
CS 540 Spring 2013

CS 540 Spring 2013 GMU 2

The Course covers:

• Lexical Analysis

• Syntax Analysis

• Semantic Analysis

• Runtime environments

• Code Generation

• Code Optimization

CS 540 Spring 2013 GMU 3

Pre-requisite courses

• Strong programming background in C, C++

or Java – CS 310

• Formal Language (NFAs, DFAs, CFG) –

CS 330

• Assembly Language Programming and

Machine Architecture –CS 367

CS 540 Spring 2013 GMU 4

Operational Information

• Office: Engineering Building, Rm. 5315

• E-mail: white@gmu.edu

• Class Web Page: Blackboard

• Discussion board: Piassa

• Computer Accounts on zeus.vse.gmu.edu (link on

‘Useful Links’)

CS 540 Spring 2013 GMU 5

CS 540 Course Grading

• Programming Assignments (45%)

– 5% + 10% + 10% + 20%

• Exams – midterm and final (25%, 30%)

CS 540 Spring 2013 GMU 6

Resources

• Textbooks:

– Compilers: Principles, Techniques and Tools,

Aho, Lam, Sethi & Ullman, 2007 (required)

– lex & yacc, Levine et. al.

• Slides

• Sample code for Lex/YACC (C, C++, Java)

CS 540 Spring 2013 GMU 7

Distance Education

• CS 540 Spring ‘13 session is delivered to the
Internet section (Section 540-DL) online by
NEW

• Students in distance section will access to online
lectures and can play back the lectures and
download the PDF slide files

• The distance education students will be given the
midterm and final exam on campus, on the same
day/time as in class students. Exam locations
will be announced closer to the exam dates.

Lecture 1: Introduction to

Language Processing & Lexical

Analysis

CS 540

CS 540 Spring 2013 GMU 9

What is a compiler?

A program that reads a program written in one

language and translates it into another

language.

 Source language Target language

Traditionally, compilers go from high-level

languages to low-level languages.

CS 540 Spring 2013 GMU 10

Compiler Architecture

Front End –

language specific

Back End –

machine specific

Source

Language
Target Language

Intermediate

Language

In more detail:

•Separation of Concerns

•Retargeting

CS 540 Spring 2013 GMU 11

Compiler Architecture

Scanner

(lexical

 analysis)

Parser

(syntax

 analysis)

Code

Optimizer

Semantic

Analysis

(IC generator)

Code

Generator

Symbol

Table

Source

language

tokens Syntactic

structure

Intermediate

Language

Target

language

Intermediate

Language

CS 540 Spring 2013 GMU 12

Lexical Analysis - Scanning

Scanner

(lexical

 analysis)

Parser

(syntax

 analysis)

Code

Optimizer

Semantic

Analysis

(IC generator)

Code

Generator

Symbol

Table

• Tokens described formally

• Breaks input into tokens

• Remove white space

Source

language

tokens

CS 540 Spring 2013 GMU 13

Input: result = a + b * c / d

• Tokens:

 ‘result’, ‘=‘, ‘a’, ‘+’, ‘b’, ‘*’, ‘c’, ‘/’, ‘d’

 identifiers

 operators

CS 540 Spring 2013 GMU 14

Static Analysis - Parsing

Scanner

(lexical

 analysis)

Parser

(syntax

 analysis)

Code

Optimizer

Semantic

Analysis

(IC generator)

Code

Generator

Symbol

Table

Source

language

tokens Syntactic

structure
Target

language

• Syntax described formally

• Tokens organized into syntax tree

that describes structure

• Error checking (syntax)

CS 540 Spring 2013 GMU 15

Exp ::= Exp ‘+’ Exp

 | Exp ‘-’ Exp

 | Exp ‘*’ Exp

 | Exp ‘/’ Exp

 | ID

Assign ::= ID ‘=‘ Exp

Assign

ID ‘=‘ Exp

Exp ‘+’ Exp

Exp ‘*’ Exp

Exp ‘/’ Exp

ID

ID

ID ID

Input: result = a + b * c / d

CS 540 Spring 2013 GMU 16

Semantic Analysis

Scanner

(lexical

 analysis)

Parser

(syntax

 analysis)

Code

Optimizer

Semantic

Analysis

(IC generator)

Code

Generator

Symbol

Table

Source

language

Syntactic

structure

Syntactic/semantic

structure

Target

language

• “Meaning”

• Type/Error Checking

• Intermediate Code Generation –

abstract machine

Syntactic/semantic

structure

CS 540 Spring 2013 GMU 17

Optimization

Scanner

(lexical

 analysis)

Parser

(syntax

 analysis)

Code

Optimizer

Semantic

Analysis

(IC generator)

Code

Generator

Symbol

Table

Source

language

Syntactic/semantic

structure

Target

language

• Improving efficiency (machine

independent)

• Finding optimal code is NP

Syntactic/semantic

structure

CS 540 Spring 2013 GMU 18

Code Generation

Scanner

(lexical

 analysis)

Parser

(syntax

 analysis)

Code

Optimizer

Semantic

Analysis

(IC generator)

Code

Generator

Symbol

Table

Source

language

Syntactic/semantic

structure

Target

language

• IC to real machine code

• Memory management, register

allocation, instruction selection,

instruction scheduling, …

Syntactic/semantic

structure

CS 540 Spring 2013 GMU 19

Issues Driving Compiler Design

• Correctness

• Speed (runtime and compile time)

– Degrees of optimization

– Multiple passes

• Space

• Feedback to user

• Debugging

CS 540 Spring 2013 GMU 20

Related to Compilers

• Interpreters (direct execution)

• Assemblers

• Preprocessors

• Text formatters (non-WYSIWYG)

• Analysis tools

CS 540 Spring 2013 GMU 21

Why study compilers?

• Bring together:

– Data structures & Algorithms

– Formal Languages

– Computer Architecture

• Influence:

– Language Design

– Architecture (influence is bi-directional)

• Techniques used influence other areas (program
analysis, testing, …)

CS 540 Spring 2013 GMU 22

Review of Formal Languages

• Regular expressions, NFA, DFA

• Translating between formalisms

• Using these formalisms

CS 540 Spring 2013 GMU 23

What is a language?

• Alphabet – finite character set (S)

• String – finite sequence of characters – can

be e, the empty string (Some texts use l as

the empty string)

• Language – possibly infinite set of strings

over some alphabet – can be { }, the empty

language.

CS 540 Spring 2013 GMU 24

Suppose S = {a,b,c}. Some

languages over S could be:

• {aa,ab,ac,bb,bc,cc}

• {ab,abc,abcc,abccc,. . .}

• { e }

• { }

• {a,b,c,e}

• …

CS 540 Spring 2013 GMU 25

Why do we care about Regular

Languages?

• Formally describe tokens in the language

– Regular Expressions

– NFA

– DFA

• Regular Expressions  finite automata

• Tools assist in the process

CS 540 Spring 2013 GMU 26

Regular Expressions

The regular expressions over finite S are the
strings over the alphabet S + {), (, |, * }
such that:

1. { } (empty set) is a regular expression for the
empty set

2. e is a regular expression denoting { e }

3. a is a regular expression denoting set { a } for
any a in S

CS 540 Spring 2013 GMU 27

Regular Expressions
4. If P and Q are regular expressions over S, then so are:

• P | Q (union)

If P denotes the set {a,…,e}, Q denotes the set {0,…,9} then
P | Q denotes the set {a,…,e,0,…,9}

• PQ (concatenation)

If P denotes the set {a,…,e}, Q denotes the set {0,…,9} then
PQ denotes the set {a0,…,e0,a1,…,e9}

• Q* (closure)

If Q denotes the set {0,…,9} then Q* denotes the set
{e,0,…,9,00,…99,…}

CS 540 Spring 2013 GMU 28

Examples

If S = {a,b}

• (a | b)(a | b)

• (a | b)*b

• a*b*a*

• a*a (also known as a+)

• (ab*)|(a*b)

CS 540 Spring 2013 GMU 29

Nondeterministic Finite Automata

A nondeterministic finite automaton (NFA) is a
mathematical model that consists of

1. A set of states S

2. A set of input symbols S

3. A transition function that maps state/symbol pairs to a
set of states:

S x {S + e}  set of S

4. A special state s0 called the start state

5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no

CS 540 Spring 2013 GMU 30

STATE a b e

0 0,3 0 1

1 2

2 3

3

Transition Table:

0 1 2 3

a,b

a

b b
e

S = {0,1,2,3}

S0 = 0

S = {a,b}

F = {3}

Example NFA

CS 540 Spring 2013 GMU 31

NFA Execution
An NFA says ‘yes’ for an input string if there is some path from

the start state to some final state where all input has been

processed.

NFA(int s0, int input) {

 if (all input processed && s0 is a final state) return Yes;

 if (all input processed && s0 not a final state) return No;

 for all states s1 where transition(s0,table[input]) = s1
 if (NFA(s1,input_element+1) == Yes) return Yes;

 for all states s1 where transition(s0,e) = s1
 if (NFA(s1,input_element) == Yes) return Yes;

 return No;

}

Uses backtracking to search

all possible paths

CS 540 Spring 2013 GMU 32

Deterministic Finite Automata

A deterministic finite automaton (DFA) is a mathematical
model that consists of

1. A set of states S

2. A set of input symbols S

3. A transition function that maps state/symbol pairs to a
state:

S x S  S

4. A special state s0 called the start state

5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no

CS 540 Spring 2013 GMU 33

DFA Execution

DFA(int start_state) {

 state current = start_state;

 input_element = next_token();

 while (input to be processed) {

 current =

 transition(current,table[input_element])

 if current is an error state return No;

 input_element = next_token();

 }

 if current is a final state return Yes;

 else return No;

}

CS 540 Spring 2013 GMU 34

Regular Languages

1. There is an algorithm for converting any RE into
an NFA.

2. There is an algorithm for converting any NFA to
a DFA.

3. There is an algorithm for converting any DFA to
a RE.

These facts tell us that REs, NFAs and DFAs have
equivalent expressive power. All three describe
the class of regular languages.

CS 540 Spring 2013 GMU 35

Converting Regular

Expressions to NFAs

The regular expressions over finite S are the strings

over the alphabet S + {), (, |, *} such that:

• { } (empty set) is a regular expression for the empty set

• Empty string e is a regular expression denoting { e }

• a is a regular expression denoting {a } for any a in S

e

a

CS 540 Spring 2013 GMU 36

Converting Regular

Expressions to NFAs

If P and Q are regular expressions with NFAs Np, Nq:

P | Q (union)

PQ (concatenation)

Np

Nq

Nq Np

e

e e

e

e e e

CS 540 Spring 2013 GMU 37

Converting Regular

Expressions to NFAs

If Q is a regular expression with NFA Nq:

Q* (closure)

Nq e e

e

e

CS 540 Spring 2013 GMU 38

Example (ab* | a*b)*

ab* 1 4 3 2 a*b
a b

b a

Starting with:

1 2
a

4 3

5 6

ab* | a*b

e

e e

e

a

b

b

CS 540 Spring 2013 GMU 39

Example (ab* | a*b)*

1 2
a

4 3

5 6

1 2
a

4 3

5 6

ab* | a*b

(ab* | a*b)*

7 8

e

e e

e

e
e

e e
e

e e

e
a

b

b

b

b

a

CS 540 Spring 2013 GMU 40

Converting NFAs to DFAs

• Idea: Each state in the new DFA will correspond
to some set of states from the NFA. The DFA will
be in state {s0,s1,…} after input if the NFA could
be in any of these states for the same input.

• Input: NFA N with state set SN, alphabet S, start state sN,
final states FN, transition function TN: SN x S + {e}  set
of SN

• Output: DFA D with state set SD, alphabet S, start state

sD = e-closure(sN), final states FD, transition function
TD: SD x S  SD

CS 540 Spring 2013 GMU 41

e-closure()

Defn: e-closure(T) = T + all NFA states reachable from

any state in T using only e transitions.

1

5

2

4 3

b

e

a e
b

b

a

e-closure({1,2,5}) = {1,2,5}

e-closure({4}) = {1,4}

e-closure({3}) = {1,3,4}

e-closure({3,5}) = {1,3,4,5}

CS 540 Spring 2013 GMU 42

Algorithm: Subset Construction
sD = e-closure(sN) -- create start state for DFA

SD = {sD} (unmarked)

while there is some unmarked state R in SD

 mark state R

 for all a in S do

 s = e-closure(TN(R,a));

 if s not already in SD then add it (unmarked)

 TD(R,a) = s;

 end for

end while

FD = any element of SD that contains a state in FN

CS 540 Spring 2013 GMU 43

Example 1: Subset Construction

1

5

2

4 3

e

b

a b

a,b

a,b

NFA

CS 540 Spring 2013 GMU 44

Example 1: Subset Construction

1

5

2

4 3

e

b

a b

a,b

a,b

NFA

1,2

a b

{1,2}

CS 540 Spring 2013 GMU 45

Example 1: Subset Construction

1

5

2

4 3

e

b

a b

a,b

a,b

NFA

1,2 4,5

3,5

b

a

a b

{1,2} {3,5} {4,5}

{3,5}

{4,5}

CS 540 Spring 2013 GMU 46

Example 1: Subset Construction

1

5

2

4 3

e

b

a b

a,b

a,b

NFA

1,2 4,5

3,5 4

b

a

b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5}

{4}

CS 540 Spring 2013 GMU 47

Example 1: Subset Construction

1

5

2

4 3

e

b

a b

a,b

a,b

NFA

1,2 4,5 5

3,5 4

a,b b

a

b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5} {5} {5}

{4}

{5}

CS 540 Spring 2013 GMU 48

Example 1: Subset Construction

1

5

2

4 3

e

b

a b

a,b

a,b

NFA

1,2 4,5 5

3,5 4

a,b

a,b

b

a

b

a b

{1,2} {3,5} {4,5}

{3,5} - {4}

{4,5} {5} {5}

{4} {5} {5}

{5} - -

All final states since the

NFA final state is included

CS 540 Spring 2013 GMU 49

Example 2: Subset Construction

1

5

2

4 3

b

e

a b

b

a

NFA

e

CS 540 Spring 2013 GMU 50

Example 2: Subset Construction

1

5

2

4 3

b

e

a b

b

a

1 1,3,4

2

1,4,5

a

b b

NFA DFA

e

1,3,4,5

a

a

a

b

b b

CS 540 Spring 2013 GMU 51

Example 3: Subset Construction

1 2

5 4

e

b

e

1,2,4

NFA DFA

a

b

a 5

3,4 3,5

4

3

3

b

b

a

b

a

b

b

a

CS 540 Spring 2013 GMU 52

Converting DFAs to REs

1. Combine serial links by concatenation

2. Combine parallel links by alternation

3. Remove self-loops by Kleene closure

4. Select a node (other than initial or final) for
removal. Replace it with a set of equivalent
links whose path expressions correspond to the
in and out links

5. Repeat steps 1-4 until the graph consists of a
single link between the entry and exit nodes.

CS 540 Spring 2013 GMU 53

Example

1 2 3 4 5

6 7

d
a

b

c

d
0

d a

d b b

c

1 2 3 4 5

6 7

d a|b|c d
0

d a

d b

b|c

parallel edges become alternation

CS 540 Spring 2013 GMU 54

Example

3 4 5
d (a|b|c) d d

0
a

b (b|c) d

1 2 3 4 5

6 7

d a|b|c d
0

d a

d b

b|c

serial edges become concatenation

CS 540 Spring 2013 GMU 55

Example

3 4 5
d (a|b|c) d d

0
a

b (b|c) d

3 4 5
d (a|b|c) d d

0
a

b(b|c)da

Find paths that can be “shortened”

CS 540 Spring 2013 GMU 56

Example

3 4 5
d (a|b|c) d d

0
a

b(b|c)da

3 4 5
d (a|b|c) d (b(b|c)da)*d

0
a

5
d (a|b|c) d (b(b|c)da)*d

0
a

eliminate self-loops

serial edges become concatenation

CS 540 Spring 2013 GMU 57

Describing Regular Languages

• Generate all strings in the language

• Generate only strings in the language

Try the following:

– Strings of {a,b} that end with ‘abb’

– Strings of {a,b} that don’t end with ‘abb’

– Strings of {a,b} where every a is followed by at
least one b

CS 540 Spring 2013 GMU 58

Strings of (a|b)* that end in abb

re: (a|b)*abb

0 1 2 3
a b b

b a

a
b

a

0 1 2 3
a b b

a,b
NFA

DFA

CS 540 Spring 2013 GMU 59

Strings of (a|b)* that don’t end in

abb

re: ??

0 1 2 3
a b b

b a

a
b

a

DFA/NFA

CS 540 Spring 2013 GMU 60

Strings of (a|b)* that don’t end in

abb

0 1 2 3

a b b

b a

a
b

a

0 1 2 3
b*a a*b b

a
b

a

0 1 2
b*a a*b

a

bb

ba

0 1 2
b*a a*b

a*bba |

a*ba

a*bbb

CS 540 Spring 2013 GMU 61

Suggestions for writing

NFA/DFA/RE

• Typically, one of these formalisms is more
natural for the problem. Start with that and
convert if necessary.

• In NFA/DFAs, each state typically captures
some partial solution

• Be sure that you include all relevant edges
(ask – does every state have an outgoing
transition for all alphabet symbols?)

CS 540 Spring 2013 GMU 62

Non-Regular Languages

Not all languages are regular”

• The language ww where w=(a|b)*

Non-regular languages cannot be described

using REs, NFAs and DFAs.

