CS 540 Spring 2013

The Course covers:

- Lexical Analysis
- Syntax Analysis
- Semantic Analysis
- Runtime environments
- Code Generation
- Code Optimization

Pre-requisite courses

- **Strong** programming background in C, C++ or Java CS 310
- Formal Language (NFAs, DFAs, CFG) CS 330
- Assembly Language Programming and Machine Architecture –CS 367

Operational Information

- Office: Engineering Building, Rm. 5315
- E-mail: white@gmu.edu
- Class Web Page: Blackboard
- Discussion board: Piassa
- Computer Accounts on zeus.vse.gmu.edu (link on 'Useful Links')

CS 540 Course Grading

- Programming Assignments (45%)
 -5% + 10% + 10% + 20%
- Exams midterm and final (25%, 30%)

Resources

- Textbooks:
 - *Compilers: Principles, Techniques and Tools,* Aho, Lam, Sethi & Ullman, 2007 (required) *lex & yacc*, Levine et. al.
- Slides
- Sample code for Lex/YACC (C, C++, Java)

Distance Education

- CS 540 Spring '13 session is delivered to the Internet section (Section 540-DL) online by NEW
- Students in distance section will access to online lectures and can play back the lectures and download the PDF slide files
- The distance education students will be given the midterm and final exam on campus, on the same day/time as in class students. Exam locations will be announced closer to the exam dates.

Lecture 1: Introduction to Language Processing & Lexical Analysis

CS 540

What is a compiler?

A program that reads a program written in one language and translates it into another language. Source language Target language Traditionally, compilers go from high-level languages to low-level languages.

Compiler Architecture

Compiler Architecture

Lexical Analysis - Scanning

Input: result = a + b * c / d

• Tokens:

Static Analysis - Parsing

Input: result = a + b * c / d

Semantic Analysis

Optimization

Code Generation

Issues Driving Compiler Design

- Correctness
- Speed (runtime and compile time)
 - Degrees of optimization
 - Multiple passes
- Space
- Feedback to user
- Debugging

Related to Compilers

- Interpreters (direct execution)
- Assemblers
- Preprocessors
- Text formatters (non-WYSIWYG)
- Analysis tools

Why study compilers?

- Bring together:
 - Data structures & Algorithms
 - Formal Languages
 - Computer Architecture
- Influence:
 - Language Design
 - Architecture (influence is bi-directional)
- Techniques used influence other areas (program analysis, testing, ...)

Review of Formal Languages

- Regular expressions, NFA, DFA
- Translating between formalisms
- Using these formalisms

What is a language?

- Alphabet finite character set (Σ)
- String finite sequence of characters can be ε, the empty string (Some texts use λ as the empty string)
- Language possibly infinite set of strings over some alphabet can be { }, the empty language.

Suppose $\Sigma = \{a,b,c\}$. Some languages over Σ could be:

- {aa,ab,ac,bb,bc,cc}
- {ab,abc,abcc,abccc,...}
- { 8 }
- { }
- {a,b,c,ε}
- •

Why do we care about Regular Languages?

- Formally describe tokens in the language
 - Regular Expressions
 - NFA
 - DFA
- Regular Expressions \rightarrow finite automata
- Tools assist in the process

Regular Expressions

- The **regular expressions** over finite Σ are the strings over the alphabet $\Sigma + \{ \ \}, (, |, * \}$ such that:
- 1. { } (empty set) is a regular expression for the empty set
- 2. ε is a regular expression denoting { ε }
- 3. *a* is a regular expression denoting set { *a* } for any *a* in Σ

Regular Expressions

- 4. If P and Q are regular expressions over Σ , then so are:
 - **P** | **Q** (<u>union</u>)
 - If P denotes the set $\{a,...,e\}$, Q denotes the set $\{0,...,9\}$ then P | Q denotes the set $\{a,...,e,0,...,9\}$

• PQ (<u>concatenation</u>)

If P denotes the set $\{a,...,e\}$, Q denotes the set $\{0,...,9\}$ then PQ denotes the set $\{a0,...,e0,a1,...,e9\}$

• **Q*** (<u>closure</u>)

If Q denotes the set $\{0, \dots, 9\}$ then Q* denotes the set $\{\varepsilon, 0, \dots, 9, 00, \dots, 99, \dots\}$

Examples

If $\Sigma = \{a, b\}$

- (a | b)(a | b)
- (a | b)*b
- a*b*a*
- a*a (also known as a+)
- (ab*)|(a*b)

Nondeterministic Finite Automata

A **nondeterministic finite automaton** (NFA) is a mathematical model that consists of

- 1. A set of states S
- 2. A set of input symbols Σ
- 3. A transition function that maps state/symbol pairs to a set of states:

S x { $\Sigma + \varepsilon$ } \rightarrow set of S

- 4. A special state s_0 called the start state
- 5. A set of states F (subset of S) of final states INPUT: string
- OUTPUT: yes or no

Example NFA

Transition Table:

STATE	а	b	3
0	0,3	0	1
1		2	
2		3	
3			

$$S = \{0,1,2,3 \\ S_0 = 0 \\ \Sigma = \{a,b\} \\ F = \{3\}$$

}

NFA Execution

An NFA says 'yes' for an input string if there is some path from the start state to some final state where all input has been processed.

```
NFA(int s0, int input) {
    if (all input processed && s<sub>0</sub> is a final state) return Yes;
    if (all input processed && s<sub>0</sub> not a final state) return No;
    for all states s<sub>1</sub> where transition(s<sub>0</sub>,table[input]) = s<sub>1</sub>
        if (NFA(s<sub>1</sub>,input_element+1) == Yes) return Yes;
    for all states s<sub>1</sub> where transition(s<sub>0</sub>, ɛ) = s<sub>1</sub>
        if (NFA(s<sub>1</sub>,input_element) == Yes) return Yes;
    return No;
}
Uses backtracking to search
```

CS 540 Spring 2013 GMU all possible paths

Deterministic Finite Automata

A **deterministic finite automaton** (DFA) is a mathematical model that consists of

- 1. A set of states S
- 2. A set of input symbols Σ
- 3. A transition function that maps state/symbol pairs to a state:

 $S \ge \Sigma \xrightarrow{} S$

- 4. A special state s_0 called the start state
- 5. A set of states F (subset of S) of final states

INPUT: string

OUTPUT: yes or no

DFA Execution

```
DFA(int start_state) {
   state current = start_state;
   input_element = next_token();
   while (input to be processed) {
      current =
          transition(current,table[input_element])
      if current is an error state return No;
      input_element = next_token();
   }
   if current is a final state return Yes;
   else return No;
}
```

Regular Languages

- 1. There is an algorithm for converting any RE into an NFA.
- 2. There is an algorithm for converting any NFA to a DFA.
- 3. There is an algorithm for converting any DFA to a RE.

These facts tell us that REs, NFAs and DFAs have equivalent expressive power. All three describe the class of regular languages.

Converting Regular Expressions to NFAs

The **regular expressions** over finite Σ are the strings over the alphabet $\Sigma + \{ \}$, (, |, *} such that:

- { } (empty set) is a regular expression for the empty set
- Empty string ε is a regular expression denoting { ε }

• *a* is a regular expression denoting $\{a\}$ for any *a* in Σ

Converting Regular Expressions to NFAs

Converting Regular Expressions to NFAs

If Q is a regular expression with NFA N_q :

Example (ab* | a*b)*

Starting with:

Example (ab* | a*b)*

ab* | a*b

Converting NFAs to DFAs

- Idea: Each state in the new DFA will correspond to some set of states from the NFA. The DFA will be in state {s₀,s₁,...} after input if the NFA could be in *any* of these states for the same input.
- Input: NFA N with state set S_N, alphabet Σ, start state s_N, final states F_N, transition function T_N: S_N x Σ + {ε} → set of S_N
- Output: DFA D with state set S_D, alphabet Σ, start state
 s_D = ε-closure(s_N), final states F_D, transition function
 T_D: S_D x Σ → S_D

ε-closure()

Defn: ε -closure(T) = T + all NFA states reachable from any state in T using only ε transitions.

 ϵ -closure({1,2,5}) = {1,2,5} ϵ -closure({4}) = {1,4} ϵ -closure({3}) = {1,3,4} ϵ -closure({3,5}) = {1,3,4,5}

Algorithm: Subset Construction

 $s_D = \epsilon$ -closure(s_N) -- create start state for DFA

 $S_D = \{s_D\}$ (unmarked)

while there is some unmarked state \mathbf{R} in S_D

mark state **R**

for all a in Σ do

s = ε -closure(T_N(**R**,*a*));

if s not already in S_D then add it (unmarked)

 $T_{\rm D}(\mathbf{R},a) = \mathrm{s};$

end for

end while

 F_D = any element of S_D that contains a state in F_N

	a	b
{1,2}		

	a	b
{1,2}	{3,5}	{4,5}
{3,5}		
{4,5}		

	a	b
{1,2}	{3,5}	{4,5}
{3,5}	-	{4}
{4,5}		
{4}		

CS 540 Spring 2013 GMU

	a	b
{1,2}	{3,5}	{4,5}
{3,5}	-	{4}
{4,5}	{5}	{5}
{4}		
{5}		

CS 540 Spring 2013 GMU

CS 540 Spring 2013 GMU

NFA

DFA

NFA

DFA

Converting DFAs to REs

- 1. Combine serial links by concatenation
- 2. Combine parallel links by alternation
- 3. Remove self-loops by Kleene closure
- 4. Select a node (other than initial or final) for removal. Replace it with a set of equivalent links whose path expressions correspond to the in and out links
- 5. Repeat steps 1-4 until the graph consists of a single link between the entry and exit nodes.

parallel edges become alternation

Example

serial edges become concatenation

Find paths that can be "shortened"

Describing Regular Languages

- Generate *all* strings in the language
- Generate *only* strings in the language

Try the following:

- Strings of $\{a,b\}$ that end with '*abb*'
- Strings of $\{a,b\}$ that don't end with '*abb*'
- Strings of {a,b} where every a is followed by at least one b

Strings of (a|b)* that end in abb

re: (a|b)*abb

Strings of (a|b)* that don't end in abb

DFA/NFA

Strings of (a|b)* that don't end in abb

bb

CS 540 Spring 2013 GMU

Suggestions for writing NFA/DFA/RE

- Typically, one of these formalisms is more natural for the problem. Start with that and convert if necessary.
- In NFA/DFAs, each state typically captures some partial solution
- Be sure that you include all relevant edges (ask does every state have an outgoing transition for all alphabet symbols?)

Non-Regular Languages

Not all languages are regular"

• The language *ww* where $w=(a|b)^*$

Non-regular languages cannot be described using REs, NFAs and DFAs.