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Abstract
What is debugging? Despite dozens of studies of debugging, many important questions remain. Most existing
studies are limited in focusing on studying debugging in the lab or through log data, leaving less known about
how debugging occurs in everyday work. To fill this gap, we first identified a new source of data — live-
streamed programming — with which to examine debugging in the field. Using this data, we then examined
the activities developers do when debugging and the relationship between debugging and programming. This
revealed many interesting findings. For example, navigation constitutes only 15% of debugging time, while
editing and running code constitute a majority of time. These studies suggest that creating understanding of
the issue and fix is central to the debugging process, a process shaped by how developers formulate and test
hypotheses. We believe there is an important opportunity to create a new form of hypothesis-based debugger,
which makes debugging hypotheses an explicit part of debugging tools which can be shared, queried against
code, and drive views of code.
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1 Introduction
For decades, debugging has been the subject of dozens of studies of developers. Researchers have
investigated what makes debugging hard [1]–[3], the kinds of debugging related questions developers
ask [4], [5], categories of strategies developers use to debug [6], [7], and specific tool features develop-
ers use to debug [8], [9]. These studies have revealed much about the nature of debugging, opening
many new opportunities to improve the way we teach [10] and design tools for debugging. Modern
debugging tools offer omniscient debugging [11], where developers can step forwards and backwards,
slicers [12] for following control and data flow, and automatic fault localization [13] which uses the
results of test execution to formulate guesses as to a defect’s location.

However, our understanding of the nature of debugging is limited in important ways. Debugging
is traditionally framed as primarily a problem of fault localization - the task of the developers is to find
the line of code that they must modify in order to fix the defect. Tools as varied and diverse as the
WhyLine [14] and spectrum-based fault localization [15] all have this as their primary goal. But little is
known about just how big a role fault localization plays in the full activity of debugging. This is partly
because debugging is often studied in isolation, separated from the broader activity of programming.
And little is known about how the activities of debugging and programming are interrelated in the
moment-to-moment work of developers. It remains unclear just how other key steps in the debugging
process - such as formulating a hypothesis, proposing a fix, and understanding the implications of
changes - fit into the broader activity of programming and debugging in everyday work.

A key barrier to improving our understanding of debugging is the lack of data on debugging activity.
Most studies to date of debugging have been conducted either in the lab or through the analysis of
log data from instrumented development environments. Lab studies enable imposing experimental
control and carefully examining how dependent variables may be impacted by manipulated independent
variables. However, lab studies are inherently artificial, reflecting an unfamiliar context in which
developers work on unfamiliar code. While log data enables understanding debugging in naturalistic
contexts, it is inherently limited in its ability to reveal developer intent. While log data can effectively
answer questions about how frequently various tools are used, it is much more challenging to answer
questions about developers’ activities and intent when using each debugging tool.

To address these gaps, we have conducted a series of studies of debugging. From our observations
of developers at work on open source projects [16], [17], we first created a new dataset of programming
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and debugging work, encompassing 3544 activities coded from 30 hours of development work [18].
We then used this dataset in several ways, examining the activities developers do when debugging
and the relationship between programming and debugging. This revealed a number of interesting
findings about the nature of debugging work. For example, navigation constitutes only 15% of
debugging work, while editing (41%) and running (29%) constituted a majority of debugging time.
Edit-run cycles are, even in today’s development tools, surprisingly frequent: developers edit and run
the program, on average, 7 times before fixing a defect and twice before introducing a defect [19].
And, in an experiment examining the role of hypotheses in debugging [20], we found that, while
traditional automated fault localization tools offered no benefit in helping developers debug faster or
more successfully, developers given information about potentially relevant debugging hypotheses were
six times more likely to fix the defect successfully.

These studies suggest that debugging is much more than fault localization, with understanding of
the issue and fix much more central to the debugging process. This suggests an important opportunity
to rethink the nature of tool support for debugging work, thinking beyond just the step of fault local-
ization to the process of understanding and reasoning about code changes that constitutes so much of
debugging. In particular, given the centrality of finding a correct hypothesis that explains not only the
location but the underlying cause of the defect, we believe there is an important new opportunity to
create a new type of hypothesis-based debugger [21], which makes debugging hypotheses an explicit
part of debugging tools and which can be shared, queried against code, and drive views of code.

2 Studying Debugging
Many studies have long investigated debugging behavior, beginning at least as early as 1974 [22].
However, the majority of existing studies were conducted in the lab [6], [23]–[25] or using log data
of feature use in development tools [8], [26]–[29]. Lab studies test the impact of an intervention
(e.g., a new debugging tool) or reveal developer behavior when faced with a specific task. While
lab studies have an important and central role in science, they are inherently limited in the artificial
contexts they create. Loggers instrument programming and debugging tools to record what devel-
opers do in real-world development work. However, log data has important limitations [30]. As it
records only the use of specific features, without additional context it can be difficult or impossible to
reconstruct developers’ intent and determine, for example, if developer actions relate to a debugging
or programming task.

In contrast, direct observational studies offer insight into how developers debug in naturalistic
settings. Researchers observe debugging behavior with little or no interventions, revealing debug-
ging as it naturally occurs everyday. Despite these advantages, naturalistic studies of debugging are
surprisingly uncommon. Over the course of the past several decades, we identified only five direct
observational studies of debugging [4], [5], [31]–[33]. This may be due, in large part, to the difficultly
of gaining access to this data. Academic researchers require industrial partners to obtain this data,
and confidentiality and privacy concerns can make this data hard to obtain and access. As a result,
most of our understanding of debugging today remains based on log data of IDE use and lab studies.

To bridge this gap, we investigated a new method of studying development work: examining
programming screencasts. Early use of screencasting was often intended to offer developers tutorial
content, replacing traditional text-based documentation by explaining how to use development tools
or new APIs [34], [35]. More recently, developers have begun to live-stream their own real-time work
contributing to open source software projects [17]. These videos illustrate developers’ work in action
using their preferred development environment while working on real tasks in familiar and unfamiliar
code. These videos are not rehearsed and aim to shows a direct view of the moment-to-moment
behavior of developers engaged in real software development work.

To investigate the suitability of this data for use in studying debugging, we conducted a detailed
qualitative analysis of live-streamed programming [17]. We found that developers work on open source
projects in varying sizes, programming languages, practices, and domains. This offers opportunities
to observe developers in diverse settings. Developers explain their work to developers watching,
the sessions document both developers’ actions and a running commentary, similar to think-aloud,
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describing why they are working as they do. Developers structure their sessions in a similar way. They
first start the live-stream by stating a goal for the session. They then work towards this goal, reading
documentation and writing, debugging, and running code. Most sessions depict work on open source
projects, which developers link to in their session descriptions. Developers are occasionally interrupted,
either by developers watching live or by others in their physical space, mirroring the typical interruptions
developers face in their day-to-day work. After completing the session, developers may archive the
video on platforms such as YouTube and Twitch, with most licensed under the Creative Commons.

3 Activities in Debugging
Using live-streamed programming videos, we created a new dataset of debugging and programming
activity1. Using qualitative coding methods, we carefully designed a codebook capturing key pro-
gramming and debugging activities, including navigating. For each activity, we also included details
about this activity, such as how many files developers navigated and edited, the methods developers
use to inspect program state, and the type of external resources developers consulted. After iterative
refinement of the codebook to ensure it could be rigorously applied, we then applied it to 30 hours
of development work. This yielded a large dataset of 3544 activities.

With this dataset, our first goal was to examine the totality of the debugging experience: from the
moment developers first realize the behavior is incorrect (either through a reported issue or in their
own programming) until they either fix the bug or decide to stop working. We call these debugging
episodes. We found that the time developers spend in debugging episodes primarily involved editing
(41%) and running programs (29%), together constituting over two-thirds of debugging time and four
times as much time (15%) as navigating. Navigating is most common early in debugging episodes,
along with running, while later activity involves more editing and consulting external resources. We
observed that navigation was more common when in debugging episodes that started from a defect
report rather than a defect inserted by developers while programming. Developers who debug a
reported defect navigated between files six times more often. Despite these differences in the number
of navigations between files, the navigation activity itself only constituted 19% of the debugging time
for these episodes.

To follow up on these findings, we interviewed developers about their recent experiences with
debugging. One theme that many debugging stories shared was learning while debugging. Developers
struggled to understand why the code they have was not working as expected. Developers often
described situations where debugging centered not around navigating code to localize a defect to a
line of code but instead involved work to better understand their own codebase, third-party APIs,
and users’ needs. For example, one developer worked to debug a defect in a database endpoint.
There was an error message, but it was not helpful. The developer started reading the source code
and searched for a similar database endpoint that was not failing. The developer then learned how
to correctly create an endpoint and connect it to the database by reading and tracing similar code.
Another developer reported debugging a defect where he mistakenly believed that he was using the
API correctly, leading to hours spent reading documentation.

The main takeaway from our investigation of activities in debugging is that debugging is more
than just navigation. Developers did not spend the majority of debugging time navigating files of
code. A central theme of our findings from interviewing and observing developers while debugging
was that debugging is the process of learning and building mental models of why the program behaves
incorrectly. This process involves editing code, running the program, reading documentation as well
as code navigation.

4 Edit-Run Behavior in Debugging
In the previous study, we looked at debugging activities individually. We next examined how debugging
activities together characterize edit-run behavior. Edit-run behavior occurs in both programming and
debugging. When developers debug, developers formulate and test hypotheses about the cause of a

1 https://bit.ly/3qWdMVA
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defect [4], [6], [31], [36]. To formulate a hypothesis, developers look for clues in the source code. To
test a hypothesis, developers may edit the source code and run the program. Developers often test
multiple incorrect hypotheses before fixing the defect [6], [20], which may result in multiple edit-run
cycles.

To support edit-run cycles, live programming environments [37] aim to merge the edit and run
steps into a single step [38], allowing developers to edit and run the program concurrently [39]–[44].
Lab studies of live programming tools have found that these tools can help developers comprehend
and debug code more effectively [45], [46].

The shared vision of these tools is to provide a fluid development experience in which developers
edit and observe the output with no interruptions. Most of the past work has eliminated the manual
work of running the program by automatically generating program outputs for each program edit.
However, is this enough for offering a fluid development experience for developers? We know little
about how developers engage in edit-run cycles in their typical programming and debugging work
settings to answer such a question. Investigating what other needs developers may need beyond
automatically generating program outputs may reveal insight for future live programming tools that
will better support edit-run cycles in debugging and programming.

Using the same dataset of live-streamed development work, we analyzed developers’ edit-run
behavior in both programming and debugging [19]. We mapped developers’ activities to either an
edit or run step, constructing 581 debugging and 207 programming cycles. We mapped the activity
of editing and navigating files of code to the edit step. We then mapped the activity of running and
inspecting the program to the run step.

We found that edit-run cycles in debugging lasted one minute, on average, and occurred seven
times every 10 minutes. Cycles in programming were longer and less frequent, lasting on average three
minutes and occurring twice every eight minutes. Developers edited only one file of code per cycle in
70% of debugging and 60% of programming cycles. These findings suggest that developers’ edit-run
cycle behavior is largely the same in programming and debugging. Developers themselves confirmed
this, describing their editing and navigating behavior in programming and debugging as “similar”.

Our analysis also revealed gaps where developers were interrupted from their work with other
activities. These occurred both within and between edit-run cycles. Edit-run cycles with gaps were
four times longer than edit-run cycles with no gaps. We identified four causes of these gaps, including
working with scattered code, unfamiliar third party APIs, disintegrated development environments,
and waiting to compile. These findings suggest the importance for live programming environments to
move beyond simply easing the process of running the program to more broadly remove distractions
from developers’ edit-run workflow.

5 The Role of Hypotheses in Debugging
As developers debug, a first step towards understanding the cause of the defect is to formulate and
test a hypothesis. A debugging hypothesis is a verifiable speculation about the possible cause of
an incorrect behavior [4], [31], [36]. For example, a developer who sees a search feature fail might
ask, ”Why did the search not return the correct answer?”. She might then hypothesize a cause and
gather evidence to test it. Hypotheses capture the understanding a developer has as they approach a
debugging problem, either correctly guiding a developer to gather evidence to understand and address
a problem or incorrectly guiding them to gather evidence which leads no closer to understanding the
cause of a defect.

Would a debugging tool that aids developers in formulating a correct hypothesis help in finding
and fixing the defect faster? To better understand the role of hypotheses in debugging tasks, we
conducted a lab study [20]. To observe how developers formulate and test hypotheses, we organized
the debugging tasks into three stages, where developers were progressively given access to more
information about the defect (bug report, source code, ability to edit and run). And we then elicited
hypotheses at each stage. To simulate a future debugging aid, we provided participants with a list
of potential debugging hypotheses along with a description of a strategy to test each hypothesis.
The hypotheses were designed to be concise and describe a potential defect cause in general terms
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Table 1. The potential hypotheses given to participants.

Task Correct Potential Hypotheses Incorrect Potential Hypotheses

1
Hypothesis: You are using the wrong DOM
API or not using getElementsByClassName
correctly.
How To Test: Check if you are using the
correct DOM API. Also remember: getEle-
mentById returns an HTML element that
has the same id, get ElementsByClassName
returns a HTML Collection that you have to
iterate over.

Hypothesis: You are not using the correct
CSS property.
How To Test: Check if you are using the
correct CSS property to change the visibility
of an element. Example: visibility: ’visible’
or ’hidden’, or display: ’none’ or ’block’.

2
Hypothesis: You are not binding the scope
of ’this’ for the callback.
How To Test: Check that you are binding
the callback for the click event with ’this’.
For example: callback.bind(this).

Hypothesis: You are not creating the initial
state.
How To Test: Check if you have created
initial state in the constructor. For example:
this.state = {}.

3
Hypothesis: You are not setting the new
animation position correctly.
How To Test:Check that the new position
value is set correctly and in pixels. For ex-
ample: 15px.

Hypothesis:You are not assigning a callback
to the click event.
How To Test:Check if you have a callback
function to the click event. JQuery has this
pattern: $(’#htmlId’).click(callback)

applicable across many programs. Table 1 lists the hypotheses provided.
We found that developers struggled to formulate correct hypotheses by themselves. Developers

formulated a median of two hypotheses for each defect. Early hypotheses were usually wrong. However,
offering developers a set of potentially correct hypotheses made developers six times more successful
in fixing defects. In contrast, offering developers potential fault locations did not help developers
formulate a correct hypothesis or debug more successfully.

6 Hypothesis-Based Debuggers
Our studies suggest the importance of thinking more broadly about how debuggers might support
debugging. We found that the activity of a debugging episode extends substantially beyond navigating
code to localize the defect. Developers had to edit and run their program multiple times and read
online resources while debugging. The goal was to arrive at a hypothesis that correctly explains the
root cause of the defect. When developers received a list of potential hypotheses to test as they
debug, they were six times more successful in fixing the defect.

However, existing debugging tools largely focus on supporting navigation activities to localize the
defect. Tools like the Whyline [14], and Tarantula [15] support the developer in navigating within the
source code to identify and examine potential fault locations. We found that offering developers an aid
with potential fault locations did not significantly help developers in formulating correct hypotheses
or in the overall process of fixing the defect. Developers who received a fault location aid struggled
as much as developers who did not receive any aid. This suggests a clear need to consider how to
support developers more directly in formulating and testing debugging hypotheses.

We envision a new type of hypothesis-based debugger, which helps developers in the process of
collecting defect context and testing hypotheses. This process can be modeled as a decision tree.
Each node within the decision tree represents a hypothesis to be tested, either by the developer or
by a tool. Information may be gathered from a static query against the source code or by examining
a runtime value. After gather evidence to accept or reject a hypothesis, this may lead to follow-up
hypotheses, further narrowing down potential causes. Leaf nodes in the tree may then offer a full
explanation of a cause of the defect.

We first illustrate the concept of hypothesis-based debugging through an a hypothetical example.
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We then discuss how such an approach might be realized as a programming tool.

6.1 An Example Of Using Hypothesis-based Debugger
Sultan is a web developer on a team building an international food recipes application. He is working
on a new feature in which users can add their private recipes. The application is implemented with
a React2 frond-end with connects to a Node.js3 back-end through REST APIs. After implementing
the add recipe functionality, Sultan discovers that the recipes list does not correctly update when the
user clicks the add recipe button. To investigate, he first reads the source code for the click button.
However, he does not see anything incorrect in his implementation. He next checks the callback
handling the click event and sees nothing wrong as well. “Why does clicking the button not add the
recipe to the list?” Sultan asks. He is unsure what might cause this behavior, making it difficult to
generate further hypotheses.

Sultan decides to use a hypothesis-based debugger to suggest further hypotheses. The debugger
first asks Sultan to reproduce the defect. Sultan refreshes the page, adds a new recipe in the form, and
clicks on the add button. Sultan then tells the debugger that he is done reproducing. The debugger
collects the source code that executed as well as run time execution values. The debugger extracts
program context, such as that Sultan is using React, there is a button click, and there is network
activity. Using this information, the debugger then searches for decision trees relevant to the defect.
For each tree it finds, it begins traversing each tree and executing the hypotheses in each node. For
brevity, we discuss one decision tree.

The first node has a hypothesis that “The event handler was executed”. To test this hypothesis,
the debugger uses a dynamic analysis of the execution, finding that the click handler was not executed.
Based on this outcome, the debugger next considers the follow-up hypothesis at the left node: “The
click handler was passed as a function”. To test this hypothesis, the debugger queries an AST
representation of the program and finds that it was indeed passed as a function. Finding evidence in
support of this hypothesis, the debugger moves to the right. The third hypothesis states that “There
is a UI element that obscured the button”. As automatically testing this hypothesis is complex, the
debugger offers instruction for Sultan to test it manually by inspecting the program’s output. Sultan
inspects the HTML layers and finds a hidden element which occludes the button. Sultan reports the
result and confirms the hypothesis. The debugger then moves right to the leaf node, containing a
hypothesis that explains the root cause of the problem:

“hypothesis: A UI element is visually blocking the button from receiving the user’s click. Either
remove the UI element or use Z-index to move it behind the button.”

6.2 Collecting Defect Context And Testing Debugging Hypotheses
A key first step is for a hypothesis-based debugger to collect defect context, such as source code,
program runtime values, API calls, and description of the incorrect behavior. Using this defect context,
the debugger may then identify potentially relevant decision trees and traverse them collaboratively
with the developer. Decision trees may be identified and traversed as follows:
1. Extract defect context from the source code, execution trace, and defect report
2. Use cues from the defect context to find relevant decision trees.
3. For each relevant decision tree, test a hypothesis, either by directly inspecting defect context or

offering a strategy for the developer to make a judgement. This yields a binary result: True or
False.

4. If the result is False, take the left branch. If the result is True, take the right branch. If a node is
a leaf, stop.

5. Repeat steps 3-5 until a leaf node is reached.
6. Return relevant decision trees with the results of the investigation.

Hypotheses may be one of two types: an interior node describing evidence to be gathered to test
a hypothesis and a leaf node describing a potential cause. Note that, in cases where there are no

2 https://Reactjs.org
3 https://nodejs.org

Alaboudi & LaToza | PLATEAU | v.12 | n.1 | | 2021 6/9



more hypotheses matching the evidence provided, a decision tree may end in a branch that has no
leaf.

6.3 Challenges In Building Hypothesis-based debugger
Realizing this vision brings important challenges:
• How many debugging decision trees are there? In principle, it seems that the number of decision

trees may be nearly limitless. However, we believe that, particularly for specific domains and
technologies, there may be a more limited number capturing frequent issues. To explore this
question, we have begun to examine React defects, identifying common issues developers may
face.

• What defect context is required to test hypotheses? Hypotheses may vary widely, requiring a variety
of information to test. In some cases, collecting information may be trivial. In others, it may be
difficult or impossible to do automatically. By combining both machine and human intelligence,
developers can be spared from the work of gathering evidence that can be easily automated while
focusing on considering evidence requiring human judgement.

7 Conclusion
By studying debugging in the field, our studies have revealed that debugging involves not only fault
localization but also the process of understanding the cause of a defect and formulating and testing a
fix. Reconceiving the goal of a debugger as helping developers formulate and test hypotheses, rather
than simply localize defects, suggests important new opportunities for programming tools to better
support the activity of debugging.
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