
Supporting Software Engineering Research and

Education by Annotating Public Videos of

Developers Programming

Abdulaziz Alaboudi

George Mason University

Fairfax, Virginia, USA

aalaboud@gmu.edu

Thomas D. LaToza

George Mason University

Fairfax, Virginia, USA

tlatoza@gmu.edu

Abstract—Software engineering has long studied how software
developers work, building a body of work which forms the
foundation of many software engineering best practices, tools,
and theories. Recently, some developers have begun recording
videos of themselves engaged in programming tasks contributing
to open source projects, enabling them to share knowledge and
socialize with other developers. We believe that these videos offer
an important opportunity for both software engineering research
and education. In this paper, we discuss the potential use of
these videos as well as open questions for how to best enable
this envisioned use. We propose creating a central repository of
programming videos, enabling analyzing and annotating videos
to illustrate specific behaviors of interest such as asking and an-
swering questions, employing strategies, and software engineering
theories. Such a repository would offer an important new way
in which both software engineering researchers and students can
understand how software developers work.

Index Terms—Software engineering theories, software engi-
neering strategies, screencasting, social software development

I. INTRODUCTION

The artifacts developers generate as they work and coor-

dinate with others have long offered an important window

into developers’ workflow, needs, and activities, offering an

indirect means to observe developers through their committed

code, issues, comments, social media posts, and other artifacts

[1]–[4].

Recently, a new form of artifact has emerged: the screen-

cast. Early use of screencasting was often intended to offer

developers tutorial content, replacing traditional text-based

documentation by explaining how to use development tools

or new APIs [5] [4]. More recently, developers have begun to

live-stream their own real-time work on open source software

[6]. These videos illustrate developers’ work in action using

their preferred development environment while working on

real tasks in familiar and unfamiliar code. These videos are

not rehearsed and aim to shows a direct view of the moment-

to-moment behavior of developers engaged in real software

development work (Figure 1).

By showing how developers work moment-to-moment,

these videos offer an essential resource for software engineer-

ing research and education [7]. They enable direct observation

of developers building, debugging, and testing software that

Fig. 1. A video which shows a developer debugging.

would otherwise require conducting a field study. These videos

may help to illustrate existing as well as potentially new

software engineering theories, strategies, and best practices. To

showcase how to use strategies for tasks such as debugging [8],

software engineering educators might make use of examples

of developers at work in a real-world task rather than create

artificial examples.

However, using public videos for research and education

today is difficult. First, videos are scattered over the Internet.

Developers have many options for hosting their videos such

as YouTube and Twitch. As these are filled with millions of

videos in other categories, finding programming videos is hard

and reliant on the videos’ titles. Second, to identify developers

exhibiting a specific behavior in a context, activity, or strategy,

one cannot search directly for such videos. Instead, it is

necessary to watch videos at random, which are typically 1-6

hours long, and hope that the behavior of interest is exhibited

by the developer.

Creating a central repository of programming videos for

research and education offers a potential solution to these

problems. Videos could be analyzed by the research com-

munity and annotated to reflect the behavior they contain,

identifying specific contexts, techniques, issues, strategies, and

theories that they illustrate. Researchers or educators might

share specific lists of videos, and repository users could search



for videos with specific characteristics.

II. MOTIVATING EXAMPLES

To survey some of the potential benefits we envision of

a central, annotated repository of programming videos, we

describe several examples of its use for software engineering

research and education. We name our proposed repository

observe.dev.

Sara is a professor who is teaching an undergraduate soft-

ware testing class. She is planning to introduce test-driven

development (TDD) to her students. She has prepared some

materials for the class to teach the theory behind TDD. She

also has made a simple example where she shows TDD in

practice. However, she wants to also show how TDD is used in

large projects and the practices, strategies, and tools developers

use while applying it. She opens up observe.dev and searches

for videos of developers using TDD. The page lists several

extended videos, including annotations for each denoting the

time at which developers use TDD. She watches 20 minutes

of video depicting developers practicing TDD and then shares

this video with her students.

Deema is a new software engineering Ph.D. student who

is trying to learn about theories of how developers navigate

through code. While reading explanations of several theories in

research papers, she discovers an information forging theory

(IFT) paper which describes how developers navigate code

while debugging [9]. She feels that her understanding of this

theory is abstract, and a concrete example of a real developer

navigating code that showcases this theory would help her

more firmly grasp the concept. She uses observe.dev to search

for instances of developers browsing code using IFT. She

finds 3 hours of a video illustrating a developer debugging

within a large software project, with instances of IFT in action

denoted with an annotation. After watching several minutes of

a developer navigating code, she feels more confident in her

understanding of this theory.

George is a new Ph.D. student investigating the limitations

of current debugging tools for web development and looking

for a specific direction. Instead of trying to better understand

how developers work with today’s tools by conducting a lab

study and recruiting participants to use a debugger, he decides

to use observe.dev. He searches for videos involving debug-

ging tools for JavaScript using observe.dev and finds over 50

instances. Watching these videos, he observes a number of

instances in which the developer faces a similar challenge

with these debugging tools. He annotates these instances and

publishes them in observe.dev to share them with the software

engineering research community. Writing up a short paper

on this observation, he suggests the need for a new form of

debugging tool to address this challenge. He includes a link

to videos with the new annotation for this challenge he added

in observe.dev.

III. PRELIMINARY WORK AND CONCLUSION

We have taken several initial steps towards creating a central

repository of programming videos. We have collected over 40

hours of public programming videos. Our initial goal is to

explore the value of these videos for research by investigating

their use in understanding how developers debug and the

strategies developers use which enable them to debug more

effectively.

In order to create a central repository of programming

videos that serves both software engineering education and re-

search, there are several important open questions which must

be addressed. What infrastructure and workflow is needed to

effectively support and manage the contributions from the soft-

ware engineering community? How can the annotated videos

be effectively offered and displayed to students and instructors

to facilitate their use in software engineering education? In

what ways, if any, can tool support or automation make the

process of curating and annotating videos which illustrate

behaviors easier, as some have begun to explore [10], [11]?

Finally, what are the ethical implications of using these public

videos of developers? We hope that a public repository of

programming videos will provide a valuable resource for the

software engineering community.

ACKNOWLEDGMENT

This research was funded in part by NSF grant CCF-

1703734.

REFERENCES

[1] K. R. Lakhani and E. Von Hippel, “How open source software works:
“free” user-to-user assistance,” in Produktentwicklung mit virtuellen

Communities. Springer, 2004, pp. 303–339.
[2] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,

“Design lessons from the fastest q&a site in the west,” in CHI, 2011,
pp. 2857–2866.

[3] L. Singer, F. Figueira Filho, and M.-A. Storey, “Software engineering at
the speed of light: how developers stay current using twitter,” in ICSE,
2014, pp. 211–221.

[4] L. MacLeod, M.-A. Storey, and A. Bergen, “Code, camera, action:
How software developers document and share program knowledge using
youtube,” in The International Conference on Program Comprehension,
2015, pp. 104–114.

[5] M. Ellmann, A. Oeser, D. Fucci, and W. Maalej, “Find, understand,
and extend development screencasts on youtube,” in The International

Workshop on Software Analytics, 2017, pp. 1–7.
[6] T. Faas, L. Dombrowski, A. Young, and A. D. Miller, “Watch me code:

Programming mentorship communities on twitch.tv,” Proceedings of the

ACM on Human-Computer Interaction, vol. 2, pp. 50:1–50:18, Nov.
2018.

[7] L. Haaranen, “Programming as a performance: Live-streaming and its
implications for computer science education,” in Proceedings of the

ACM Conference on Innovation and Technology in Computer Science

Education, 2017, pp. 353–358.
[8] I. Katz and J. R. Anderson, “Debugging: An analysis of bug-location

strategies,” Human-Computer Interaction, vol. 3, pp. 351–399, 1989.
[9] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.

Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197–215, Feb 2013.

[10] L. Ponzanelli, G. Bavota, A. Mocci, M. Di Penta, R. Oliveto, M. Hasan,
B. Russo, S. Haiduc, and M. Lanza, “Too long; didn’t watch!: Extracting
relevant fragments from software development video tutorials,” in ICSE,
2016, pp. 261–272.

[11] P. Moslehi, B. Adams, and J. Rilling, “Feature location using crowd-
based screencasts,” in MSR, 2018, pp. 192–202.


