CS 540 Spring 2013
The Course covers:

• Lexical Analysis
• Syntax Analysis
• Semantic Analysis
• Runtime environments
• Code Generation
• Code Optimization
Pre-requisite courses

• **Strong** programming background in C, C++ or Java – **CS 310**

• Formal Language (NFAs, DFAs, CFG) – **CS 330**

• Assembly Language Programming and Machine Architecture – **CS 367**
Operational Information

• Office: Engineering Building, Rm. 5315

• E-mail: white@gmu.edu

• Class Web Page: Blackboard
• Discussion board: Piassa

• Computer Accounts on zeus.vse.gmu.edu (link on ‘Useful Links’)
CS 540 Course Grading

• Programming Assignments (45%)
 - 5% + 10% + 10% + 20%

• Exams – midterm and final (25%, 30%)
Resources

• Textbooks:
 – *lex & yacc*, Levine et. al.

• Slides

• Sample code for Lex/YACC (C, C++, Java)
Distance Education

• CS 540 Spring ‘13 session is delivered to the Internet section (Section 540-DL) online by NEW

• Students in distance section will access to online lectures and can play back the lectures and download the PDF slide files

• The distance education students will be given the midterm and final exam on campus, on the same day/time as in class students. Exam locations will be announced closer to the exam dates.
Lecture 1: Introduction to Language Processing & Lexical Analysis

CS 540
What is a compiler?

A program that reads a program written in one language and translates it into another language.

Traditionally, compilers go from high-level languages to low-level languages.
Compiler Architecture

In more detail:

- Separation of Concerns
- Retargeting
Compiler Architecture

Scanner (lexical analysis) → Parser (syntax analysis) → Semantic Analysis (IC generator) → Code Optimizer → Code Generator → Target language

Source language → tokens → Syntactic structure → Intermediate Language

Symbol Table
Lexical Analysis - Scanning

- Tokens described formally
- Breaks input into tokens
- Remove white space
Input: result = a + b * c / d

- Tokens: `result`, `=`, `a`, `+`, `b`, `*`, `c`, `/`, `d`
Static Analysis - Parsing

- Syntax described formally
- Tokens organized into syntax tree that describes structure
- Error checking (syntax)
Input: result = a + b * c / d

Exp ::= Exp ‘+’ Exp
| Exp ‘-’ Exp
| Exp ‘*’ Exp
| Exp ‘/’ Exp
| ID

Assign ::= ID ‘=‘ Exp

Assign
 ID
 ‘=‘
 Exp
 ‘+‘
 Exp
 ‘*‘
 Exp
 ‘/‘
 Exp
 ID
 ID
 ID
Semantic Analysis

- "Meaning"
- Type/Error Checking
- Intermediate Code Generation – abstract machine

Source language → Scanner (lexical analysis) → Parser (syntax analysis) → Semantic Analysis (IC generator) → Code Generator

Symbol Table

Syntactic structure

Syntactic/semantic structure

Target language
Optimization

- Improving efficiency (machine independent)
- Finding optimal code is NP
Code Generation

- IC to real machine code
- Memory management, register allocation, instruction selection, instruction scheduling, …
Issues Driving Compiler Design

- Correctness
- Speed (runtime and compile time)
 - Degrees of optimization
 - Multiple passes
- Space
- Feedback to user
- Debugging
Related to Compilers

- Interpreters (direct execution)
- Assemblers
- Preprocessors
- Text formatters (non-WYSIWYG)
- Analysis tools
Why study compilers?

• Bring together:
 – Data structures & Algorithms
 – Formal Languages
 – Computer Architecture

• Influence:
 – Language Design
 – Architecture (influence is bi-directional)

• Techniques used influence other areas (program analysis, testing, …)
Review of Formal Languages

• Regular expressions, NFA, DFA
• Translating between formalisms
• Using these formalisms
What is a language?

- **Alphabet** – finite character set (Σ)
- **String** – finite sequence of characters – can be ε, the empty string (Some texts use λ as the empty string)
- **Language** – possibly infinite set of strings over some alphabet – can be $\{\}$, the empty language.
Suppose $\Sigma = \{a,b,c\}$. Some languages over Σ could be:

- $\{aa, ab, ac, bb, bc, cc\}$
- $\{ab, abc, abcc, abccc, \ldots\}$
- $\{\varepsilon\}$
- $\{\}$
- $\{\}$
- $\{a, b, c, \varepsilon\}$
- \ldots
Why do we care about Regular Languages?

• Formally describe tokens in the language
 – Regular Expressions
 – NFA
 – DFA
• Regular Expressions \Rightarrow finite automata
• Tools assist in the process
Regular Expressions

The **regular expressions** over finite Σ are the strings over the alphabet $\Sigma + \{ \), (, |, * \}$ such that:

1. $\{ \} \ (\text{empty set})$ is a regular expression for the empty set

2. ε is a regular expression denoting \{ ε \}

3. a is a regular expression denoting set \{ a \} for any a in Σ
Regular Expressions

4. If P and Q are regular expressions over Σ, then so are:

- **P | Q** *(union)*
 If P denotes the set $\{a,\ldots,e\}$, Q denotes the set $\{0,\ldots,9\}$ then $P \mid Q$ denotes the set $\{a,\ldots,e,0,\ldots,9\}$

- **PQ** *(concatenation)*
 If P denotes the set $\{a,\ldots,e\}$, Q denotes the set $\{0,\ldots,9\}$ then PQ denotes the set $\{a0,\ldots,e0,a1,\ldots,e9\}$

- **Q*** *(closure)*
 If Q denotes the set $\{0,\ldots,9\}$ then Q^* denotes the set $\{\varepsilon,0,\ldots,9,00,\ldots99,\ldots\}$
Examples

If \(\Sigma = \{a, b\} \)

- \((a \mid b)(a \mid b)\)
- \((a \mid b)^*b\)
- \(a*b*a*\)
- \(a*a\) (also known as \(a^+\))
- \((ab^*)|(a*b)\)
Nondeterministic Finite Automata

A **nondeterministic finite automaton** (NFA) is a mathematical model that consists of

1. A set of states S
2. A set of input symbols Σ
3. A transition function that maps state/symbol pairs to a set of states:
 \[S \times (\Sigma + \varepsilon) \rightarrow \text{set of } S \]
4. A special state s_0 called the start state
5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no
Example NFA

Transition Table:

<table>
<thead>
<tr>
<th>STATE</th>
<th>a</th>
<th>b</th>
<th>ε</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$S = \{0,1,2,3\}$
$S_0 = 0$
$\Sigma = \{a,b\}$
$F = \{3\}$
NFA Execution

An NFA says ‘yes’ for an input string if there is some path from the start state to some final state where all input has been processed.

NFA(int s0, int input) {
 if (all input processed && s0 is a final state) return Yes;
 if (all input processed && s0 not a final state) return No;

 for all states s1 where transition(s0, table[input]) = s1
 if (NFA(s1, input_element + 1) == Yes) return Yes;

 for all states s1 where transition(s0, ε) = s1
 if (NFA(s1, input_element) == Yes) return Yes;
 return No;
}

Uses backtracking to search all possible paths
Deterministic Finite Automata

A deterministic finite automaton (DFA) is a mathematical model that consists of

1. A set of states S
2. A set of input symbols Σ
3. A transition function that maps state/symbol pairs to a state:
 \[S \times \Sigma \rightarrow S \]
4. A special state \(s_0 \) called the start state
5. A set of states \(F \) (subset of \(S \)) of final states

INPUT: string
OUTPUT: yes or no
DFA Execution

DFA(int start_state) {
 state current = start_state;
 input_element = next_token();
 while (input to be processed) {
 current =
 transition(current,table[input_element])
 if current is an error state return No;
 input_element = next_token();
 }
 if current is a final state return Yes;
 else return No;
}
Regular Languages

1. There is an algorithm for converting any RE into an NFA.
2. There is an algorithm for converting any NFA to a DFA.
3. There is an algorithm for converting any DFA to a RE.

These facts tell us that REs, NFAs and DFAs have equivalent expressive power. All three describe the class of regular languages.
Converting Regular Expressions to NFAs

The regular expressions over finite Σ are the strings over the alphabet $\Sigma + \{ \), (, |, *\}$ such that:

• $\{ \}$ (empty set) is a regular expression for the empty set

• Empty string ε is a regular expression denoting $\{ \varepsilon \}$

• a is a regular expression denoting $\{a\}$ for any a in Σ
Converting Regular Expressions to NFAs

If P and Q are regular expressions with NFAs N_p, N_q:

- **P | Q** (union)

- **PQ** (concatenation)
Converting Regular Expressions to NFAs

If Q is a regular expression with NFA N_q:

Q^* (closure)
Example \((ab^* \mid a^*b)^*\)

Starting with:

\[ab^*\]

\[a^*b\]

\[ab^* \mid a^*b\]
Example \((ab^* \mid a^*b)^*\)

\(ab^* \mid a^*b\)

\[(ab^* \mid a^*b)^*\]
Converting NFAs to DFAs

• **Idea:** Each state in the new DFA will correspond to some set of states from the NFA. The DFA will be in state \(\{s_0,s_1,\ldots\}\) after input if the NFA could be in *any* of these states for the same input.

• **Input:** NFA N with state set \(S_N\), alphabet \(\Sigma\), start state \(s_N\), final states \(F_N\), transition function \(T_N: S_N \times \Sigma + \{\varepsilon\} \to \text{set of } S_N\)

• **Output:** DFA D with state set \(S_D\), alphabet \(\Sigma\), start state \(s_D = \varepsilon\text{-closure}(s_N)\), final states \(F_D\), transition function \(T_D: S_D \times \Sigma \to S_D\)
ε-closure()

Defn: ε-closure(T) = T + all NFA states reachable from any state in T using only ε transitions.

ε-closure($\{1,2,5\}$) = $\{1,2,5\}$

ε-closure($\{4\}$) = $\{1,4\}$

ε-closure($\{3\}$) = $\{1,3,4\}$

ε-closure($\{3,5\}$) = $\{1,3,4,5\}$
Algorithm: Subset Construction

\[s_D = \varepsilon\text{-closure}(s_N) \] \hspace{1cm} -- create start state for DFA

\[S_D = \{ s_D \} \text{ (unmarked)} \]

while there is some unmarked state \(R \) in \(S_D \)

 mark state \(R \)
 for all \(a \) in \(\Sigma \) do
 \[s = \varepsilon\text{-closure}(T_N(R,a)) \]
 if \(s \) not already in \(S_D \) then add it (unmarked)
 \[T_D(R,a) = s; \]
 end for

end while

\[F_D = \text{any element of } S_D \text{ that contains a state in } F_N \]
Example 1: Subset Construction

NFA
Example 1: Subset Construction

NFA

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 1: Subset Construction

NFA

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{1,2}</td>
<td>{3,5}</td>
</tr>
<tr>
<td>2</td>
<td>{3,5}</td>
<td>{4,5}</td>
</tr>
</tbody>
</table>
Example 1: Subset Construction

NFA

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>{3,5}</td>
<td>{4,5}</td>
</tr>
<tr>
<td>{3,5}</td>
<td>-</td>
<td>{4}</td>
</tr>
<tr>
<td>{4,5}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{4}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 1: Subset Construction

NFA

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>{3,5}</td>
<td>{4,5}</td>
</tr>
<tr>
<td>{3,5}</td>
<td>-</td>
<td>{4}</td>
</tr>
<tr>
<td>{4,5}</td>
<td>{5}</td>
<td>{5}</td>
</tr>
<tr>
<td>{4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>{5}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example 1: Subset Construction

NFA

All final states since the NFA final state is included

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>{1,2}</td>
<td>{3,5}</td>
<td>{4,5}</td>
</tr>
<tr>
<td>{3,5}</td>
<td>-</td>
<td>{4}</td>
</tr>
<tr>
<td>{4,5}</td>
<td>{5}</td>
<td>{5}</td>
</tr>
<tr>
<td>{4}</td>
<td>{5}</td>
<td>{5}</td>
</tr>
<tr>
<td>{5}</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Example 2: Subset Construction

NFA
Example 2: Subset Construction

NFA

DFA
Example 3: Subset Construction

NFA

DFA
Converting DFAs to REs

1. Combine serial links by concatenation
2. Combine parallel links by alternation
3. Remove self-loops by Kleene closure
4. Select a node (other than initial or final) for removal. Replace it with a set of equivalent links whose path expressions correspond to the in and out links
5. Repeat steps 1-4 until the graph consists of a single link between the entry and exit nodes.
Example

Parallel edges become alternation
Example

serial edges become concatenation
Example

Find paths that can be “shortened”
Example

```
d (a|b|c) d
```

```
d (a|b|c) d
(b(b|c)da)*d
```

eliminate self-loops

serial edges become concatenation
Describing Regular Languages

• Generate *all* strings in the language
• Generate *only* strings in the language

Try the following:

– Strings of \{a,b\} that end with ‘abb’
– Strings of \{a,b\} that don’t end with ‘abb’
– Strings of \{a,b\} where every a is followed by at least one b
Strings of \((a|b)^*\) that end in \(abb\)

re: \((a|b)^*abb\)
Strings of \((a|b)^*\) that don’t end in \(abb\)

re: ??

DFA/NFA
Strings of (a|b)* that don’t end in abb
Suggestions for writing NFA/DFA/RE

• Typically, one of these formalisms is more natural for the problem. Start with that and convert if necessary.

• In NFA/DFAs, each state typically captures some partial solution

• Be sure that you include all relevant edges (ask – does every state have an outgoing transition for all alphabet symbols?)
Non-Regular Languages

Not all languages are regular”
• The language ww where $w=(a|b)^*$

Non-regular languages cannot be described using REs, NFAs and DFAs.