Information Visualization

SWE 632
Fall 2015

© Thomas LaToza
Administrivia

- HW 4 due today
- HW 5 due next week
- Midterms returned in-class today
Comments on midterm

• Answer the question given
• Does not need to be 2 pages
• Bootstrap can be customized to be more distinctive (no one lost points here)
Course grade

- In-class and online discussion participation: 5%
- Tech talk: 10%
- HWs and project presentation: 40%
- Mid-term exam: 20%
- Final exam: 25%
Information Visualization
Graphics is the visual means of resolving logical problems.

-Bertin (1977)
Information visualization

• Technology has made data pervasive

 • health, finance, commerce, customer, travel, demographics, communications, …

 • some of it “big”

• Information visualization: the use of interactive visual representations to amplify cognition

 • e.g., discover insights, answer questions
Cholera Epidemic in London, 1854

- >500 fatal attacks of cholera in 10 days
 - Concentrated in Broad Street area of London
 - Many died in a few hours
- Dominant theory of disease: caused by noxious odors
- Afflicted streets deserted by >75% inhabitants
John Snow

• Set out to investigate **cause**

• Suspected it might be due to water from community **pump**

• Tested water —> no obvious impurities

• What more evidence could there be?

• Could list of 83 deaths, plotted on map
Investigation and aftermath

• Based on visualization, did case by case investigation

• Found that 61 / 83 positive identified as using well water from Broad Street pump

• Board ordered pump-handle to be removed from well

• Epidemic soon ended

• Solved centuries old question of how cholera spread
Methods used by Snow

• Placed data in appropriate **context** for assessing cause & effect

 • Plotted on map, included well location

 • Reveals proximity as cause

• Made quantitative **comparisons**

 • Fewer deaths closer to brewery, could investigate cause

• Considered **alternative** explanations & contrary cases

 • Investigated cases not close to pump, often found connection to pump

• Assessment of possible **errors** in numbers
Charles Minard’s Map of Napoleon’s Russian Campaign of 1812
Chapel & Garofalo, Rock ’N Roll is Here to Pay: The History and Politics of the Music Industry
How information visualization amplifies cognition.

Increased Resources
- High-bandwidth hierarchical interaction
- Parallel perceptual processing
- Offload work from cognitive to perceptual system
- Expanded working memory
- Expanded storage of information

The human moving gaze system partitions limited channel capacity so that it combines high spatial resolution and wide aperture in sensing visual environments (Resnikoff, 1987).

Some attributes of visualizations can be processed in parallel compared to text, which is aerial. Some cognitive inferences done symbolically can be recoded into inferences done with simple perceptual operations (Larkin and Simon, 1987).

Visualizations can expand the working memory available for solving a problem (Norman, 1993). Visualizations can be used to store massive amounts of information in a quickly accessible form (e.g., maps).

Reduced Search
- Locality of processing
- High data density
- Spatially indexed addressing

Visualizations group information used together, reducing search (Larkin and Simon, 1987). Visualizations can often represent a large amount of data in a small space (Tufte, 1983).

By grouping data about an object, visualizations can avoid symbolic labels (Larkin and Simon, 1987).

Enhanced Recognition of Patterns
- Recognition instead of recall
- Abstraction and aggregation
- Visual schemata for organization
- Value, relationship, trend

Recognizing information generated by a visualization is easier than recalling that information by the user.

Visualizations simplify and organize information, supplying higher centers with aggregated forms of information through abstraction and selective omission (Card, Robertson, and Mackinlay, 1991; Resnikoff, 1987).

Visually organizing data by structural relationships (e.g., by time) enhances patterns.

Visualizations can be constructed to enhance patterns at all three levels (Bertin, 1977/1981).

Perceptual Inference
- Visual representations make some problems obvious
- Graphical computations

Visualizations can support a large number of perceptual inferences that are extremely easy for humans (Larkin and Simon, 1987).

Visualizations can enable complex specialized graphical computations (Hutchins, 1996).

Perceptual Monitoring

Visualizations can allow for the monitoring of a large number of potential events if the display is organized so that these stand out by appearance or motion.

Unlike static diagrams, visualizations can allow exploration of a space of parameter values and can amplify user operations.
Mapping data to visual form
Designing an information visualization

Raw Data: idiosyncratic formats
Data Tables: relations (cases by variables) + metadata
Visual Structures: spatial substrates + marks + graphical properties
Views: graphical parameters (position, scaling, clipping, ...)

![Diagram of the information visualization process]

- **Data**
 - Raw Data
 - Data Transformations
 - Data Tables
- **Visual Form**
 - Visual Structures
 - View Transformations
 - Views
- **Human Interaction**

(task)
Types of variables

- Nominal - unordered set
- Ordinal - ordered set
- Quantitative - numeric range
Data transformations

• Classing / binning: Quantitative —> ordinal

 • Maps ranges onto **classes** of variables

 • Can also count # of items in each class w/ histogram

• Sorting: Nominal —> ordinal

 • Add order between items in sets

• Descriptive statistics: mean, average, median, max, min, ...
Visual structures

• 3 components
 • spatial substrate
 • marks
 • marks’ graphical properties
Spatial substrate

• Axes that divide space
• Types of axes - unstructured, nominal, ordinal, quantitative
• Composition - use of multiple orthogonal axes (e.g., 2D scatterplot, 3D)
Folding

- continuing an axis by continuing in different space
Marks

- Points (0D)
- Lines (1D)
- Areas (2D)
- Volumes (3D)
Marks’ graphical properties

a.k.a. Bertin’s retinal properties

<table>
<thead>
<tr>
<th>Spatial</th>
<th>Object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extent</td>
<td>Position</td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>Orientation</td>
<td></td>
</tr>
</tbody>
</table>

Texture
- ![Texture](image)

Shape
- ![Shape](image)
Effectiveness of graphical properties

- Quantitative (Q), Ordinal (O), Nominal (N)
- Filled circle - good; open circle - bad
Animation

• Visualization can change over time

• Could be used to encode data as a function of time
 • But often not effective as makes direct comparisons hard

• Can be more effective to animate transition from before to after as user configures visualization
Examples of visualizations
Time-series data
Index chart

- Depicts % change relative to baseline point
Stacked graph

• Supports visual summation of multiple components
Small multiples

- supports separate comparison of data series
- may have better legibility than placing all in single plot
Statistical distributions
Box plot

- shows distribution with median, quantiles, min / max

- outliers: $1.5 \times$ interquartile range (height of box)
Stem and left plots

- bins numbers by first digit, stacks remaining digits
- more detail focused alternative to histogram
Maps
Choropleth map

- Groups data by area, maps to color
Cartograms

- Encodes two variables w/ size & color
Hierarchies
Node link diagram
Dendrogram

- leaf nodes of hierarchy on edges of circle
Treemaps
Networks
Force-directed layout

- edges function as springs, find least energy configuration
• can support identifying cliques & bridges w/ right order
Adjacency matrix
Design considerations
Tufte’s principles of graphical excellence

- show the data
- induce the viewer to think about the substance rather than the methodology
- avoid distorting what the data have to say
- present many numbers in a small space
- make large data sets coherent
- encourage the eye to compare different pieces of data
- reveal data at several levels of detail, from overview to fine structure
- serve reasonable clear purpose: description, exploration, tabulation, decoration
Distortions in visualizations

- Visualizations may distort the underlying data, making it harder for reader to understand truth
- Use **design variation** to try to falsely communicate **data variation**
Example
Example

Nobel Prizes Awarded in Science, for Selected Countries, 1901-1974

(Number of Prizes)

United States

United Kingdom

Germany

France

U.S.S.R.
Example (corrected)
Example

Purchasing Power of the Diminishing Dollar
Source: Labor Department

1958 — EISENHOWER: $1.00

1963 — KENNEDY: 94¢

1968 — JOHNSON: 83¢

1973 — NIXON: 64¢

1978 — CARTER: 44¢ (August)
Data-ink

- Data-ink - non-redundant ink encoding data information

\[\text{Data-ink ratio} = \frac{\text{data-ink}}{\text{total ink used to print the graphic}} \]

= proportion of a graphic’s ink devoted to the non-redundant display of data-information

= 1.0 – proportion of a graphic that can be erased without loss of data-information.
Data-ink ratio

~0

1.0
Design principles for data-ink

• (a.k.a. aesthetics & minimalism / elegance & simplicity)

• **Above all else show the data**

 • Erase non-data-ink, within reason

 • Often not valuable and distracting

 • Redundancy not usually useful
Example
Example (revised)
Interacting with visualizations
Interactive visualizations

• Users often use iterative process of making sense of the data

• Answers lead to new questions

• Interactivity helps user constantly change display of information to answer new questions

• Should offer visualization that offers best view of data moment to moment as desired view changes
Shneiderman’s visualization tasks

- Overview: gain an overview of entire collection
- Zoom: zoom in on items of interest
- Filter: filter out uninteresting items
- Details on demand: select an item or group and get details
- Relate: view relationships between items
- History: support undo, replay, progressive refinement
- Extract: allow extraction of sub-collections through queries
In Class Activity
Design an information visualization

• In groups of 2

• Select a set of data to visualize and three or more representative questions to answer using this data

• Design an interactive information visualization

 • Create sketches showing the design of the information visualization

 • Should have multiple views of data, interactions to configure and move between views