Using Hypotheses as a Debugging Aid

Abdulaziz Alaboudi
George Mason University
Fairfax, Virginia, USA
aalaboud @ gmu.edu

Abstract—As developers debug, developers formulate hypothe-
ses about the cause of the defect and gather evidence to test
these hypotheses. To better understand the role of hypotheses in
debugging, we conducted two studies. In a preliminary study,
we found that, even with the benefit of modern internet re-
sources, incorrect hypotheses can cause developers to investigate
irrelevant information and block progress. We then conducted
a controlled experiment where 20 developers debugged and
recorded their hypotheses. We found that developers have few
hypotheses, two per defect. Having a correct hypothesis early
strongly predicted later success. We also studied the impact of
two debugging aids: fault locations and potential hypotheses.
Offering fault locations did not help developers formulate more
correct hypotheses or debug more successfully. In contrast,
offering potential hypotheses made developers six times more
likely to succeed. These results demonstrate the potential of
future debugging tools that enable finding and sharing relevant
hypotheses.

Index Terms—Debugging, hypotheses, fault localization

I. INTRODUCTION

Debugging has long been a focus of software engineering
research, encompassing studies of the debugging process as
well as the creation of numerous techniques to more effectively
support it [1]-[7]. Key to the process of debugging are
hypotheses. A debugging hypothesis is a verifiable specula-
tion about the possible cause of the incorrect behavior [2],
[8], [9]. Developers build mental models of the program by
asking questions about the incorrect behavior of the program,
hypothesizing possible causes, and collecting information to
test them [8], [10], [11]. For example, a developer who sees
a search feature fail might ask, "Why did the search not
return the correct answer?”. She might then hypothesize that it
was caused by an incorrect comparison in its implementation
of string matching. From this hypothesis, she might gather
evidence to test it, searching for locations related to string
matching and using the debugger to gather information about
the run-time state to determine if each step in the string
matching algorithm is correct [9], [12].

Unfortunately, developers often formulate incorrect hy-
potheses, resulting in wasted time gathering evidence and
looking at irrelevant code that ultimately does not lead the
developer closer to the true defect [13]. When they fail to
find a correct hypothesis, developers often look for help,
mitigating the need to generate their own hypotheses. Seeking

978-1-7281-6901-9/20/$31.00 ©2020 IEEE

Thomas D. LaToza
George Mason University
Fairfax, Virginia, USA
tlatoza@gmu.edu

help from an experienced coworker is one way to find the
correct hypothesis. Unfortunately, developers may not always
find their coworkers available [8]. One might also expect
that, given the wealth of developer information available on
the internet, finding hypotheses might be easy. To explore
this, we conducted a small preliminary study in which we
observed three professional developers working in three open-
source projects. We found that developers often got stuck
because they lacked correct hypotheses or had an insufficiently
precise hypothesis. Lacking a correct hypothesis, developers
formulated search queries beginning from incorrect output
(e.g., error messages) or an insufficiently specific hypothesis
(e.g., example of API usage based on the hypothesis that
the API is being used incorrectly). This resulted in irrelevant
information that did not lead to a fix, wasting further time.

Despite their centrality to debugging [9], many important
questions remain unanswered about the role of hypotheses in
debugging. It is unclear how hard it is to formulate correct
hypotheses and how closely hypotheses are tied to developers’
debugging performance. And, in situations where developers
lack hypotheses, questions remain about how debugging aids
might assist developers in finding hypotheses, such as suggest-
ing potential fault locations to investigate or directly offering
developers potential hypotheses.

To fill this gap, we investigated three research questions:

RQ1 How hard is it to formulate correct hypotheses? Does for-
mulating correct hypotheses predict debugging success?

RQ2 Does offering developers fault locations help developers
to form correct hypotheses and debug more successfully?

RQ3 Does offering developers potential hypotheses help de-
velopers debug more successfully?

We conducted a lab study in which 20 developers worked
to debug defects in three small programs taken from Stack
Overflow. We chose to focus on API-related defects, as studies
suggest these can be challenging to debug [14]. To observe
the process of how developers formulate hypotheses during
debugging, we organized the debugging tasks into three stages
and asked developers to write down their hypotheses at each
stage. At each stage, developers were given access to more
information, including the bug report and user interface (stage
1), source code and related documentation (stage 2), and the
ability to run and edit the code (stage 3). This enabled us
to observe hypotheses before developers were able to test
and discard them. Additionally, some participants were given

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

access to either potential fault locations or hypotheses.

We found that participants struggled to formulate correct
hypotheses. Per defect, the median number of hypotheses
participants formulated across all stages was two. In the
first stage, only 11% of hypotheses were correct. While this
increased in stage two and three, overall only 39% of reported
hypotheses were correct. However, for developers that did
discover the correct hypothesis by stage two, their chance of
ultimately succeeding in debugging increased by a factor of
five. Offering developers fault locations did not significantly
help developers to formulate a correct hypothesis nor enable
the developer to debug any more successfully. In contrast,
developers who received potential hypotheses were six times
more successful in fixing defects.

These results suggest the potential value of new types of
debugging aids that offer potentially relevant hypotheses to
developers. We discuss the implications of our findings for
future tools that enable developers to share, find, and use
debugging hypotheses.

II. BACKGROUND

Early studies of code comprehension and debugging in-
vestigated the role of code understanding and developers’
mental models. These studies found that developers formulate
hypotheses during programming tasks [15]-[19]. Brooks in-
troduced a theory in which developers form hypotheses about
program behaviors while comprehending code [15]. Letovsky
proposed that hypotheses (“conjectures”) were answers to
questions developers ask while comprehending code [16].

Several prior studies have observed developers formulate
and test hypotheses. Studies have found that developers ask
questions about incorrect output and form hypotheses about
its cause [4], [8]. Developers then test these hypotheses by
examining code locations and inspecting program state [9].
Robin investigated how novices and experts differ in their
debugging process and found that experts were more likely to
formulate correct hypotheses and successfully map them to the
related code [18]. Other work has tried to avoid modeling de-
bugging hypotheses explicitly by instead modeling developers’
actions, which may be easier to observe. According to infor-
mation foraging theory, developers navigate between methods
(“’patches”) based on method identifiers which offer scent that
hint at their proximity to the fault location ("prey”) [5].

Professional developers largely depend on the “intuitive
method” of forming and testing hypotheses while debugging
[9], [20]. Unfortunately, developers may formulate incorrect
hypotheses, leading them to inspect irrelevant code [13]. As
developers waste time testing incorrect hypotheses, many tools
have been proposed which envision entirely bypassing the
need for a developer to formulate a hypothesis. Debugging
is often framed as a problem of fault localization, where a
developer begins with a fault and must identify the statement
responsible [1], [21]. Many tools and techniques have been
built to help developers in searching for fault locations. For
example, program slicing tools often display a ranked list
of potentially faulty statements, shrinking the search space

of potentially faulty statements developers must presumably
consider [6], [22]-[24]. However, automatic fault localization
tools are typically evaluated in their performance of reducing
the search space rather than in their ability to improve devel-
opers overall debugging performance. Implicit in this work is
the assumption that reducing the set of faulty statements a de-
veloper must consider will necessarily improve debugging per-
formance. One study tested this assumption directly through a
user study and found that fault localization techniques do not
always help developers debug more effectively [25].

A common practice when developers confront faults for
which they have no hypothesis is to consult external resources.
In co-located development teams, developers may consult
an experienced developer. However, studies have found that
developers may not always find an experienced coworker
available [8], [26]. Developers may also search the internet
for potential hypotheses, posting questions and examining
responses to prior questions in community resources such as
Stack Overflow [27], [28]. Success depends on several factors,
including asking sufficiently precise questions and providing
enough information about the problem [29]-[31].

While prior work has examined how developers form and
test hypotheses, little work has systematically examined how
a range of factors impact the generation and use of hypotheses
in the debugging process. To our knowledge, we are the first
study to ask developers to repeatedly report their debugging
hypotheses and examine the relationship between situational
factors, the generation of hypotheses, and debugging success.
We offer the first evidence about how offering fault locations
or a set of potential hypotheses might help developers in
formulating and testing hypotheses.

III. PRELIMINARY STUDY: SEARCHING FOR HELP

To better understand the challenges developers may face in
formulating hypotheses, given the opportunity to use modern
Internet resources, we conducted a small preliminary study. To
observe developers, we chose to use live-streamed program-
ming videos, where developers live-stream their programming
activities for other developers to watch. [32]. In live-streamed
programming, developers live-stream their work on real-world
development tasks fixing issues and implementing features
for open source projects. During the live-streamed session,
developers keep their viewers engaged by frequently thinking
aloud, articulating intentions, goals and hypotheses, which
make these videos a valuable data source for observational
studies [33]. After finishing streaming their work, developers
archive the videos on online platforms such as YouTube. We
selected three videos of developers (D1, D2, and D3) working
on different open source projects hosted in GitHub for 177, 85,
and 104 minutes, respectively. The selection process followed
a systematic approach. We first searched for videos posted
in developer communities such as the r/WatchPeopleCode
subReddit. We then checked if the video showed developers
working on an open source project by searching for the project
in GitHub. Finally, we skimmed the video to determine if it

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

Shelve module in python not working: “db type cannot be determined”

sword-storing program in Python, and it seems pretty simple s0 |
e wrong

% LS Engine Swap On A Budget -Part |
E
e ’ um

Fig. 1. Faced with an error message, D1 read a Stack Overflow post.

included the developer searching the Web while debugging.
Our replication package contains the data for this study [34].

D1 was building a search engine for Reddit in Python.
During his three hour programming session, he encountered a
defect related to his use of the shelve API. He hypothesized
that he “maybe needs to specify the file type* when calling the
API. Using this hypothesis, he searched the Internet and started
reading the official documentation for a few minutes, stopping
reading as there was no API to specify the file type. Unable
to hypothesize, he switched to Google and pasted the error
message in the search field. He started browsing a related Stack
Overflow post (Figure 1) that suggested potential solutions.
He decided to try a solution, stating that “this looks like the
problem I am having now”. He copied the suggested fix and
pasted it into his code, but the error still occurred. Blocked
from further progress in his debugging task, he decided to end
the session. In his next video, he discovered the bug was due
to an incorrect parameter to one of the APIs calls. He did not
consider this possibility in formulating his search query.

In his 85 min programming session, D2 worked to build a
face detection program using C++ and openCV APIs. While
trying to compile the program, he received an error message
of “undefined reference to cv”. His first hypothesis was that
the defect was due to incorrect usage of the standard I/O APIs.
However, after changing it to a simple print statement, the code
still did not compile. He then copied part of the error message
and searched the Internet. He spent around 20 minutes testing
multiple hypotheses suggested on Stack Overflow, such as
checking for typos and changing compilers. However, none
were correct. Two of the developers watching his live-stream
offered the hypothesis that the defect was due to an issue in
the way the OpenCV library was linked at compile time. After
searching with just three words, “link to openCv”, he was able
to find relevant information and successfully fix the defect.

D3 worked to implement a confirmation dialog in JavaScript
using the Electron APIs. He was unable to make the dialog’s
cancel and confirm options work correctly. He searched the
Internet for documentation and code examples on how to use
specific APIs. After looking at an example, he hypothesized
that the bug is related to the async APIs. ”Oh, it has async

APIs. Sorry, I am just a noob.”. However, changing the
implementation to use async APIs did not fix the defect. He
kept changing the return value of a callback function and
inserting log statements to answer many “what if” questions.
After debugging for half an hour, he reported that he could not
fix the defect, stopping work and seeking help later from other
developers. We investigated the pull request he was working
on and found he was able to fix the defect the following day.
From the commit history, it appears that the defect was related
to a missing API call unrelated to the documentations or APIs
he browsed in the video.

Together, these observations suggest the centrality of hy-
potheses to debugging. Even with the benefit of modern
Internet resources, developers often struggled to know where
to start. Lacking a correct hypothesis, developers formulated
queries hoping to discover something relevant and looked at
information that often led nowhere. These findings suggest the
need for tools that help developers better search for and acquire
hypotheses while debugging. State of the art debugging tools
such as WhyLine attempt to entirely avoid hypotheses by, for
example, enabling developers to systematically trace incorrect
output backwards across control and data flow. However,
these techniques may be ill-suited for situations involving
interactions with complex third-party APIs, such as in our
preliminary study, where developers cannot or do not wish to
follow data flow through framework internals. This suggests
the need for new forms of debugging aids that better support
the process of hypothesis formulation and testing.

IV. CONTROLLED STUDY: INVESTIGATING HYPOTHESES
IN DEBUGGING

We conducted a within-subjects study in which 20 partici-
pants completed a series of three debugging tasks to fix API
misuse defects. In this section, we describe our study and the
choices we made in its design.

A. Study Design

In order to observe debugging hypotheses, we chose to
divide our study into three separate stages. This enable us to
understand the time and resources required to form correct
hypotheses as well as avoid the possibility that developers
might test and reject hypotheses before reporting them.

In each stage, participants were instructed to report their
hypotheses and the nessary steps to test them. In the first stage,
participants were able to execute the program and observe its
behavior through GUI or console interactions, without access
to the source code or documentation. In the second stage,
participants were given access to related documentation and
a snapshot of the source code, but without the ability to edit
or execute the program. Participants were asked in this stage
to submit new hypotheses and edit hypotheses submitted in
stage one. In the third stage, participants had the ability to
edit and execute the program. They were asked to continue
forming new hypotheses or edit existing ones, if needed, and
use any hypotheses they had to fix the defect. To investigate the
effects of offering debugging aids, participants were assigned

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

TABLE I
GOALS AND RESOURCES FOR EACH STAGE. THE GRAY MARKS IN THE
BOTTOM ROW INDICATE THAT A DEBUGGING AID WAS OFFERED TO
PARTICIPANTS IN TWO RANDOMLY ASSIGNED TASKS.

Stage 1 Stage 2 Stage 3
7 min 10 min 20 min
7«3 Fprmulating hypotheses v v v
5 Fixing the fault
Fault report v v v
§ Execution environment v v
5 Picture of the correct output v v v
% Documentation v v
& Source code v v
Debugging aids v v

to one of three conditions for each task: a control condition (no
aid), a fault locations condition, and an potential hypothesis
condition. Debugging aids were offered to participants when
they first were given the source code in stage two. Participants
did not have access to the Internet throughout the study. Table
I lists the goals and provided resources for each stage.

B. Tasks

To encompass a variety of modern APIs, we selected three
programs taken from Stack Overflow questions that are related
to different Web technologies. Each program contained a
defect that prevented it from behaving as intended. We offered
participants the reported Stack Overflow question as a prompt
and the code snippet as the provided program. To ensure
that participants understood the intended behavior, participants
received a picture or animated gif of the expected output.

In the first task, participants worked with a program that
used the DOM (Document Object Model) API to change the
visibility of an HTML element using the “visibility” DOM
property. The program consists of 37 lines of HTML, CSS,
and JavaScript code. The defect concerned an incorrect use of
the common JavaScript API “getElementsByClassName”. This
API returns an array of DOM elements. The implementation
contained a defect where it instead treated the return value as a
single DOM element, which can be fixed by iterating over the
returned collection and setting the visibility for each element.

In the second task, participants worked with a program built
using React, one of the most commonly used UI frameworks',
containing 36 lines of HTML and JavaScript. The intended
behavior of this program is to switch images on a click.
This can be achieved by successfully registering a callback
for the onClick event. However, the implementation of the
registration contains a defect, resulting in the onClick event
handler generating an undefined error.

As animation is common in Web applications, we selected
for the third task an animation program containing 45 lines of
HTML, CSS, and Javascript. The intended behavior is to move
a figure from one position to another using jQuery animation
APIs, which it fails to achieve. To fix this defect, the correct
position value has to be passed to the jQuery APL

Uhttps://insights.stackoverflow.com/survey/2019/

Task # 1
Stage # 2 A

Please read the following bug report and write down your hypotheses.In Stage 2, you can read the buggy code

snippet as well as the listed documentation describing related k and

pts (please read
only the linked documentation). Based on what you learn, please update your hypothesis or hypotheses,
removing hypotheses you have ruled out, adding additional hypotheses you might have, and revising hypotheses

that still seem plausible. You have 10 minutes to complete this stage.

Change Link Visibility — Event Listener with mouseover and getElementsByClassName
I am relatively new to JavaScript. I've searched the internet over and found what people are calling solutions and
correct scripts and fixes etc., but none of them seem to work for me so I'm clearly missing something. Been
troubleshooting for hours now. Please help! CSS: I have created a simple two-column div (out of 12, it's floated
left). T have a CSS transition in place to pull it from 2% width to 15% width (nearly the full two columns) on
hover. HTML: I created a few test links in the div which I've hidden with a CSS class. JS: I am trying to use B

JavaScript to make them visible when the mouse is over the div. For what it's worth, I've also tried

d N

ByClass] links").style.visibility="visible"; without any luck and I've tried

getEl

accomplishing the same thing using opacity instead of visibility and that made no difference. Thank you.

This is a picture of the correct program output.

Bing Yahoo Google

This is a list of related documentations:

o d getEl lassName
o style visibility

¢ document.addEventListener

Your Hypotheses Section.
Hypotheses and Triggers

Hypothesis # 1 C

Hypothesis: Based on what you have learned so far, what do you think is a possible underlying reason for the

bug?

Next Steps: What steps would you take to check if this hypothesis is true?

Add another Hypothesis

Fig. 2. In the study environment, participants completed each debugging stage
in a separate page. (A) The top of each page describes the goal and time limit
for the current stage. (B) The middle section offers a debugging environment,
with the applicable resources for the stage. (C) The bottom section enables
participants to write down their hypotheses as well as offering a debugging
aid, if applicable.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

Debugging Tasks

Taskl

Task2 Task3

Participants Stage 1

Stage 2

Stage 3 Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3

L

Potential hypotheses

Fault locations ~

FHF 20

Fault locations

Potential hypotheses |—=p Survey

2
—= Training —# Technologies knowledge assessment
Ll ¢ '

R

£y

Fault locations 2

‘ Potential hypotheses

Fig. 3. During the study, participants first completed a training task and a technology knowledge assessment. Participants were then randomly divided into
three groups. A Latin square design was used to assign debugging aids to debug tasks, controlling for potential order and task effects.

C. Debugging Aids

We intended for the debugging aids to be representative of
aids that might be generated by current and future tools, as we
were interested in studying the impact of these debugging aids
without any assumptions of how such aids were generated.
In addition to studying the impact of potential hypotheses
as a debugging aid, we studied the impact of offering fault
locations, as commonly used in research prototypes offering
automated fault localization. Participants received either two
potential hypotheses or two fault locations. To control for
the performance of tools generating these aids, we simulated
the output that one of these tools would generate. In both
tasks, participants received one correct and one incorrect
potential hypotheses or one correct and one incorrect fault
locations with the incorrect one always listed first, simulating
the behavior of a tool with high, but not perfect, precision.

Each potential hypothesis consisted of two parts: the hy-
pothesis itself and steps describing how to test the hypothesis.
We extracted the correct hypotheses and the steps on how to
test them from the corresponding correct answer in the Stack
Overflow question. Sine the potential hypotheses are represen-
tative of a debugging aid offered by a tool, the hypotheses are
generalized to be applicable for different program contexts.
We summarized the answer and then removed any references
to implementation details in the hypothesis. For the incorrect
hypotheses, we searched Stack Overflow for a question that
described similar symptoms but with a different underlying
cause. To generate the incorrect and correct fault locations,
we used the potential hypotheses we extracted for each task
and mapped these hypotheses to locations in the source code.
These locations were then presented to participants. Table II
shows the offered potential hypotheses.

D. Farticipants

We recruited 25 participants (15 male and 10 female) from a
graduate course in software engineering at our institution. Five
of these participants were used to pilot the study materials and
are not described further. As typical in industry, participants
reflected a wide range of experience levels, including many
who worked full time as a software developer.

To control for experience level, we measured the program-
ming expertise of each participant. To measure programming
experience, we asked participants to report their number of
years of programming experience in industry. Measuring the
level of technology knowledge is more challenging, as relying

on participants’ self-assessments may introduce bias in the
results [35]. Thus, we instead chose to develop a technology
knowledge assessment that can be completed quickly. We
developed technology assessments with nine multiple-choice
questions. These questions assessed knowledge of fundamental
to advanced concepts in each of the technologies used in
the study’s tasks. Each question had five possible answers,
including a I do not know” choice. To avoid any potential
learning effects, we did not ask participants about any concepts
or APIs that directly related to the defects in the study tasks.
Participants received one point for each correct answer.

Participants ranged from 0-20 years of industrial experience
(median = 2) and, on the 9 point scale of the technical
knowledge assessment, scored from 1-8 (median = 4).

E. Procedure

To conduct the study, we constructed a purpose-built study
environment website that administered the technology assess-
ment questions, the debugging tasks, and a short post-task
survey. The study environment contained all information about
the debugging tasks and enabled participants to view, edit,
and run the code, depending on the debugging stage. The
study environment collected the technical assessment answers,
fault patches, stages time, and survey responses. During each
debugging stage, participants were prompted to enter one or
more hypotheses. Figure 2 depicts an example of a stage
two page in the environment. The study environment, study
materials, and other data are all publicly available [34].

We conducted our study in three small-group sessions, each
lasting approximately 2.6 hours. Participants in each session
were gathered in a room and asked to access the study
environment from their computers. To familiarize participants
with the study environment, participants first completed a
training task that consisted of a debugging task containing each
of the three stages. One of the authors was available to answer
questions. Participants next completed the nine questions in the
technical knowledge assessment and then began each stage for
each of the three debugging tasks. Participants were given a
time limit of seven minutes in stage one, ten minutes in stage
two, and 20 minutes in stage three. Participants who ran out of
time in a stage were automatically advanced to the next stage.
Finally, participants completed a post-task survey asking them
to report the number of years they have been programming
professionally and describe whether they found each of the

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

debugging aids to be helpful. Participants had up to 3 hours
to complete the study. Figure 3 illustrates the study design.

F. Data Analysis

To score each hypothesis, we labeled a set of keywords
that reflecting the underlying cause in the correct debugging
hypotheses aid. Participants’ hypotheses were scored as correct
if they described a concrete and verifiable reason for the cause
of the defect using the same or similar keywords as the correct
debugging hypotheses aid. For example, for a defect that was
caused by passing a string instead of a number to a third party
library, a hypothesis such as “the defect is caused by a third
party library” was considered too vague to correctly describe
the cause of the defect while “the defect was caused by an
incorrect parameter value passed to a third party library” was
considered concrete and correct. Two authors independently
coded participants’ hypotheses as correct or incorrect, resulting
in a Cohen’s Kappa value of 0.76, reflecting substantial
agreement [36]. The disagreements were resolved through a
discussion between the authors.

To answer each research question, we built a series of
regression models. To control for the effects of expertise [21]
and task [9] in our models, we included years of programming
experience, technical knowledge, and task as control variables
in each model. Adding a control variable for task controlled
for variance between tasks in difficulty, where task three had
a 90% success rate and tasks one and two had 55%.

V. RESULTS

A. How hard is it to formulate correct hypotheses? Does
formulating correct hypotheses predict debugging success?

We first investigated the difficulty of formulating correct hy-
potheses without any debugging aids. We analyzed data from
the 20 debugging sessions in the control condition. Participants
formulated 27 hypotheses (Min 1, Max 3, median 1) in stage
one. Of these 27 hypotheses, only three were correct (11%). In
the second stage, participants added eight new hypotheses and
edited six (total 35, Min 1, Max 3, median 1), which increased
the number of correct hypotheses to nine (25%). In the last
stage, participants added three new hypotheses and edited
four (Total 38, Min 1, Max 4, Median 2), which increased
the number of correct hypotheses to 15 (39%). Although our
study was designed to encourage participants to formulate as
many hypotheses as they can, the median number of reported
hypotheses for each participant was two. This suggests that
not only the process of formulating a correct hypothesis is
challenging, but also the process of formulating any reasonable
and not necessarily correct hypothesis. Table II lists examples
of participants’ hypotheses in stage two. The complete list of
hypotheses is available online [34]

We next investigated the relationship of hypotheses to
debugging success, irrespective of how the hypotheses were
obtained. We analyzed the data from the 60 debugging ses-
sions from participants in the three conditions. We chose a
dependent variable of correct or incorrect hypothesis and built
a logistic regression model. The model shows that participants

who reported a correct hypothesis at stage two were 5 times
more likely to fix the defect (p = 0.01).

However, having the correct hypothesis usually but not
always leads to success in debugging. Overall, participants
failed in 20 out of 60 cases to fix the defect. Six of these 20
cases involved participants with a correct hypothesis at stage
two who did not successfully fix the defect. To investigate
these cases, we analyzed participants’ survey responses and
code edits. Their responses suggest that, while they understood
the underlying cause of the fault, they did not know how
to correctly implement a fix. One participant, for example,
realized that the fault in the first task was due to a DOM API
returned a collection of DOM elements instead of a single
DOM element, but tried to fix the fault by changing another
irrelevant part of the code:

“I tried changing the name of the item to which the event
handler was added, but it still [did] not make the div appear.
The links are not being set to visible because they are in an
array.”

B. Does offering developers fault locations help developers to
form correct hypotheses and debug more successfully?

To test if offering developers fault locations increases their
ability to formulate correct hypotheses at stages two and three,
we built a logistic regression model with the correctness of
the hypotheses as the dependent variable and the availability
of fault locations as the independent variable. We found no
evidence that by offering fault locations participants formulate
more correct hypotheses, either in stage two (p = 0.4125) or
stage three (p = 0.1320). Overall, 45% of the participants in
stage two and 60% in stage three from the fault locations group
submitted the correct hypotheses compared to 45% and 75%
participants, respectively, from the control group. Offering
potential fault locations did not significantly help participants
fix the defect (p = 0.6710).

To explore why providing potential fault locations did not
yield observable benefits, we reviewed participants’ survey
responses about how they made use of the fault locations
during the debugging tasks. Some participants stated that they
felt that having fault locations helped them to narrow their
search space. However, several indicated that they needed
additional insight beyond the fault locations to understand the
underlying cause of the defect.

“I looked at the buggy line help, [but] I was still not
sure how to fix the code. However, at least I could
focus just on those lines instead of all of the rest of
the application.”

Another participant reported that the fault locations might help
in situations where she has more knowledge about what might
cause the fault.

“It seemed helpful only when I was slightly con-
fused. On conditions when I had no clue, it could
have been more helpful by providing more feedback
other than just [the] line number, like perhaps the
correct syntax when it is wrong or incomplete.”

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

TABLE 11

THE POTENTIAL HYPOTHESES GIVEN TO PARTICIPANTS AND EXAMPLES OF PARTICIPANTS’ CORRECT AND INCORRECT HYPOTHESES AT STAGE TWO.

Task Correct potential hypotheses Incorrect potential hypotheses

Examples of participants’ correct
hypotheses

Examples of participants’ incorrect
hypotheses

Hypothesis: You are using the
wrong DOM API or not us-
ing getElementsByClassName cor-
rectly.

How To Test: Check if you are
using the correct DOM API. Also
remember: getElementByld returns
an HTML element that has the
same id, get ElementsByClass-
Name returns a HTML Collection
that you have to iterate over.

Hypothesis: You are not using the
correct CSS property.

How To Test: Check if you are
using the correct CSS property to
change the visibility of an ele-
ment. Example: visibility: ’visible’
or ’hidden’, or display: ’none’ or
"block’.

Hypothesis: style changed is
wrongly applied to a collection
variable.

How To Test: Change the style
application to a loop over all
elements in collection.

Hypothesis: In the JS code the
HTML Div Element’s selector (id,
class, or xpath) is not properly
defined. There is an error in the
selector that is causing the error.
How To Test: Check the HTML
code and the JS code to see if
the JS code is using the correct
selection.

Hypothesis: You are not binding
the scope of ’this’ for the callback.
How To Test: Check that you are
binding the callback for the click
event with ’this’. For example: call-
back.bind(this).

Hypothesis: You are not creating
the initial state.

How To Test: Check if you have
created initial state in the construc-
tor. For example: this.state = {}.

Hypothesis: The handleClick
method has not been bound to the
React component instance, and
so calling this.handleClick in the
event handler set the calls this”
reference to an object other than
the component, and so the setState
method is not called on the right

object.
How To Test: Bind the
handleClick method to the

instance and try running it again.

Hypothesis: this.state is not being
defined properly. Since it is being
done in constructor, it is causing
this.setState to be null.

How To Test: check the correct
way to define state.

Hypothesis: You are not setting the
new animation position correctly.
How To Test:Check that the new
position value is set correctly and
in pixels. For example: 15px.

Hypothesis: You are not assigning
a callback to the click event.

How To Test:Check if you have a
callback function to the click event.
JQuery has this pattern:
$(#htmllId’).click(callback)

Hypothesis: The animation CSS
under the else statement keeps the
object at the same place as the if
statement, which is why the object
doesn’t move

How To Test: Try changing the
position of object in CSS in the

Hypothesis:The clicked boolean
property is being changed at an
incorrect location that is causing
the if/else to malfunction.

How To Test: remove the line 12
and change line 20 to be changed
= Ichanged;

else statement around to see if the
animation starts changing.

C. Does offering potential hypotheses help participants debug
more successfully?

We investigated the impact of directly offering potential
hypotheses on debugging success. Table III summarizes the
results. We found that participants who received potential
debugging hypotheses were six times more likely to fix the
fault compared to the other groups (p = 0.0388). Surprisingly,
we found that offering potential hypotheses was a stronger
predictor for debugging success than participants’ years of
expertise (table IV).

The survey indicates that participants wanted the potential
hypotheses aid to be more helpful in locating the source code
related to the hypothesis and to include an example.

“[Potential hypotheses] weren’t usually very descrip-
tive, and/or didn’t show an example. This would
have made them more helpful”.

“[Potential hypotheses] gave me a good suggestion
to find the bugs. They did not tell me the specific
position, and after I thought for a while, I could find
it out.”

These results suggest that potential hypotheses helped to set
participants in the right direction to fix the defect and greatly
increased their chance of success. However, we did not find
any significant differences in debugging time (f = 0.51, p =

TABLE III
TASK SUCCESS AND MEDIAN TIME TO SUCCESS IN MINUTES FOR EACH
TASK BY CONDITION.

Condition Success Median Time
ondiio Taskl Task2 Task3 Taskl Task2 Task3
Control 4/8 2/6 5/6 28 13.5 14.3
Fault locations 2/6 4/6 718 16.6 25.3 21.6
Potential hypotheses 5/6 5/8 6/6 24 18.1 12

TABLE IV
AN ORDINAL LOGISTIC REGRESSION TO EVALUATE THE IMPACT OF TWO
DEBUGGING AIDS ON DEBUGGING SUCCESS.

variables Odd ratio SE B Wald Sig. (p)
Fault locations 1.4 0.77 0.4 0.64
Potential hypotheses 6.24 0.88 2 0.03*
Years of experience 1.14 0.06 2 0.04*
Technology knowledge 2.19 0.43 1.81 0.07.

0.61). To fix the defect, participants still needed to understand
the hypothesis, find how it related to the defect, and read
additional information such as documentation. Participants
who succeeded in the control, fault locations, and potential
hypotheses conditions spent on average 5%, 17%, and 6%

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

of their time reading documentation, respectively, with no
significant differences between conditions (f = 1.7, p = 0.19).

VI. LIMITATIONS AND THREATS TO VALIDITY

Our investigation of debugging hypotheses has several po-
tential threats to validity. One potential threat to validity is
the context in which participants worked during the study. We
asked participants to use our study environment throughout the
study. To control for potential variation in participants’ search
strategies in using external resources, we asked participants
to not use the Internet and only use the resources offered to
them. While this does not represent the typical context of work
environments, we closely simulated how web developers work
by embedding a well-known editor? in the study environment
and gave participants the best documentation we found related
to the debugging tasks.

An additional potential threat to validity is in our selection
of debugging tasks. All of the tasks involved debugging
simple Web applications. Offering fault locations might benefit
developers more for larger programs. However, each task rep-
resented a real debugging situation reported in Stack Overflow
after a developer struggled and needed help.

In our study, we extracted developers’ hypotheses by asking
them to enumerate as many hypotheses as possible before
testing them. Although this may not represent how developers
debug using the scientific debugging strategy [2], it forces
developers to think through actions before taking them, closer
to the popular practice known as rubber duck debugging [37].

VII. DISCUSSION

Our work offer important new evidence on the role of
hypotheses in the debugging process. The observations of
professional developers in the preliminary study suggests that
even for developers with access to shared knowledge on the
Internet, finding a correct hypothesis can still be a hard and
slow process. We found, in a lab setting, that developers with
the correct hypothesis early in the debugging process were
five times more likely to succeed. But we also found that
hypotheses were few in number. Developers were only able
to formulate a median of two hypotheses, and less than half
were able to formulate a correct hypothesis early in debugging.
Even tools that suggest fault locations did not help developers
to formulate more correct hypotheses or debug more success-
fully. This suggests that, while central to debugging success,
formulating a correct hypothesis is often hard.

One way to address this issue may be through creating
new forms of debugging tools which more effectively surface
relevant debugging hypotheses to the developer. Our study
found initial indications of the potential benefits these tools
might offer. Given potential explanations of the cause of a
defect, developers were over six times more likely to succeed
in fixing the defect. Several systems have begun to explore
similar ideas in the context of helping novices diagnose pro-
gramming errors. For example, HelpMeOut [38] and NoFAQ

Zhttps://jsbin.com

[39] suggests potential defect explanations along with fixes by
identifying prior defect fixes with similar source code, error
messages, or failing tests [40]. However, despite their promise,
existing techniques for generating hypotheses are limited in
ways that make them difficult to apply outside of an educa-
tional context. These techniques rely on building a program
specific database of potential defects and corresponding fixes,
limiting their applicability to situations where students solve
the same programming problem.

Future debugging tools may extend the this by offering
developers potential hypotheses taken from similar incorrect
behavior across many different programs. But where would
potential hypotheses come from? Developers gain expertise
by encountering and debugging many defects. Unfortunately,
developers’ mechanisms for broadcasting this knowledge is
limited. Developers may answers questions asked by cowork-
ers or in the developers’ community or write technical blog
posts. But, as we found in our preliminary study, accessing the
appropriate hypothesis for the defect at hand may remain hard.
We argue that debugging tools can and should do better in
helping developers share debugging knowledge. For example,
debugging tools might be aware that a developer has succeeded
in fixing a defect, and might prompt the developer to share
a generalized explanation of what underlying cause. Other
developers who face similar defects in the future might then be
furnished these debugging hypotheses by the debugging tool.

To illustrate how a developer might use such a debugging
tool, consider a hypothetical example. When a developer
encounters a defect, she might ask the debugging tool for
a list of potential hypotheses that match the current defect
context. The debugging tool could then identify relevant
hypotheses, if available, and support the developer in testing
them. When there are no relevant hypotheses, the developer
could debug to find the cause of the defect. When she succeeds
in debugging, the debugging tool might prompts the developer
to add contextual information about the defect and the correct
hypothesis to a database.

VIII. CONCLUSIONS

Our studies offer new evidence for the importance of
hypotheses to debugging. Lacking a correct hypothesis can
be an important barrier to making progress in debugging. To
address this, we found that offering a debugging aid in the
form of potential hypotheses made developers six time more
likely to succeed in debugging. This suggests important new
opportunities for future tools that help developers to get started
in finding a debugging hypothesis relevant to their task at hand.

ACKNOWLEDGMENTS

We would like to thank the participants for their time. This
research was funded in part by NSF grant CCF-1703734 and
CCF-1845508. The first author is supported in part by a King
Saudi University Graduate Fellowship.

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

[1]
[2]
[3]

[4]

[5]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

REFERENCES

G. J. Myers, C. Sandler, and T. Badgett, The art of software testing.
John Wiley & Sons, 2012.

A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, 2005.

T. D. LaToza and B. A. Myers, “Developers ask reachability questions,”
in ICSE Proceedings of the International Conference on Software
Engineering, 2010, pp. 185-194.

A. Ko, “Debugging by asking questions about program output,” in /CSE
Proceedings of the International Conference on Software Engineering,
2006, pp. 989-992.

J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information forag-
ing theory perspective,” IEEE Transactions on Software Engineering,
vol. 39, no. 2, pp. 197-215, Feb 2013.

Mark Weiser, “Program slicing,” in ICSE Proceedings of the Interna-
tional Conference on Software Engineering, 1984, pp. 439-449.

A.J. Ko and B. A. Myers, “Debugging reinvented,” in ICSE Proceedings
of the International Conference on Software Engineering, 2008, pp. 301—
310.

A. J. Ko, R. DeLine, and G. Venolia, “Information needs in collocated
software development teams,” in ICSE Proceedings of the International
Conference on Software Engineering, 2007, pp. 344-353.

M. Perscheid, B. Siegmund, M. Taeumel, and R. Hirschfeld, “Studying
the advancement in debugging practice of professional software devel-
opers,” Software Quality Journal, vol. 25, no. 1, pp. 83-110, 2017.

T. Roehm, R. Tiarks, R. Koschke, and W. Maalej, “How do professional
developers comprehend software?” in ICSE Proceedings of the Interna-
tional Conference on Software Engineering, Jun 2012, pp. 255-265.

J. Sillito, G. C. Murphy, and K. D. Volder, “Asking and Answering
Questions during a Programming Change Task,” IEEE Transactions on
Software Engineering, vol. 34, no. 4, pp. 434-451, Jul 2008.

L. Layman, M. Diep, M. Nagappan, J. Singer, R. Deline, and G. Venolia,
“Debugging revisited: Toward understanding the debugging needs of
contemporary software developers,” in IEEE International Symposium
on Empirical Software Engineering and Measurement, 2013, pp. 383—
392.

A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An Ex-
ploratory Study of How Developers Seek, Relate, and Collect Relevant
Information during Software Maintenance Tasks,” IEEE Transactions on
software engineering, vol. 32, no. 12, pp. 971-987, 2006.

Z. Coker, D. G. Widder, C. Le Goues, C. Bogart, and J. Sunshine, “A
qualitative study on framework debugging,” in International Conference
on Software Maintenance and Evolution, 2019, pp. 568-579.

R. Brooks, “Towards a theory of the comprehension of computer
programs,” International Journal of Man-Machine Studies, vol. 18, no. 6,
pp. 543-554, Jun 1983.

S. Letovsky, “Cognitive processes in program comprehension,” The
Journal of Systems and Software, vol. 7, no. 4, pp. 325-339, Dec 1987.
A. Von Mayrhauser and A. Vans, “On the role of hypotheses during
opportunistic understanding while porting large scale code,” in I[CPC
International Workshop on Program Comprehension, 1996, pp. 68-77.
R. Jeffries, “A comparison of the debugging behavior of expert and
novice programmers,” Proceedings of AERA annual meeting, 1982.

D. C. Littman, J. Pinto, S. Letovsky, and E. Soloway, “Mental models
and software maintenance,” The Journal of Systems and Software, vol. 7,
no. 4, pp. 341-355, 1987.

M. Bohme, E. O. Soremekun, S. Chattopadhyay, E. Ugherughe, and
A. Zeller, “Where is the bug and how is it fixed? an experiment
with practitioners,” in ESEC/FSE Proceedings of the Joint Meeting on
Foundations of Software Engineering, 2017, pp. 117-128.

I. Vessey, “Expertise in debugging computer programs: A process
analysis,” International Journal of Man-Machine Studies, vol. 23, pp.
459-494, 1985.

R. A. DeMillo, H. Pan, E. H. Spafford, R. A. DeMillo, H. Pan, and
E. H. Spafford, “Critical slicing for software fault localization,” in ISSTA
Proceedings of the ACM SIGSOFT International Symposium on Software
Testing and Analysis, 1996, pp. 121-134.

X. Zhang, N. Gupta, and R. Gupta, “Pruning dynamic slices with
confidence,” in PLDI Conference on Programming Language Design
and Implementation, no. 6, 2006, pp. 169-180.

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

(35]

[36]

(37]

[38]

(39]

[40]

Xiangyu Zhang, R. Gupta, and Youtao Zhang, “Precise dynamic slicing
algorithms,” in ICSE Proceedings of the International Conference on
Software Engineering, 2003, pp. 319-329.

C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in ISSTA Proceedings of the ACM SIGSOFT
International Symposium on Software Testing and Analysis, 2011, pp.
199-2009.

T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models:
A study of developer work habits,” in ICSE Proceedings of the Interna-
tional Conference on Software Engineering, 2006, pp. 492-501.

L. Yang, M. Qiu, S. Gottipati, F. Zhu, J. Jiang, H. Sun, and Z. Chen,
“Asking the Right Question in Collaborative Q&A systems,” in Con-
ference on Information & Knowledge Management (CIKM), 2013, pp.
99-108.

B. Vasilescu, A. Serebrenik, P. Devanbu, and V. Filkov, “How social
Q&A sites are changing knowledge sharing in open source software
communities,” in CSCW Conference on Computer Supported Coopera-
tive Work & Social Computing, 2014, pp. 342-354.

C. Treude, O. Barzilay, and M.-A. Storey, “How do programmers ask and
answer questions on the web?” in ICSE Proceedings of the International
Conference on Software Engineering, 2011, pp. 804-807.

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest q&a site in the west,” in CHI Confer-
ence on Human Factors in Computing Systems, 2011, pp. 2857-2866.
M. Asaduzzaman, A. S. Mashiyat, C. K. Roy, and K. A. Schneider,
“Answering questions about unanswered questions of Stack Overflow,”
in MSR Conference on Mining Software Repositories, 2013, pp. 97-100.
A. Alaboudi and T. D. LaToza, “An exploratory study of live-streamed
programming,” in IEEE Symposium on Visual Languages and Human-
Centric Computing, 2019, pp. 5-13.

——, “Supporting software engineering research and education by
annotating public videos of developers programming,” in International
Workshop on Cooperative and Human Aspects of Software Engineering,
2019, pp. 117-118.
Replication package.
https://bit.ly/3gvBJOQ
S. Baltes and S. Diehl, “Towards a theory of software development ex-
pertise,” in ESEC/FSE Proceedings of the Joint Meeting on Foundations
of Software Engineering, 2018, pp. 187-200.

J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” Biometrics, vol. 33, pp. 159-174, 1977.

H. Andrew and T. David, The pragmatic programmer. Addison-Wesley,
2000.

B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What
would other programmers do: suggesting solutions to error messages,”
in CHI Conference on Human Factors in Computing Systems, 2010, pp.
1019-1028.

L. D’Antoni, R. Singh, and M. Vaughn, “Nofaq: Synthesizing command
repairs from examples,” in ESEC/FSE Proceedings of the Joint Meeting
on Foundations of Software Engineering, 2017, pp. 582-592.

E. L. Glassman, A. Lin, C. J. Cai, and R. C. Miller, “Learner sourcing
personalized hints,” in CSCW Conference on Computer Supported
Cooperative Work & Social Computing, 2016, pp. 1626-1636.

Accessed: 2020-02-17. [Online]. Available:

Authorized licensed use limited to: IEEE Xplore. Downloaded on July 25,2020 at 03:28:59 UTC from IEEE Xplore. Restrictions apply.

