
Code Generation

CS 540

George Mason University

CS 540 Spring 2009 GMU 2

Compiler Architecture

Scanner
(lexical
analysis)

Parser
(syntax
analysis)

Code
Optimizer

Semantic
Analysis

(IC generator)

Code
Generator

Symbol
Table

Source
language

tokens Syntactic
structure

Intermediate
Language

Target
language

Intermediate
Language

CS 540 Spring 2009 GMU 3

Code Generation

The code generation problem is the task of
mapping intermediate code to machine
code.

Machine Dependent Optimization!

Requirements:

• Correctness

• Efficiency

CS 540 Spring 2009 GMU 4

Issues:

• Input language: intermediate code
(optimized or not)

• Target architecture: must be well
understood

• Interplay between
– Instruction Selection
– Register Allocation
– Instruction Scheduling

CS 540 Spring 2009 GMU 5

Instruction Selection

• There may be a large number of ‘candidate’
machine instructions for a given IC
instruction
– each has own cost and constraints

– cost may be influenced by surrounding context

– different architectures have different needs that
must be considered: speed, power constraints,
space …

CS 540 Spring 2009 GMU 6

Instruction Scheduling

• Choosing the order of instructions to best utilize
resources

• Architecture
– RISC (pipeline)
– Vector processing
– Superscalar and VLIW

• Memory hierarchy
– Ordering to decrease memory fetching
– Latency tolerance – doing something when data does

have to be fetched

CS 540 Spring 2009 GMU 7

Register Allocation

How to best use the bounded number of
registers.

Complications:
– special purpose registers

– operators requiring multiple registers.

CS 540 Spring 2009 GMU 8

Naïve Approach to Code Generation

Simple code generation algorithm:
Define a target code sequence to each intermediate code

statement type.

This is basically what we did earlier when creating
the intermediate code (i.e. SPIM in project 3)

Why is this not sufficient?

CS 540 Spring 2009 GMU 9

Example Target: SPIM Assembly
Language

General Characteristics
• Byte-addressable with 4-byte words
• N general -purpose registers
• Three-address instructions: op destination, source1,

source2

CS 540 Spring 2009 GMU 10

Mapping from Intermediate code
Simple code generation algorithm:

Define a target code sequence to each intermediate code
statement type.

la $t0,a

lw $t1,b

add $t0,$t0,$t1

lw $t1,c

sw $t1,($t0)

a[b] := cla $t0,b

lw $t1,c

add $t0,$t0,$t1

lw $t0,($t0)

sw $t0,a

a := b[c]

lw $t0,b

lw $t1,c

add $t0,$t0,$t1

sw $t0,a

a := b + clw $t0,b

sw $t0,a

a := b

becomes…Intermediatebecomes…Intermediate

CS 540 Spring 2009 GMU 11

Consider the C statement: a[i] = d[c[k]];
t1 := c[k] la $t0,c

lw $t1,k
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t1

t2 := d[t1] la $t0,d
lw $t1,t1
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t2

a[i] := t2 la $t0,a
lw $t1,i
add $t0,$t0,$t1
lw $t1,t2
sw $t1,($t0)

We use 15 instructions
(12 load/store + 3 arithmetic)
and allocate space for two
temporaries (but only use
two registers).

CS 540 Spring 2009 GMU 12

Problems with this approach
• Local decisions do not produce good code.
• Does not take temporary variables into account
Get rid of the temporaries (reduce load/store):

la $t0,c
lw $t1,k
add $t0,$t0,$t1 # address of c[k]
lw $t0,($t0)
la $t1,d
add $t1,$t1,$t0 # address of d[c[k]]
lw $t1,($t1)
la $t0,a
lw $t2,i
add $t0,$t0,$t2 # address of a[i]
sw $t1,($t0)

CS 540 Spring 2009 GMU 13

Need a way to generate machine code based
on past and future use of the data.

• Analyze the code

• Use results of analysis

CS 540 Spring 2009 GMU 14

Representing Intermediate Code:
Control Flow Graph - CFG

CFG = < V, E, Entry >, where
V = vertices or nodes, representing an instruction

or basic block (group of statements).

E = (V x V) edges, potential flow of control

Entry is an element of V, the unique program
entry

1 2 3 4 5

CS 540 Spring 2009 GMU 15

Basic Blocks

A basic block is a sequence of consecutive
statements with single entry/single exit:
– flow of control only enters at the beginning

– Flow of control only leaves at the end

– Variants: single entry/multiple exit, multiple
entry/single exit

CS 540 Spring 2009 GMU 16

Generating CFGs from
Intermediate Code

• Partition intermediate code into basic blocks

• Add edges corresponding to control flow
between blocks
– Unconditional goto

– Conditional goto – multiple edges

– No goto at end – control passes to first
statement of next block

CS 540 Spring 2009 GMU 17

Partitioning into basic blocks
Input: A sequence of intermediate code statements
1. Determine the leaders, the first statements of

basic blocks.
• The first statement in the sequence is a leader.
• Any statement that is the target of a goto (conditional

or unconditional) is a leader.
• Any statement immediately following a goto

(conditional or unconditional) is a leader.

2. For each leader, its basic block is the leader and
all statements up to, but not including, the next
leader or the end of the program.

CS 540 Spring 2009 GMU 18

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

CS 540 Spring 2009 GMU 19

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

CS 540 Spring 2009 GMU 20

(1) i := m – 1 (16) t7 := 4 * i

(2) j := n (17) t8 := 4 * j

(3) t1 := 4 * n (18) t9 := a[t8]

(4) v := a[t1] (19) a[t7] := t9

(5) i := i + 1 (20) t10 := 4 * j

(6) t2 := 4 * i (21) a[t10] := x

(7) t3 := a[t2] (22) goto (5)

(8) if t3 < v goto (5) (23) t11 := 4 * i

(9) j := j - 1 (24) x := a[t11]

(10) t4 := 4 * j (25) t12 := 4 * i

(11) t5 := a[t4] (26) t13 := 4 * n

(12) If t5 > v goto (9) (27) t14 := a[t13]

(13) if i >= j goto (23) (28) a[t12] := t14

(14) t6 := 4*i (29) t15 := 4 * n

(15) x := a[t6] (30) a[t15] := x

CS 540 Spring 2009 GMU 21

Instruction Scheduling

• Choosing the order of instructions to best
utilize resources (CPU, registers, …)

• Consider RISC pipeline Architecture:

IF

IF

IF

ID

ID

ID

EX

EX

EX

MA

MA

MA

WB

WB

WB

IF – Instruction Fetch
ID – Instruction Decode
EX – Execute
MA – Memory access
WB – Write back

time

CS 540 Spring 2009 GMU 22

Hazards

1. Structural hazards – machine resources
limit overlap

2. Data hazards – output of instruction
needed by later instruction

3. Control hazards – branching

Pipeline stalls!

CS 540 Spring 2009 GMU 23

Data Hazards

IF

IF

ID

ID

EX

EX

MA

MA WB

WBlw R1,0(R2)

add R3,R1,R4 stall

Memory latency:

Can’t add until register R1 is loaded.

CS 540 Spring 2009 GMU 24

Data Hazards

IF

IF

ID

ID

EX EX MA

MA WB

WBaddf R3,R1,R2

addf R3,R3,R4 stall EX EX

Assumes floating point ops take 2 execute cycles

Instruction latency:

CS 540 Spring 2009 GMU 25

Dealing with Data Hazards

• Typical solution is to re-order statements.

• To do this without changing the outcome,
need to understand the relationship
(dependences) between statements.

IF

IF

ID

ID

EX EX MA WBaddf R3,R1,R2

add R5,R5,R6 EX MA WB

IF ID MA WBaddf R3,R3,R4 EX EX

CS 540 Spring 2009 GMU 26

Instruction Scheduling
• Many operations have non-zero latencies

• Execution time is order-dependent

Assumed latencies (conservative)

Operation Cycles
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block

> Non-blocking fill those issue slots
•Scheduler should hide the latencies

CS 540 Spring 2009 GMU 27

w w * 2 * x * y * z
• Schedule 1
1 lw $t0,w
4 add $t0,$t0,$t0
5 lw $t1,x
8 mult $t0,$t0,$t1
9 lw $t1,y
12 mult $t0,$t0,$t1
13 lw $t1,z
16 mult $t0,$t0,$t1
18 sw $t0,w
done at time 21

• Schedule 2
1 lw $t0,w
2 lw $t1,x
3 lw $t2,y
4 add $t0,$t0,$t0
5 mult $t0,$t0,$t1
6 lw $t1,z
7 mult $t0,$t0,$t2
9 mult $t0,$t0,$t1
11 sw $t0,w
done at time 14

Issue time

CS 540 Spring 2009 GMU 28

Control Hazards

IF

IF

ID

ID

EX

EX

MA

IF ID

WB

EX MA WB

Stall if branch is made

CS 540 Spring 2009 GMU 29

Branch Scheduling

Problem:

• Branches often take some number of cycles to
complete, creating delay slots.

• Can be a delay between a compare b and its
associated branch.

• Even unconditional branches have delay slots

A compiler will try to fill these delay slots with
valid instructions (rather than nop).

CS 540 Spring 2009 GMU 30

Example

Assume loads take 2
cycles and branches
have a delay slot.

7 cycles

7nop

6b L1

5add $t5, $t2,1

4add $t4, $t2, $t3

2lw $t3,$(t1)(8)

1lw $t2,$t1(4)

start timeinstruction

CS 540 Spring 2009 GMU 31

Example
Can look at the

dependencies between
the statements and
move a statement into
the delay slot.

5 cycles Filling Delay
branches

5add $t4, $t2, $t3

4b L1

3add $t5, $t2,1

2lw $t3,$(t1)(8)

1lw $t2,$t1(4)

start timeinstruction

1 2

34

CS 540 Spring 2009 GMU 32

Filling the delay
slot in the SPARC
architecture

N Y

CS 540 Spring 2009 GMU 33

Register Allocation

How to best use the bounded number of
registers.
– Reducing load/store operations
– What are best values to keep in registers?
– When can we ‘free’ registers?

Complications:
– special purpose registers
– operators requiring multiple registers.

CS 540 Spring 2009 GMU 34

Register Allocation Algorithms

• Local (basic block level):
– Basic - using liveness information

– Register Allocation using graph coloring

• Global (CFG)
– Need to use global liveness information

CS 540 Spring 2009 GMU 35

Basic Code Generation
• Deal with each basic block individually.
• Compute liveness information for the block.
• Using liveness information, generate code

that uses registers as well as possible.
• At end, generate code that saves any live

values left in registers.

.

CS 540 Spring 2009 GMU 36

Concept: Variable Liveness

• For some statement s, variable x is live if
– there is a statement t that uses x

– there is a path in the CFG from s to t

– there is no assignment to x on some path from s to t

• A variable is live at a given point in the source
code if it could be used before it is defined.

• Liveness tells us whether we care about the value
held by a variable.

CS 540 Spring 2009 GMU 37

Example: When is a live?
a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

Assume a,b and c are used
after this basic block

a is live

CS 540 Spring 2009 GMU 38

Example: When is b live?
a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

Assume a,b and c are used
after this basic block

CS 540 Spring 2009 GMU 39

Computing live status in basic
blocks

Input: A basic block.
Output: For each statement, set of live variables
1. Initially all non-temporary variables go into live

set (L).
2. for i = last statement to first statement:

for statement i: x := y op z
1. Attach L to statement i.
2. Remove x from set L.
3. Add y and z to set L.

CS 540 Spring 2009 GMU 40

Example
live = {

a := b + c
live = {

t1 := a * a
live = {

b := t1 + a
live = {

c := t1 * b
live = {

t2 := c + b
live = {

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 41

Example Answers
live = {}

a := b + c
live = {}

t1 := a * a
live = {}

b := t1 + a
live = {}

c := t1 * b
live = {}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 42

Example Answers
live = {}

a := b + c
live = {}

t1 := a * a
live = {}

b := t1 + a
live = {}

c := t1 * b
live = {b,c}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 43

Example Answers
live = {}

a := b + c
live = {}

t1 := a * a
live = {}

b := t1 + a
live = { b,t1}

c := t1 * b
live = {b,c}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 44

Example Answers
live = {}

a := b + c
live = {}

t1 := a * a
live = {a,t1}

b := t1 + a
live = { b,t1}

c := t1 * b
live = {b,c}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 45

Example Answers
live = {}

a := b + c
live = {a}

t1 := a * a
live = {a,t1}

b := t1 + a
live = { b,t1}

c := t1 * b
live = {b,c}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 46

Example Answers
live = {b,c} what does this mean???

a := b + c
live = {a}

t1 := a * a
live = {a,t1}

b := t1 + a
live = { b,t1}

c := t1 * b
live = {b,c}

t2 := c + b
live = {b,c,t2}

a := t2 + t2
live = {a,b,c}

CS 540 Spring 2009 GMU 47

Basic Code Generation
• Deal with each basic block individually.
• Compute liveness information for the block.
• Using liveness information, generate code

that uses registers as well as possible.
• At end, generate code that saves any live

values left in registers.

.

CS 540 Spring 2009 GMU 48

Basic Code Generation
Idea: Deal with the instructions from beginning to

end. For each instruction,
– Use registers whenever possible.
– A non-live value in a register can be discarded, freeing

that register.

Data Structures:
– Register Descriptor - register status (empty, full) and

contents (one or more "values")
– Address descriptor - the location (or locations) where

the current value for a variable can be found (register,
stack, memory)

.

CS 540 Spring 2009 GMU 49

Instruction type: x := y op z

1. Choose Rx, the register where the result (x) will
be kept.

1. If y (or z) is in a register t alone and not live, choose
Rx = t

2. Else if there is a free register t, choose Rx = t
3. Else must free up a register for Rx

2. Find Ry. If y is not in a register, generate load
into a free register (or Rx)

3. Find Rz. If z is not in a register, generate load
into a free register (can use Rx if not used by y).

4. Generate: OP Rx, Ry, Rz

CS 540 Spring 2009 GMU 50

Instruction type: x := y op z

5. Update information about the current best
location of x

6. If x is in a register, update that register’s
information

7. If y and/or z are not live after this
instruction, update register and address
descriptors according.

CS 540 Spring 2009 GMU 51

Example Code
live = {b,c}

a := b + c

live = {a}

t1 := a * a

live = {a,t1}

b := t1 + a

live = { b,t1}

c := t1 * b

live = {b,c}

t2 := c + b

live = {b,c,t2}

a := t2 + t2

live = {a,b,c}

CS 540 Spring 2009 GMU 52

Returning to live Example

• Initially
Three Registers: (-, -, -) all empty

current values: (a,b,c,t1,t2) = (m,m,m, -, -)

• instruction 1: a := b + c, Live = {a }
Ra = $t0, Rb = $t0 , Rc = $t1
lw $t0,b

lw $t1,c

add $t0,$t0,$t1
Registers: (a, -, -) current values: ($t0,m,m, -, -)

Don’t need to keep track
of b or c since aren’t live.

CS 540 Spring 2009 GMU 53

• instruction 2: t1 := a * a, Live = {a,t1}
Rt1 = $t1 (since a is live)
mul $t1,$t0,$t0

Registers: (a,t1, -) current values: ($t0,m,m,$t1, -)

• instruction 3: b := t1 + a, Live = {b,t1}
Since a is not live after call, Rb = $t0
add $t0,$t1,$t0

Registers: (b,t1, -) current values: (m,$t0,m,$t1, -)

CS 540 Spring 2009 GMU 54

• instruction 4: c := t1 * b, Live = {b,c }
Since t1 is not live after call Rc = $t1
mul $t1,$t1,$t0

Registers: (b,c, -) current values: (m,$t0,$t1, -, -)

• instruction 5: t2 := c + b, Live = {b,c,t2 }
Rc = $t2

add $t2,$t1,$t0
Registers: (b,c,t2) current values: (m,$t0,$t1, -,$t2)

CS 540 Spring 2009 GMU 55

• instruction 6: a := t2 + t2, Live = {a,b,c}
add $t2,$t2,$t2

Registers: (b,c,a) current values: ($t2,$t0,$t1, -,-)

• Since end of block, move live variables:
sw $t2,a

sw $t0,b

sw $t1,c
all registers available

all live variables moved to memory

CS 540 Spring 2009 GMU 56

Generated code
lw $t0,b

lw $t1,c

add $t0,$t0,$t1
mul $t1,$t0,$t0

add $t0,$t1,$t0
mul $t1,$t1,$t0

add $t2,$t1,$t0

add $t2,$t2,$t2

sw $t2, a

sw $t0,b

sw $t1,c

a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

Cost = 16
How does this compare to
naïve approach?

CS 540 Spring 2009 GMU 57

• Liveness information allows us to keep
values in registers if they will be used later
(efficiency)

• Why do we assume all variables are live at
the end of blocks? Can we do better?

• Why do we need to save live variables at
the end? We might have to reload them in
the next block.

CS 540 Spring 2009 GMU 58

Register Allocation with Graph
Coloring

Local register allocation - graph coloring
problem.

Uses liveness information.

Allocate K registers where each register is
associated with one of the K colors.

CS 540 Spring 2009 GMU 59

Graph Coloring

• The coloring of a graph G = (V,E) is a
mapping C: V S, where S is a finite set of
colors, such that if edge vw is in E, C(v) <>
C(w).

• Problem is NP (for more than 2 colors)
no polynomial time solution.

• Fortunately there are approximation
algorithms.

CS 540 Spring 2009 GMU 60

Coloring a graph with K colors

No color for
this node

K = 3 K = 4

CS 540 Spring 2009 GMU 61

Register Allocation and Graph
K-Coloring

K = number of available registers

G = (V,E) where

• Vertex set V = {Vs | s is a program
variable}

• Edge Vs Vt in E if s and t can be live at the
same time

G is an ‘interference graph’

CS 540 Spring 2009 GMU 62

Algorithm: K registers

1. Compute liveness information for the basic
block.

2. Create interference graph G - one node for
each variable, an edge connecting any two
variables alive simultaneously.

CS 540 Spring 2009 GMU 63

Example Interference Graph

a := b + c {b,c}

t1 := a * a {a}

b := t1 + a {t1,a}

c := t1 * b {b,t1}

t2 := c + b {b,c}

a := t2 + t2 {b,c,t2}

{a,b,c}

a

b

t1

c

t2

CS 540 Spring 2009 GMU 64

Algorithm: K registers

3. Simplify - For any node m with fewer than K
neighbors, remove it from the graph and push it
onto a stack. If G - m can be colored with K
colors, so can G. If we reduce the entire graph,
goto step 5.

4. Spill - If we get to the point where we are left
with only nodes with degree >= K, mark some
node for potential spilling. Remove and push
onto stack. Back to step 3.

CS 540 Spring 2009 GMU 65

Choosing a Spill Node

Potential criteria:

• Random

• Most neighbors

• Longest live range (in code)
– with or without taking the access pattern into

consideration

CS 540 Spring 2009 GMU 66

5. Assign colors - Starting with empty graph,
rebuild graph by popping elements off the stack,
putting them back into the graph and assigning
them colors different from neighbors. Potential
spill nodes may or may not be colorable.

Process may require iterations and rewriting of some
of the code to create more temporaries.

CS 540 Spring 2009 GMU 67

Rewriting the code

• Want to be able to remove some edges in
the interference graph
– write variable to memory earlier

– compute/read in variable later

CS 540 Spring 2009 GMU 68

Back to example

a := b + c {b,c}

t1 := a * a {a}

b := t1 + a {t1,a}

c := t1 * b {b,t1}

t2 := c + b {b,c}

a := t2 + t2 {b,c,t2}

{a,b,c}

a

b

t1

c

t2

CS 540 Spring 2009 GMU 69

Example, k = 3

a

b

t1

c

t2

Assume k = 3

Remove t1
t1

Interference graph

CS 540 Spring 2009 GMU 70

Example

a

b

t1

c

t2

Assume k = 3

Remove a
t1
a

CS 540 Spring 2009 GMU 71

Example

a

b

t1

c

t2

Assume k = 3

Remove b
t1
a
b

CS 540 Spring 2009 GMU 72

Example

a

b

t1

c

t2

Assume k = 3

Remove c
t1
a
b
c

CS 540 Spring 2009 GMU 73

Example

a

b

t1

c

t2

Assume k = 3

Remove t2
t1
a
b
c
t2

CS 540 Spring 2009 GMU 74

Rebuild the graph

t2

Assume k = 3

t1
a
b
c

CS 540 Spring 2009 GMU 75

Example

c

t2

Assume k = 3

t1
a
b

CS 540 Spring 2009 GMU 76

Example

b

c

t2

Assume k = 3

t1
a

CS 540 Spring 2009 GMU 77

Example

a

b

c

t2

Assume k = 3

t1

CS 540 Spring 2009 GMU 78

Example

a

b

t1

c

t2

Assume k = 3

t0t2

t2t1

t2c

t1b

t0a

CS 540 Spring 2009 GMU 79

Back to example

a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

lw $t1,b

lw $t2,c

add $t0,$t1,$t2

mul $t2,$t0,$t0

add $t1,$t2,$t0

mul $t2,$t2,$t1

add $t0,$t2,$t1

add $t0,$t0,$t0

sw $t0,a

sw $t1,b

sw $t2,c

t0t2

t2t1

t2c

t1b

t0a

CS 540 Spring 2009 GMU 80

Generated code: Basic
lw $t0,b

lw $t1,c

add $t0,$t0,$t1
mul $t1,$t0,$t0

add $t0,$t1,$t0
mul $t1,$t1,$t0

add $t2,$t1,$t0

add $t2,$t2,$t2

sw $t2, a

sw $t0,b

sw $t1,c

Generated Code: Coloring
lw $t1,b

lw $t2,c

add $t0,$t1,$t2

mul $t2,$t0,$t0

add $t1,$t2,$t0

mul $t2,$t2,$t1

add $t0,$t2,$t1

add $t0,$t0,$t0

sw $t0,a

sw $t1,b

sw $t2,c

CS 540 Spring 2009 GMU 81

Example, k = 2

a

b

t1

c

t2

Assume k = 2

Remove b as spill
b*

CS 540 Spring 2009 GMU 82

Example

a

b

t1

c

t2

Assume k = 2

Remove t1
b*
t1

CS 540 Spring 2009 GMU 83

Example

a

b

t1

c

t2

Assume k = 2

Remove a
b*
t1
a

CS 540 Spring 2009 GMU 84

Example

a

b

t1

c

t2

Assume k = 2

Remove c
b*
t1
a
c

CS 540 Spring 2009 GMU 85

Example

a

b

t1

c

t2

Assume k = 2

Remove t2
b*
t1
a
c
t2

CS 540 Spring 2009 GMU 86

Example

a

b

t1

c

t2

Assume k = 2

???
Can flush b out to
memory, creating a
smaller window

CS 540 Spring 2009 GMU 87

After spilling b:

a

b

t1

c

t2

a := b + c {b,c}

t1 := a * a {a}

b := t1 + a {t1,a}

c := t1 * b {b,t1}
b to memory

t2 := c + b {b,c}

a := t2 + t2 {c,t2}

{a, c}

CS 540 Spring 2009 GMU 88

After spilling b:

a

b

t1

c

t2

t2

CS 540 Spring 2009 GMU 89

After spilling b:

a

b

t1

c

t2

t2
c*

Have to choose c as a potential
spill node.

CS 540 Spring 2009 GMU 90

After spilling b:

a

b

t1

c

t2

t2
c*
b

CS 540 Spring 2009 GMU 91

After spilling b:

a

b

t1

c

t2

t2
c*
b
a

CS 540 Spring 2009 GMU 92

After spilling b:

a

b

t1

c

t2

t2
c*
b
a
t1

CS 540 Spring 2009 GMU 93

Now rebuild:

a

b

t1

c

t2

t2
c*
b
a

CS 540 Spring 2009 GMU 94

Now rebuild:

a

b

t1

c

t2

t2
c*
b

CS 540 Spring 2009 GMU 95

Now rebuild:

a

b

t1

c

t2

t2
c*

CS 540 Spring 2009 GMU 96

Now rebuild:

a

b

t1

c

t2

t2 Fortunately, there is a color for c

CS 540 Spring 2009 GMU 97

Now rebuild:

a

b

t1

c

t2

The graph is 2-colorable now

t0t2

t1t1

t1c

t0b

t0a

CS 540 Spring 2009 GMU 98

The code

a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

b to memory

t2 := c + b

a := t2 + t2

t0t2

t1t1

t1c

t0b

t0a

lw $t0,b

lw $t1,c

add $t0,$t0,$t1

mul $t1,$t0,$t0

add $t0,$t1,$t0

mul $t1,$t1,$t0

sw $t0,b

add $t0,$t1,$t0

add $t0,$t0,$t0

sw $t0,a

sw $t1,c

