuggers might also ft into new or existing 
communities such as StackOverfow. Developers might post ques-
tions, and answers might include a hypothesis, helping generalize 
the issue and making it much easier for developers to fnd this 
content. 

While the current prototype was implemented as a standalone 
debugging tool, it included clickable links to view code snippets 
within the developer’s IDE. However, participants suggested that 
deeper integration with the IDE would be helpful to reduce context-
switching between tools. During our study, we observed that some 
participants made typos while moving back and forth between 
Hypothesizer and the IDE, which hindered their ability to test 
hypotheses efectively. 

Several participants suggested that Hypothesizer might be a 
valuable tool for novice developers learning to debug and discover 
defects, particularly when using new APIs. Instructors might use 
hypothesis-based debuggers by populating the database of hypothe-
ses with those related to defects that students frequently make, such 
as in tools like HelpMeOut [14]. Integration between a hypothesis-
based debugger into the learning process might give further visibil-
ity into the common challenges their students face, where instruc-
tors might use log data to identify areas of concern where further 
resources are needed. 

Hypothesis-based debuggers might also support the process of 
onboarding developers onto new software projects. When develop-
ers join a new project or start working on an unfamiliar codebase, 
they often face challenges in understanding why common defects 
occur. Hypothesis-based debuggers might ease this learning curve 
by providing relevant hypotheses for common defects within the 
project. 

More broadly, hypothesis-based debuggers might facilitate col-
laboration within software teams. Team members might identify 
common challenges and ofer solutions as debugging hypotheses, 
working to collectively improve their team’s debugging skills. 

ACKNOWLEDGMENTS 
We would like to express our gratitude to Saigautam Bonam, Henry 
Zheng, and Madhav Shrof for their contributions to the early proto-
type of Hypothesizer. We are also deeply thankful to Anas alhumud 
and Sajed Jalil for their invaluable assistance in recruiting partic-
ipants for our study. This research was made possible through 
the support of the National Science Foundation under Grant No. 
1845508, and the scholarship from King Saud University. 

REFERENCES 
[1] Alaboudi. 2023. Replication package. https://archive.org/details/replication_ 

Hypothesizer_UIST 
[2] Abdulaziz Alaboudi and Thomas D LaToza. 2020. Using hypotheses as a de-

bugging aid. In Symposium on Visual Languages and Human-Centric Computing 
(VL/HCC). IEEE, Dunedin, New Zealand, 1–9. 

[3] Abdulaziz Alaboudi and Thomas D. LaToza. 2021. Edit-Run Behavior in Program-
ming and Debugging. In Symposium on Visual Languages and Human-Centric 
Computing (VL/HCC). IEEE, Los Alamitos, CA, USA, 1–10. 

[4] Abdulaziz Alaboudi and Thomas D LaToza. 2023. What Constitutes Debugging? 
An Exploratory Study of Debugging Episodes". Empirical Software Engineering 
(EMSE) Forthcoming, Forthcoming (2023), To be published. 

[5] Maryam Arab, Thomas D. LaToza, Jenny Liang, and Amy J. Ko. 2022. An ex-
ploratory study of sharing strategic programming knowledge. In Conference 
on Human Factors in Computing Systems (CHI). ACM, New Orleans, LA, USA, 
15 pages. 

[6] Maryam Arab, Jenny Liang, Yang Kyu Yoo, Amy J. Ko, and Thomas D. LaToza. 
2021. HowToo: a platform for sharing, fnding, and using programming strategies. 
In Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 
IEEE, St Louis, MO, USA, 1–9. 

[7] Muhammad Asaduzzaman, Ahmed Shah Mashiyat, Chanchal K. Roy, and Kevin A. 
Schneider. 2013. Answering questions about unanswered questions of Stack 
Overfow. In International Conference on Mining Software Repositories (MSR). 
ACM, Francisco, CA, USA, 97–100. 

[8] Marcel Böhme, Ezekiel O. Soremekun, Sudipta Chattopadhyay, Emamurho 
Ugherughe, and Andreas Zeller. 2017. Where is the bug and how is it fxed? an 
experiment with practitioners. In Joint European Software Engineering Conference 
and Symposium on the Foundations of Software Engineering (ESEC/FSE). ACM, 
Paderborn, Germany, 117–128. 

[9] Ruven Brooks. 1983. Towards a theory of the comprehension of computer 
programs. International Journal of Man-Machine Studies 18, 6 (1983), 543–554. 

[10] Brian Burg, Richard Bailey, Amy J Ko, and Michael D Ernst. 2013. Interactive 
record/replay for web application debugging. In Symposium on User Interface 
Software and Technology (UIST). ACM, St. Andrews, Scotland, United Kingdom, 
473–484. 

[11] Chromedevtools. 2022. Chrome DevTools Protocol. https://chromedevtools. 
github.io/devtools-protocol/ 

[12] Richard A. DeMillo, Hsin Pan, Eugene H. Spaford, Richard A. DeMillo, Hsin 
Pan, and Eugene H. Spaford. 1996. Critical slicing for software fault localization. 
In International Symposium on Software Testing and Analysis (ISSTA). ACM, San 
Diego, California, USA, 121–134. 

[13] L. Gugerty and G. Olson. 1986. Debugging by Skilled and Novice Programmers. In 
Conference on Human Factors in Computing Systems. ACM, Boston, Massachusetts, 
USA, 171–174. 

[14] Björn Hartmann, Daniel MacDougall, Joel Brandt, and Scott R Klemmer. 2010. 
What would other programmers do: suggesting solutions to error messages. In 
Conference on Human Factors in Computing Systems (CHI). ACM, Atlanta, GA, 
USA, 1019–1028. 

[15] Morten Hertzum and Annelise Mark Pejtersen. 2000. Information-seeking prac-
tices of engineers: Searching for documents as well as for people. Information 
Processing and Management 36, 5 (Sep 2000), 761–778. 

[16] Robin Jefries. 1982. A comparison of the debugging behavior of expert and 
novice programmers. Proceedings of AERA annual meeting 10, 5 (1982), 1–7. 

[17] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge. 
2013. Why don’t software developers use static analysis tools to fnd bugs?. In 
International Conference on Software Engineering (ICSE). ACM/IEEE, San Francisco, 
CA, USA, 672–681. 

[18] Amy J Ko. 2006. Debugging by asking questions about program output. In 
International Conference on Software Engineering (ICSE). ACM/IEEE, Shanghai, 
China, 989–992. 

[19] Amy J Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collocated 
software development teams. In International Conference on Software Engineering 
(ICSE). ACM/IEEE, Minneapolis, MN, USA, 344–353. 

[20] Amy J Ko and Brad A Myers. 2004. Designing the whyline: a debugging interface 
for asking questions about program behavior. In Conference on Human Factors in 
Computing Systems (CHI). ACM, Vienna, Austria, 151–158. 

[21] Amy J Ko and Brad A Myers. 2008. Debugging reinvented: asking and answering 
why and why not questions about program behavior. In International Conference 
on Software Engineering (ICSE). ACM/IEEE, Leipzig, Germany, 301–310. 

[22] Amy J Ko, Brad A Myers, Michael J Coblenz, and Htet Htet Aung. 2006. An 
exploratory study of how developers seek, relate, and collect relevant information 
during software maintenance tasks. IEEE Transactions on software engineering 
(TSE) 32, 12 (2006), 971–987. 

[23] Thomas D LaToza and Brad A Myers. 2011. Visualizing call graphs. In Symposium 
on Visual Languages and Human-Centric Computing (VL/HCC). IEEE, Pittsburgh, 
USA, 117–124. 

https://archive.org/details/replication_Hypothesizer_UIST
https://archive.org/details/replication_Hypothesizer_UIST
https://chromedevtools.github.io/devtools-protocol/
https://chromedevtools.github.io/devtools-protocol/


Hypothesizer: A Hypothesis-Based Debugger to Find and Test Debugging Hypotheses 

[24] Thomas D. LaToza, Gina Venolia, and Robert DeLine. 2006. Maintaining Men-
tal Models: A Study of Developer Work Habits. In International Conference on 
Software Engineering (ICSE). ACM/IEEE, Shanghai, China, 492–501. 

[25] Joseph Lawrance, Christopher Bogart, Margaret Burnett, Rachel Bellamy, Kyle 
Rector, and Scott D. Fleming. 2013. How programmers debug, revisited: An infor-
mation foraging theory perspective. IEEE Transactions on Software Engineering 
(TSE) 39, 2 (2013), 197–215. 

[26] L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia. 2013. 
Debugging Revisited: Toward Understanding the Debugging Needs of Contem-
porary Software Developers. In International Symposium on Empirical Software 
Engineering and Measurement (ESEM). ACM/IEEE, Baltimore, Maryland, USA, 
383–392. 

[27] Stanley Letovsky. 1987. Cognitive processes in program comprehension. Journal 
of Systems and Software (JSS) 7, 4 (1987), 325–339. 

[28] Bil Lewis. 2003. Debugging backwards in time. arXiv preprint cs/0310016. 
[29] David C. Littman, Jeannine Pinto, Stanley Letovsky, and Elliot Soloway. 1987. 

Mental models and software maintenance. Journal of Systems and Software (JSS) 
7, 4 (1987), 341–355. 

[30] Lena Mamykina, Bella Manoim, Manas Mittal, George Hripcsak, and Björn Hart-
mann. 2011. Design Lessons from the Fastest Q&A Site in the West. In Conference 
on Human Factors in Computing Systems (CHI). ACM, Vancouver, BC, Canada, 
2857–2866. 

[31] OpenAI. 2023. OpenAI API. https://openai.com/ Accessed: March 2023. 
[32] Chris Parnin and Alessandro Orso. 2011. Are automated debugging techniques 

actually helping programmers?. In International Symposium on Software Testing 
and Analysis (ISSTA). ACM, Toronto, Ontario, Canada, 199–209. 

[33] Michael Perscheid, Benjamin Siegmund, Marcel Taeumel, and Robert Hirschfeld. 
2017. Studying the advancement in debugging practice of professional software 
developers. Software Quality Journal 25, 1 (2017), 83–110. 

[34] Replay. 2022. replay. https://www.replay.io/ 
[35] Semgrep. 2023. Semgrep: A Code Analysis Tool. https://semgrep.dev/ Accessed: 

March 2023. 
[36] Stackoverfow. 2022. reactBugs. https://stackoverfow.com/search?q=clicking+ 

a+button+does+not+work+%5Breact%5D Accessed: 2023-03-06. 
[37] Christoph Treude, Ohad Barzilay, and Margaret-Anne Storey. 2011. How do 

programmers ask and answer questions on the web?. In International Conference 
on Software Engineering (ICSE). ACM/IEEE, Waikiki, Honolulu, HI, USA, 804–807. 

[38] Bogdan Vasilescu, Alexander Serebrenik, Prem Devanbu, and Vladimir Filkov. 
2014. How social Q&A sites are changing knowledge sharing in open source 
software communities. In Conference on Computer Supported Cooperative Work 
(CSCW). ACM, Baltimore, Maryland, USA, 342–354. 

[39] A. Von Mayrhauser and A.M. Vans. 1996. On the role of hypotheses during 
opportunistic understanding while porting large scale code. In International 
Workshop on Program Comprehension (ICPC). IEEE, Berlin, Germany, 68–77. 

[40] Mark Weiser. 1984. Program slicing. In International Conference on Software 
Engineering (ICSE). ACM/IEEE, Washington, D.C., USA, 439–449. 

[41] W Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A 
survey on software fault localization. IEEE Transactions on Software Engineering 
(TSE) 42, 8 (2016), 707–740. 

[42] X. Xia, L. Bao, D. Lo, and S. Li. 2016. “Automated Debugging Considered Harmful” 
Considered Harmful: A User Study Revisiting the Usefulness of Spectra-Based 
Fault Localization Techniques with Professionals Using Real Bugs from Large 
Systems. In International Conference on Software Maintenance and Evolution 
(ICSME. IEEE, Raleigh, North Carolina, USA., 267–278. 

[43] Xiangyu Zhang, R. Gupta, and Youtao Zhang. 2003. Precise dynamic slicing 
algorithms. In International Conference on Software Engineering (ICSE). ACM/IEEE, 
Portland, Oregon, USA, 319–329. 

[44] Jie Yang, Claudia Hauf, Alessandro Bozzon, and Geert-Jan Houben. 2014. Asking 
the Right Question in Collaborative Q&a Systems. In Proceedings of the 25th ACM 
Conference on Hypertext and Social Media. ACM, Santiago, Chile, 179–189. 

[45] Andreas. Zeller. 2005. Why Programs Fail: A Guide to Systematic Debugging. 
Morgan Kaufmann, Burlington, MA, USA. 480 pages. 

[46] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. 2006. Pruning dynamic slices 
with confdence. In Conference on Programming Language Design and Implemen-
tation (PLDI). ACM, Ottawa, Ontario, Canada, 169–180. 

A APPENDIX 
A complete example of a hypothesis (H1). 

"hypotheses ": [{ 
"id ": "HYPOTHESIS_1", 
"hypothesis ": "You are not using 'preventDefault ' 

API to prevent the default behavior of the 
submit button .", 
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"description ": "When you use the submit button 
inside a form , the default behavior is to send 
the form data to the server and load a new 

page. However , this may not be the desired 
behavior , especially in React apps where you 
want to partially update the page ." , 

"tags ": [ 
"incorrect add/remove item of a list of items ", 
"unexpected reload of the page " 
], 
"evidence ": [ 
{ 
"id": "EVENT_2", 
"pattern ": 
{ 
"objectShape ": { 
"InputType ": "text ", 
"type ": "keydown " 
} 
"description ": "The first thing you did was typing 

in the input box ." , 
"isFound ": true , 
"DoesContainTheDefect ": false 
}, 
{ 
"rule ": "EVENT_1", 
"patterns ": [ 
"objectShape ": { 
"target ": "BUTTON ", 
"type ": "click ", 
"InputType ": "submit ", 
}], 
"description ": "You clicked on the submit button , 

which triggered a submit event ." , 
"isFound ": true , 
"DoesContainTheDefect ": false 
}, 
{ 
"rule ": "API_11", 
"patterns ": [ 
{ 
"codePattern ": "const $Y = (...) => {... }" 
}, 
{ 
"codePattern -inside ": "const $X = (...) => {... 

return (<form onSubmit ={$Y } >...</form >);... }" 
}, 
{ 
"codePattern -not ": "const $Y = ($T) => {... $T. 

preventDefault (); ... }" 
}], 
"description ": "The submit event was handled by a 

callback triggered after the submit event ." , 
"isFound ": true , 
"DoesContainTheDefect ": false 
}, 
{ 
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"rule ": "API_1", 
"patterns ": [ 
{ 
"functionName ": "preventDefault ", 
}, 
{ 
"codePattern ": "$E. preventDefault ()" 
} 
], 
"description ": "However , you did not use the 

preventDefault API to prevent the default 
behavior of the submit button. This often 
happen inside onSubmit event handler inside 
the form ." , 

"isFound ": false , 
"DoesContainTheDefect ": true , 
"HowToFix ": { 
"steps ": [ 
{ 
"description ": "Start by searching for the 

onSubmit event handler inside the form inside 
this file." , 

"relatedEvidenceLocation ": { 
"rule ": "API_11", 
"exactLocation ": true 
}}, 

{ 
"description ": "Inside the onSubmit event handler , 

add the preventDefault API to prevent the 
default behavior of the submit button ." , 

"codeExample ": "const XXXXX = (e)=>{\n e. 
preventDefault () // <-- use this API inside 
the onSubmit callback\n}" 

}, 
{ 
"description ": "Now , when you click on the submit 

button , the page will not be reloaded ." 
}],}}, 
{ 
"rule ": "NETWORK_1", 
"patterns ": [ 
"objectShape ": { 
"type ": "responseReceived ", 
"mimeType ": "text/html " 
}, 
"id": "NETWORK_1", 
] 
"description ": "The browser reload since the 

submit behaior was not prevented ." , 
"isFound ": true , 
"DoesContainTheDefect ": false 
}]] 
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