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Code Generation

The code generation problem is the task of 
mapping intermediate code to machine 
code.    

Machine Dependent Optimization!  

Requirements:   

• Correctness 

• Efficiency 
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Issues:

• Input language: intermediate code 
(optimized or not) 

• Target architecture: must be well
understood 

• Interplay between
– Instruction Selection 
– Register Allocation 
– Instruction Scheduling  
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Instruction Selection

• There may be a large number of ‘candidate’
machine instructions for a given IC 
instruction
– each has own cost and constraints

– cost may be influenced by surrounding context

– different architectures  have different needs that 
must be considered: speed, power constraints, 
space …
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Instruction Scheduling

• Choosing the order of instructions to best utilize 
resources

• Architecture
– RISC (pipeline)
– Vector processing
– Superscalar and VLIW

• Memory hierarchy
– Ordering to decrease memory fetching
– Latency tolerance – doing something when data does 

have to be fetched
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Register Allocation

How to best use the bounded number of 
registers.  

Complications: 
– special purpose registers 

– operators requiring multiple registers. 
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Naïve Approach to Code Generation

Simple code generation algorithm:   
Define a target code sequence to each intermediate code   

statement type.

This is basically what we did earlier when creating 
the intermediate code (i.e. SPIM in project 3)

Why is this not sufficient?
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Example Target: SPIM Assembly
Language

General Characteristics
• Byte-addressable with 4-byte words 
• N general -purpose registers 
• Three-address instructions:  op destination, source1, 

source2
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Mapping from Intermediate code
Simple code generation algorithm:   

Define a target code sequence to each intermediate code   
statement type.   

la $t0,a

lw $t1,b

add $t0,$t0,$t1

lw $t1,c

sw $t1,($t0)

a[b] := cla $t0,b

lw $t1,c

add $t0,$t0,$t1

lw $t0,($t0)

sw $t0,a

a := b[c]

lw $t0,b

lw $t1,c

add $t0,$t0,$t1

sw $t0,a

a := b + clw $t0,b

sw $t0,a

a := b

becomes…Intermediatebecomes…Intermediate
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Consider the C statement:   a[i] = d[c[k]]; 
t1 := c[k] la $t0,c

lw $t1,k
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t1

t2 := d[t1] la $t0,d
lw $t1,t1
add $t0,$t0,$t1
lw $t0,($t0)
sw $t0,t2

a[i] := t2        la $t0,a
lw $t1,i
add $t0,$t0,$t1
lw $t1,t2
sw $t1,($t0)

We use 15 instructions
(12 load/store + 3 arithmetic)
and allocate  space for two 
temporaries (but only use
two registers).    
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Problems with this approach
• Local decisions do not produce good code.
• Does not take temporary variables into account 
Get rid of the temporaries (reduce load/store): 

la $t0,c     
lw $t1,k  
add $t0,$t0,$t1   # address of c[k]
lw $t0,($t0)
la $t1,d     
add $t1,$t1,$t0   # address of d[c[k]]
lw $t1,($t1)
la $t0,a
lw $t2,i
add $t0,$t0,$t2  # address of a[i]
sw $t1,($t0)
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Need a way to generate machine code based 
on past and future use of the data.  

• Analyze the code

• Use results of analysis
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Representing Intermediate Code:
Control Flow Graph - CFG

CFG = < V, E, Entry >, where   
V = vertices or nodes, representing an instruction 

or basic block (group of statements).            

E = (V x V) edges, potential flow of control                    

Entry is an element of V,  the unique program 
entry

1 2 3 4 5
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Basic Blocks

A  basic block is a sequence of consecutive 
statements with single entry/single exit:
– flow of control only enters at the beginning 

– Flow of control only leaves at the end

– Variants: single entry/multiple exit, multiple 
entry/single exit
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Generating CFGs from
Intermediate Code

• Partition intermediate code into basic blocks

• Add edges corresponding to control flow 
between blocks
– Unconditional goto

– Conditional goto – multiple edges

– No goto at end – control passes to first 
statement of next block
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Partitioning into basic blocks
Input: A sequence of intermediate code statements  
1. Determine the  leaders, the first statements of 

basic blocks.   
• The first statement in the sequence is a leader. 
• Any statement that is the target of a goto (conditional 

or unconditional) is a leader. 
• Any statement immediately following a goto 

(conditional or unconditional) is a leader. 

2. For each leader, its basic block is the leader and 
all statements up to, but not including, the next 
leader or the end of the program. 
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(1)     i := m – 1 (16)  t7 := 4 * i  

(2) j := n (17)  t8 := 4 * j   

(3) t1 := 4 * n (18)  t9 := a[t8]   

(4) v := a[t1]               (19)  a[t7] := t9   

(5) i := i + 1                (20)  t10 := 4 * j   

(6) t2 := 4 * i                (21)  a[t10] := x   

(7) t3 := a[t2]                (22)  goto (5)   

(8) if t3 < v goto (5)     (23)  t11 := 4 * i   

(9) j := j - 1                   (24)  x := a[t11]   

(10) t4 := 4 * j                (25)  t12 := 4 * i   

(11) t5 := a[t4]                (26)  t13 := 4 * n   

(12) If t5 > v goto (9)     (27)  t14 := a[t13]   

(13) if i >= j goto (23)    (28)  a[t12] := t14   

(14) t6 := 4*i                   (29)  t15 := 4 * n   

(15) x := a[t6]                (30)  a[t15] := x    
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Instruction Scheduling

• Choosing the order of instructions to best 
utilize resources (CPU, registers, …)

• Consider RISC pipeline Architecture:

IF

IF

IF

ID

ID

ID

EX

EX

EX

MA

MA

MA

WB

WB

WB

IF – Instruction Fetch
ID – Instruction Decode
EX – Execute
MA – Memory access
WB – Write back

time
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Hazards

1. Structural hazards – machine resources 
limit overlap

2. Data hazards – output of instruction 
needed by later instruction

3. Control hazards – branching

Pipeline stalls!
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Data Hazards

IF

IF

ID

ID

EX

EX

MA

MA WB

WBlw R1,0(R2)

add R3,R1,R4 stall

Memory latency:

Can’t add until register R1 is loaded.
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Data Hazards

IF

IF

ID

ID

EX EX MA

MA WB

WBaddf R3,R1,R2

addf R3,R3,R4 stall EX EX

Assumes floating point ops take 2 execute cycles

Instruction latency:
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Dealing with Data Hazards

• Typical solution is to re-order statements.

• To do this without changing the outcome, 
need to understand the relationship 
(dependences) between statements.

IF

IF

ID

ID

EX EX MA WBaddf R3,R1,R2

add R5,R5,R6 EX MA WB

IF ID MA WBaddf R3,R3,R4 EX EX
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Instruction Scheduling
• Many operations have non-zero latencies

• Execution time is order-dependent

Assumed latencies   (conservative)

Operation Cycles 
load 3
store 3
loadI 1
add 1
mult 2
fadd 1
fmult 2
shift 1
branch 0 to 8

• Loads & stores may or may not block

> Non-blocking fill those issue slots
•Scheduler should hide the latencies
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w  w * 2 * x * y * z
• Schedule 1
1 lw $t0,w
4 add $t0,$t0,$t0
5 lw $t1,x
8 mult $t0,$t0,$t1
9 lw $t1,y
12 mult $t0,$t0,$t1
13 lw $t1,z
16 mult $t0,$t0,$t1
18 sw $t0,w
done at time 21

• Schedule 2
1 lw $t0,w
2 lw $t1,x
3 lw $t2,y
4 add $t0,$t0,$t0
5 mult $t0,$t0,$t1
6 lw $t1,z
7 mult $t0,$t0,$t2
9 mult $t0,$t0,$t1
11 sw $t0,w
done at time 14

Issue time
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Control Hazards

IF

IF

ID

ID

EX

EX

MA

IF ID

WB

EX MA WB

Stall if branch is made
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Branch Scheduling

Problem: 

• Branches often take some number of cycles to 
complete, creating delay slots.

• Can be a delay between a compare b and its 
associated branch.

• Even unconditional branches have delay slots

A compiler will try to fill these delay slots with 
valid instructions (rather than nop).
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Example

Assume loads take 2 
cycles and branches 
have a delay slot.

7 cycles

7nop

6b L1

5add $t5, $t2,1

4add $t4, $t2, $t3

2lw $t3,$(t1)(8)

1lw $t2,$t1(4)

start timeinstruction
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Example
Can look at the 

dependencies between 
the statements and 
move a statement into 
the delay slot.

5 cycles Filling Delay 
branches

5add $t4, $t2, $t3

4b L1

3add $t5, $t2,1

2lw $t3,$(t1)(8)

1lw $t2,$t1(4)

start timeinstruction

1 2

34
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Filling the delay 
slot in the SPARC
architecture

N Y
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Register Allocation

How to best use the bounded number of 
registers.  
– Reducing load/store operations
– What are best values to keep in registers?
– When can we ‘free’ registers?

Complications: 
– special purpose registers 
– operators requiring multiple registers. 
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Register Allocation Algorithms

• Local (basic block level):   
– Basic  - using liveness information 

– Register Allocation using graph coloring

• Global (CFG)
– Need to use global liveness information
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Basic Code Generation
• Deal with each basic block individually. 
• Compute liveness information for the block. 
• Using liveness information, generate code 

that uses registers as well as possible.
• At end, generate code that saves any live 

values left in registers.  

.  
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Concept: Variable Liveness

• For some statement s, variable x is live if 
– there is a statement t that uses x

– there is a path in the CFG from s to t

– there is no assignment to x on some path from s to t

• A variable is live at a given point in the source 
code if it could be used before it is defined. 

• Liveness tells us whether we care about the value 
held by a variable.
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Example: When is a live?
a := b + c   

t1 := a * a   

b := t1 + a   

c := t1 * b   

t2 := c + b   

a := t2 + t2    

Assume a,b and c are used 
after this basic block

a is live
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Example: When is b live?
a := b + c   

t1 := a * a   

b := t1 + a   

c := t1 * b   

t2 := c + b   

a := t2 + t2    

Assume a,b and c are used 
after this basic block
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Computing live status in basic
blocks

Input: A basic block.   
Output: For each statement, set of live variables
1. Initially all non-temporary variables go into live 

set (L). 
2. for i = last statement to first statement:   

for statement i:  x := y op z 
1. Attach L to statement i.
2. Remove x from set L. 
3. Add y and z to set L. 
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Example
live =  {

a := b + c   
live =  {

t1 := a * a   
live =  {

b := t1 + a   
live = { 

c := t1 * b   
live =  {

t2 := c + b   
live = { 

a := t2 + t2    
live = {a,b,c}
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Example Answers
live =  {}

a := b + c   
live =  {}

t1 := a * a   
live =  {}

b := t1 + a   
live = {}

c := t1 * b   
live =  {}

t2 := c + b   
live = {b,c,t2} 

a := t2 + t2
live = {a,b,c}
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Example Answers
live =  {}

a := b + c   
live =  {}

t1 := a * a   
live =  {}

b := t1 + a   
live = {}

c := t1 * b   
live =  {b,c}

t2 := c + b
live = {b,c,t2} 

a := t2 + t2    
live = {a,b,c}
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Example Answers
live =  {}

a := b + c   
live =  {}

t1 := a * a   
live =  {}

b := t1 + a   
live = { b,t1}

c := t1 * b
live =  {b,c}

t2 := c + b   
live = {b,c,t2} 

a := t2 + t2    
live = {a,b,c}
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Example Answers
live =  {}

a := b + c   
live =  {}

t1 := a * a   
live =  {a,t1}

b := t1 + a
live = { b,t1}

c := t1 * b   
live =  {b,c}

t2 := c + b   
live = {b,c,t2} 

a := t2 + t2    
live = {a,b,c}
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Example Answers
live =  {}

a := b + c   
live =  {a}

t1 := a * a
live =  {a,t1}

b := t1 + a   
live = { b,t1}

c := t1 * b   
live =  {b,c}

t2 := c + b   
live = {b,c,t2} 

a := t2 + t2    
live = {a,b,c}
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Example Answers
live =  {b,c}         what does this mean???

a := b + c
live =  {a}

t1 := a * a   
live =  {a,t1}

b := t1 + a   
live = { b,t1}

c := t1 * b   
live =  {b,c}

t2 := c + b   
live = {b,c,t2} 

a := t2 + t2    
live = {a,b,c}
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Basic Code Generation
• Deal with each basic block individually. 
• Compute liveness information for the block.
• Using liveness information, generate code 

that uses registers as well as possible.
• At end, generate code that saves any live 

values left in registers.  

.  
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Basic Code Generation
Idea: Deal with the instructions from beginning to 

end.  For  each instruction, 
– Use registers whenever possible.
– A non-live value in a register can be discarded, freeing 

that register.

Data Structures:   
– Register Descriptor  - register status (empty, full) and 

contents (one or more "values") 
– Address descriptor  - the location (or locations) where 

the current value for a variable can be found (register, 
stack, memory)  

.  
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Instruction type: x := y op z

1. Choose Rx, the register where the result (x) will 
be kept.

1. If y (or z) is in a register t alone and not live, choose 
Rx = t

2. Else if there is a free register t, choose Rx = t
3. Else must free up a register for Rx

2. Find Ry. If y is not in a register, generate load 
into a free register (or Rx)

3. Find Rz. If z is not in a register, generate load 
into a free register (can use Rx if not used by y).

4. Generate: OP Rx, Ry, Rz
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Instruction type: x := y op z

5. Update information about the current best 
location of x

6. If x is in a register, update that register’s 
information

7. If y and/or z are not live after this 
instruction, update register and address 
descriptors according.
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Example Code
live =  {b,c} 

a := b + c   

live =  {a}

t1 := a * a   

live =  {a,t1}

b := t1 + a   

live = { b,t1}

c := t1 * b   

live =  {b,c}

t2 := c + b   

live = {b,c,t2} 

a := t2 + t2    

live = {a,b,c}
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Returning to live Example

• Initially 
Three Registers: ( -, -, -) all empty    

current values: (a,b,c,t1,t2) = (m,m,m, -, -) 

• instruction 1: a := b + c,  Live = {a }
Ra = $t0, Rb = $t0 , Rc = $t1
lw $t0,b

lw $t1,c

add $t0,$t0,$t1
Registers: (a, -, -)            current values: ($t0,m,m, -, -) 

Don’t need to keep track 
of b or c since aren’t live.
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• instruction 2: t1 := a * a, Live = {a,t1} 
Rt1 = $t1 (since a is live)  
mul $t1,$t0,$t0

Registers: (a,t1, -)        current values: ($t0,m,m,$t1, -) 

• instruction 3: b := t1 + a, Live = {b,t1} 
Since a is not live after call, Rb = $t0   
add $t0,$t1,$t0

Registers: (b,t1, -)     current values: (m,$t0,m,$t1, -)  
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• instruction 4: c := t1 * b, Live = {b,c }   
Since t1 is not live after call Rc = $t1   
mul $t1,$t1,$t0

Registers: (b,c, -)      current values: (m,$t0,$t1, -, -) 

• instruction 5: t2 := c + b, Live = {b,c,t2 }   
Rc = $t2   

add $t2,$t1,$t0
Registers: (b,c,t2)      current values: (m,$t0,$t1, -,$t2)  
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• instruction 6: a := t2 + t2, Live = {a,b,c} 
add $t2,$t2,$t2

Registers: (b,c,a)      current values: ($t2,$t0,$t1, -,-)

• Since end of block, move live variables:      
sw $t2,a      

sw $t0,b      

sw $t1,c
all registers available      

all live variables moved to memory  
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Generated code      
lw $t0,b

lw $t1,c

add $t0,$t0,$t1
mul $t1,$t0,$t0

add $t0,$t1,$t0
mul $t1,$t1,$t0

add $t2,$t1,$t0 

add $t2,$t2,$t2

sw $t2, a      

sw $t0,b      

sw $t1,c

a := b + c   

t1 := a * a   

b := t1 + a   

c := t1 * b   

t2 := c + b   

a := t2 + t2 

Cost = 16
How does this compare to
naïve approach?
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• Liveness information allows us to keep 
values in registers if they will be used later 
(efficiency)

• Why do we assume all variables are live at 
the end of blocks?  Can we do better?

• Why do we need to save live variables at 
the end?  We might have to reload them in 
the next block.
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Register Allocation with Graph
Coloring

Local register allocation  - graph coloring 
problem.  

Uses liveness information.

Allocate K registers where each register is 
associated with one of the K colors.
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Graph Coloring

• The coloring of a graph G = (V,E) is a 
mapping C: V S, where S is a finite set of 
colors, such that if edge vw is in E, C(v) <> 
C(w).

• Problem is NP (for more than 2 colors) 
no polynomial time solution.

• Fortunately there are approximation 
algorithms.
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Coloring a graph with K colors

No color for
this node

K = 3 K = 4
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Register Allocation and Graph
K-Coloring

K = number of available registers

G = (V,E) where

• Vertex set V = {Vs | s is a program 
variable}

• Edge Vs Vt in E if s and t can be live at the 
same time

G is an ‘interference graph’
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Algorithm: K registers

1. Compute liveness information for the basic 
block.

2. Create interference graph G  - one node for 
each variable, an edge connecting any two 
variables alive simultaneously. 
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Example Interference Graph

a := b + c      {b,c}

t1 := a * a     {a}

b := t1 + a     {t1,a}

c := t1 * b     {b,t1}

t2 := c + b     {b,c}

a := t2 + t2    {b,c,t2}

{a,b,c}

a

b

t1

c

t2
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Algorithm: K registers

3. Simplify - For any node m with fewer than K 
neighbors, remove it from the graph and push it 
onto a stack. If G - m  can be colored  with K 
colors, so can G.  If we reduce the entire graph, 
goto step 5.

4. Spill - If we get to the point where we are left 
with only nodes with degree >= K, mark some 
node for potential spilling.  Remove and push 
onto stack.  Back to step 3.
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Choosing a Spill Node

Potential criteria:

• Random

• Most neighbors

• Longest live range (in code)
– with or without taking the access pattern into 

consideration
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5. Assign colors - Starting with empty graph, 
rebuild graph by popping elements off the stack, 
putting them back into the graph and assigning 
them colors different from neighbors. Potential 
spill nodes may or may not be colorable.   

Process may require iterations and rewriting of some 
of the code to create more temporaries. 
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Rewriting the code

• Want to be able to remove some edges in 
the interference graph
– write variable to memory earlier

– compute/read in variable later



CS 540 Spring 2009 GMU 68

Back to example

a := b + c      {b,c}

t1 := a * a     {a}

b := t1 + a     {t1,a}

c := t1 * b     {b,t1}

t2 := c + b     {b,c}

a := t2 + t2    {b,c,t2}

{a,b,c}

a

b

t1

c

t2
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Example, k = 3

a

b

t1

c

t2

Assume k = 3

Remove t1
t1

Interference graph
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Example

a

b

t1

c

t2

Assume k = 3

Remove a
t1
a
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Example

a

b

t1

c

t2

Assume k = 3

Remove b
t1
a
b
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Example

a

b

t1

c

t2

Assume k = 3

Remove c
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Example
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Rebuild the graph
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Back to example

a := b + c 

t1 := a * a

b := t1 + a

c := t1 * b

t2 := c + b

a := t2 + t2

lw $t1,b

lw $t2,c

add $t0,$t1,$t2

mul $t2,$t0,$t0

add $t1,$t2,$t0

mul $t2,$t2,$t1

add $t0,$t2,$t1

add $t0,$t0,$t0

sw $t0,a

sw $t1,b

sw $t2,c

t0t2

t2t1

t2c

t1b

t0a
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Generated code: Basic     
lw $t0,b

lw $t1,c

add $t0,$t0,$t1
mul $t1,$t0,$t0

add $t0,$t1,$t0
mul $t1,$t1,$t0

add $t2,$t1,$t0 

add $t2,$t2,$t2

sw $t2, a      

sw $t0,b      

sw $t1,c

Generated Code: Coloring
lw $t1,b

lw $t2,c

add $t0,$t1,$t2

mul $t2,$t0,$t0

add $t1,$t2,$t0

mul $t2,$t2,$t1

add $t0,$t2,$t1

add $t0,$t0,$t0

sw $t0,a

sw $t1,b

sw $t2,c
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Example, k = 2

a

b

t1

c

t2

Assume k = 2

Remove b as spill
b*



CS 540 Spring 2009 GMU 82

Example

a

b

t1

c

t2

Assume k = 2

Remove t1
b*
t1



CS 540 Spring 2009 GMU 83

Example

a

b

t1

c

t2

Assume k = 2

Remove a
b*
t1
a



CS 540 Spring 2009 GMU 84

Example

a

b

t1

c

t2

Assume k = 2

Remove c
b*
t1
a
c



CS 540 Spring 2009 GMU 85

Example

a

b

t1

c

t2

Assume k = 2

Remove t2
b*
t1
a
c
t2



CS 540 Spring 2009 GMU 86

Example
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???
Can flush b out to
memory,  creating a
smaller window
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After spilling b:

a

b

t1

c

t2

a := b + c      {b,c}

t1 := a * a     {a}

b := t1 + a     {t1,a}

c := t1 * b     {b,t1}
b to memory

t2 := c + b     {b,c}

a := t2 + t2    {c,t2}

{a, c}
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After spilling b:
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After spilling b:

a

b

t1

c

t2

t2
c*

Have to choose c as a potential
spill node.



CS 540 Spring 2009 GMU 90

After spilling b:
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Now rebuild:
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Now rebuild:
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Now rebuild:
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Now rebuild:
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t2 Fortunately, there is a color for c
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Now rebuild:
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The graph is 2-colorable now
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The code

a := b + c

t1 := a * a

b := t1 + a

c := t1 * b

b to memory

t2 := c + b

a := t2 + t2

t0t2

t1t1

t1c

t0b

t0a

lw $t0,b

lw $t1,c

add $t0,$t0,$t1

mul $t1,$t0,$t0

add $t0,$t1,$t0

mul $t1,$t1,$t0

sw $t0,b

add $t0,$t1,$t0

add $t0,$t0,$t0

sw $t0,a

sw $t1,c


