Lecture 3: Parsing

CS 540
George Mason University

Static Analysis - Parsing

Static Analysis - Parsing

We can use context free grammars to specify the syntax of programming languages.

Context Free Grammars

Definition: A context free grammar is a formal model that consists of:

1. A set of tokens or terminal symbols V_{t}
2. A set of nonterminal symbols V_{n}
3. Start symbol $S\left(\right.$ in $\left.V_{n}\right)$
4. Finite set of productions of form:

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{R}_{1} \ldots \mathrm{R}_{\mathrm{n}}(n>=0) \text { where } \mathrm{A} \text { in } \mathrm{V}_{\mathrm{n}}, \\
& \mathrm{R} \text { in } \mathrm{V}_{\mathrm{n}} \cup \mathrm{~V}_{\mathrm{t}}
\end{aligned}
$$

Indicates a production

CFG Examples

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{t}}=\{+,-, 0 . .9\}, \mathrm{V}_{\mathrm{n}}=\{\mathrm{L}, \mathrm{D}\}, \mathrm{s}=\{\mathrm{L}\} \\
& \mathrm{L} \rightarrow \mathrm{~L}+\mathrm{D}|\mathrm{~L}-\mathrm{D}| \mathrm{D} \\
& \mathrm{D} \rightarrow 0|\ldots|, \underline{9} \text { Shorthand for multiple productions }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{t}}=\{(,)\}, \mathrm{V}_{\mathrm{n}}=\{\mathrm{L}\}, \mathrm{s}=\{\mathrm{L}\} \\
& \mathrm{L} \rightarrow(\mathrm{~L}) \mathrm{L} \\
& \mathrm{~L} \rightarrow \varepsilon
\end{aligned}
$$

Languages

Regular	$\mathrm{A} \rightarrow \mathrm{aB}, \mathrm{C} \rightarrow \varepsilon$
Context free	$\mathrm{A} \rightarrow \alpha$
Context sensitive	$\alpha \mathrm{A} \beta \rightarrow \alpha \gamma \beta$
Type 0	$\alpha \rightarrow \beta$

CS 540 Spring 2009 GMU

Any regular language can be expressed using a CFG

Starting with a NFA:

- For each state S_{i} in the NFA
- Create non-terminal A_{i}
- If transition $\left(\mathrm{S}_{\mathrm{i}}, \mathrm{a}\right)=\mathrm{S}_{\mathrm{k}}$, create production $\mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{a} \mathrm{A}_{\mathrm{k}}$
- If transition $\left(\mathrm{S}_{\mathrm{i}}, \varepsilon\right)=\mathrm{S}_{\mathrm{k}}$, create production $\mathrm{A}_{\mathrm{i}} \rightarrow \mathrm{A}_{\mathrm{k}}$
- If S_{i} is a final state, create production $\mathrm{A}_{\mathrm{i}} \rightarrow \varepsilon$
- If S_{i} is the NFA start state, $\mathrm{s}=\mathrm{A}_{\mathrm{i}}$
- What does the existence of this algorithm tell us about the relationship between regular and context free languages?

NFA to CFG Example

$a b * a$

$$
\begin{aligned}
& \mathrm{A}_{1} \rightarrow \mathrm{a}_{2} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{bA}_{2} \\
& \mathrm{~A}_{2} \rightarrow \mathrm{aA}_{3} \\
& \mathrm{~A}_{3} \rightarrow \varepsilon
\end{aligned}
$$

Writing Grammars

When writing a grammar (or RE) for some language, the following must be true:

1. All strings generated are in the language.
2. Your grammar produces all strings in the language.

Try these:

- Integers divisible by 2
- Legal postfix expressions
- Floating point numbers with no extra zeros
- Strings of 0,1 where there are more 0 than 1

Parsing

- The task of parsing is figuring out what the parse tree looks like for a given input and language.
- If a string is in the given language, a parse tree must exist.
- However, just because a parse tree exists for some string in a given language doesn't mean a given algorithm can find it.

Parse Trees

The parse tree for some string in a language that is defined by the grammar G as follows:

- The root is the start symbol of G
- The leaves are terminals or ε. When visited from left to right, the leaves form the input string
- The interior nodes are non-terminals of G
- For every non-terminal A in the tree with children B_{1}
$\ldots \mathrm{B}_{\mathrm{k}}$, there is some production $\mathrm{A} \rightarrow \mathrm{B}_{1} \ldots \mathrm{~B}_{\mathrm{k}}$

Parse Tree for (())()

Parse Tree for (())()

CS 540 Spring 2009 GMU

Parsing

- Parsing algorithms are based on the idea of derivations.
- General Algorithms:
- LL (top down)
- LR (bottom up)

Single Step Derivation

Definition: Given $\underline{\alpha A} \beta$ (with α, β in
$\left.\left(\mathrm{V}_{\mathrm{n}} \cup \mathrm{V}_{\mathrm{t}}\right)^{*}\right)$ and a production $\underline{\mathrm{A} \rightarrow \gamma}$,
$\alpha \mathrm{A} \beta \Rightarrow \alpha \gamma \beta$ is a single step derivation.

Examples:

$$
\begin{array}{lll}
\mathrm{L}+\mathrm{D} \Rightarrow \mathrm{~L}-\mathrm{D}+\mathrm{D} & \mathrm{~L} \rightarrow \mathrm{~L}-\mathrm{D} & \begin{array}{l}
\text { denote a (possibly empty) } \\
(\mathrm{L})(\mathrm{L}) \Rightarrow((\mathrm{L}) \mathrm{L})(\mathrm{L})
\end{array} \\
\mathrm{L} \rightarrow(\mathrm{~L}) \mathrm{L} & \begin{array}{l}
\text { sequence of terminals and } \\
\text { non-terminals. }
\end{array}
\end{array}
$$

Derivations

Definition: A sequence of the form:

$$
\mathrm{w}_{0} \Rightarrow \mathrm{w}_{1} \Rightarrow \ldots \Rightarrow \mathrm{w}_{\mathrm{n}}
$$

is a derivation of w_{n} from $\mathrm{w}_{0}\left(\mathrm{w}_{0} \Rightarrow^{*} \mathrm{w}_{\mathrm{n}}\right)$

```
L
    (L)L
    #()L production L }->
    #()
L #**)
```

If w_{i} has non-terminal symbols, it is referred to as sentential form.

$$
\mathrm{L} \Rightarrow{ }^{*}(())()
$$

L
$\Rightarrow(\mathrm{L}) \mathrm{L}$
$\Rightarrow(\mathrm{L})(\mathrm{L}) \mathrm{L}$
$\Rightarrow(\mathrm{L})(\mathrm{L})$
$\Rightarrow((\mathbf{L}) \mathrm{L})(\mathrm{L})$
$\Rightarrow(() \mathrm{L})(\mathbf{L})$
$\Rightarrow(() \mathbf{L})()$
$\Rightarrow(())()$
production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow \varepsilon$ production $L \rightarrow \varepsilon$

- $\mathrm{L}(\mathrm{G})$, the language generated by grammar G is $\left\{\mathrm{w}\right.$ in $\mathrm{V}_{\mathrm{t}}^{*}: \mathrm{s} \Rightarrow^{*} \mathrm{w}$, for start symbol s$\}$
- We've just shown that both () and (())() are in $L(G)$ for the previous grammar.

Leftmost Derivations

- A derivation where the leftmost nonterminal is always chosen
- If a string is in a given language (i.e. a derivation exists), then a leftmost derivation must exist
- Rightmost derivation defined as you would expect

Leftmost Derivation for (()$)()$

L
$\Rightarrow(\mathrm{L}) \mathrm{L}$
$\Rightarrow((\mathbf{L}) \mathrm{L}) \mathrm{L}$
$\Rightarrow(() \mathbf{L}) \mathrm{L}$
$\Rightarrow(()) \mathbf{L}$
$\Rightarrow(())(\mathbf{L}) \mathrm{L}$
$\Rightarrow(())() \mathbf{L}$
$\Rightarrow($ ()) ()
production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow \varepsilon$

Rightmost Derivation for (())()

L
$\Rightarrow(\mathrm{L}) \mathrm{L}$
$\Rightarrow(\mathrm{L})(\mathrm{L}) \mathrm{L}$
$\Rightarrow(\mathrm{L})(\mathrm{L})$
$\Rightarrow(\mathrm{L})()$
$\Rightarrow((\mathrm{L}) \mathrm{L})()$
$\Rightarrow((\mathbf{L}))()$
$\Rightarrow(())()$
production $\mathrm{L} \rightarrow$ (L) L production $\mathrm{L} \rightarrow$ (L) L
production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow(\mathrm{L}) \mathrm{L}$ production $\mathrm{L} \rightarrow \varepsilon$ production $\mathrm{L} \rightarrow \varepsilon$

Ambiguity

Two (or more) parse trees or leftmost derivations for some string in the language
$\mathrm{E} \rightarrow \mathrm{E}+\mathrm{E}$
$\mathrm{E} \rightarrow \mathrm{E}-\mathrm{E}$
$\mathrm{E} \rightarrow 0|\ldots| 9$
$2-3+4$

- Two leftmost derivations

$$
\begin{array}{rlrll}
\mathrm{E} & \Rightarrow \mathrm{E}+\mathrm{E} & \mathrm{E} & \Rightarrow \mathrm{E}-\mathrm{E} \\
& \Rightarrow & \mathrm{E}-\mathrm{E}+\mathrm{E} & & \Rightarrow \\
& \Rightarrow & 2-\mathrm{E}+\mathrm{E} & & \Rightarrow \\
& \Rightarrow & 2-3+\mathrm{E}+\mathrm{E} \\
& \Rightarrow & 2-3+4 & & 2-3+\mathrm{E} \\
& \Rightarrow & 2-3+4
\end{array}
$$

- An ambiguous grammar can sometimes be made unambiguous:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \\
& \mathrm{~T} \rightarrow 0|\ldots| 9 \quad \text { enforces the correct }
\end{aligned}
$$

- Precedence can be specified as well:

$$
\begin{aligned}
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T}|\mathrm{E}-\mathrm{T}| \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F}|\mathrm{~T} / \mathrm{F}| \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E})|0| \ldots \mid 9
\end{aligned}
$$

Input: begin simplestmt; simplestmt; end

Top Down (LL) Parsing

Bottomup (LR) Parsing

$\mathrm{P} \rightarrow$ begin SS end
$\mathrm{SS} \rightarrow \mathrm{S}$; SS
SS $\rightarrow \varepsilon$
S \rightarrow simplestmt
$\mathrm{S} \rightarrow$ begin SS end

Bottomup (LR) Parsing

$\mathrm{P} \rightarrow$ begin SS end
SS \rightarrow S; SS
SS $\rightarrow \varepsilon$
S \rightarrow simplestmt
$\mathrm{S} \rightarrow$ begin SS end

Bottomup (LR) Parsing

$\mathrm{P} \rightarrow$ begin SS end
$\mathrm{SS} \rightarrow \mathrm{S} ; \mathrm{SS}$
SS $\rightarrow \varepsilon$
S \rightarrow simplestmt
$\mathrm{S} \rightarrow$ begin SS end

Bottomup (LR) Parsing

$\mathrm{P} \rightarrow$ begin SS end
$\mathrm{SS} \rightarrow \mathrm{S} ; \mathrm{SS}$
SS $\rightarrow \varepsilon$
$\mathrm{S} \rightarrow$ simplestmt
$\mathrm{S} \rightarrow$ begin SS end

Bottomup (LR) Parsing

$\mathrm{P} \rightarrow$ begin SS end
$\mathrm{SS} \rightarrow \mathrm{S} ; \mathrm{SS}$
SS $\rightarrow \varepsilon$
$\mathrm{S} \rightarrow$ simplestmt
$\mathrm{S} \rightarrow$ begin SS end
begin simplestmt ; simplestmt ; end

Bottomup (LR) Parsing

Parsing

- General Algorithms:
- LL (top down)
- LR (bottom up)
- Both algorithms are driven by the input grammar and the input to be parsed
- Two important sets: FIRST and FOLLOW

FIRST Sets

$\operatorname{FIRST}(\alpha)$ is the set of all terminal symbols that can begin some sentential form in a derivation that starts with α

$$
\alpha \Rightarrow \ldots \Rightarrow \mathrm{a} \beta
$$

- $\operatorname{FIRST}(\alpha)=\left\{\mathrm{a}\right.$ in $\left.\mathrm{V}_{\mathrm{t}} \mid \alpha \Rightarrow^{*} \mathrm{a} \beta\right\} \cup\{\varepsilon\}$ if $\alpha \Rightarrow{ }^{*} \varepsilon$
- Example:
$\mathrm{S} \rightarrow$ simple \mid begin S end
$\operatorname{FIRST}(S)=\{$ simple, begin $\}$

To compute FIRST across strings of terminals and non-terminals:
$\operatorname{FIRST}(\varepsilon)=\{\varepsilon\}$
$\operatorname{FIRST}(\mathrm{A} \alpha)=\left\{\begin{array}{l}\mathrm{A} \quad \text { if } \mathrm{A} \text { is a terminal } \\ \operatorname{FIRST}(\mathrm{A}) \cup \operatorname{FIRST}(\alpha)\end{array}\right.$ if $\mathrm{A} \Rightarrow{ }^{*} \varepsilon$
FIRST(A)
otherwise

Computing FIRST sets

Initially FIRST(A) (for all A) is empty

1. For productions $A \rightarrow c \beta$, where c in V_{t}

Add $\{\mathrm{c}\}$ to $\operatorname{FIRST}(\mathrm{A})$
2. For productions A $\rightarrow \varepsilon$

Add $\{\varepsilon\}$ to $\operatorname{FIRST}(\mathrm{A})$
3. For productions $\mathrm{A} \rightarrow \alpha \mathrm{B} \beta$, where $\alpha \Rightarrow^{*} \varepsilon$ and $\operatorname{NOT}\left(B \Rightarrow^{*} \varepsilon\right)$ Add $\operatorname{FIRST}(\alpha \mathrm{B})$ to $\operatorname{FIRST}(\mathrm{A}) \quad \varepsilon \notin \operatorname{FIRST}(\mathrm{B})$
4. For productions A $\rightarrow \alpha$, where $\alpha \Rightarrow^{*} \varepsilon$

Add $\operatorname{FIRST}(\alpha)$ and $\{\varepsilon\}$ to $\operatorname{FIRST}(\mathrm{A})$

Example 1

- $\mathrm{S} \rightarrow$ a Se
- $\mathrm{S} \rightarrow \mathrm{B}$
- $\mathrm{B} \rightarrow \mathrm{bBe}$
- $\mathrm{B} \rightarrow \mathrm{C}$
- $\mathrm{C} \rightarrow \underline{\mathrm{c}} \mathrm{Ce}$.
- $\mathrm{C} \rightarrow \underline{\mathrm{d}} \longleftrightarrow$ Start with the 'simplest' non-terminal

Example 1

- $\mathrm{S} \rightarrow$ a Se
- $\mathrm{S} \rightarrow \mathrm{B}$
- $\mathrm{B} \rightarrow \underline{\mathrm{b}} \mathrm{Be}$,
- $\mathrm{B} \rightarrow$
- $\mathrm{C} \rightarrow \mathrm{c} \mathrm{Ce}$
- $\mathrm{C} \rightarrow \mathrm{d}$
- $\operatorname{FIRST}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}\}$
- $\operatorname{FIRST}(B)=\{b, c, d\}$
- $\operatorname{FIRST}(\mathrm{S})=$

Example 1

- $\mathrm{S} \rightarrow$ a Se
- $\mathrm{S} \rightarrow \underline{\mathrm{B}}$
- $\mathrm{B} \rightarrow \mathrm{bBe}$
- $\mathrm{B} \rightarrow \mathrm{C}$
- $\mathrm{C} \rightarrow \mathrm{c}$ C
- $\mathrm{C} \rightarrow \mathrm{d}$
- $\operatorname{FIRST}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}\}$
- $\operatorname{FIRST}(B)=\{b, c, d\}$
- $\operatorname{FIRST}(S)=\{a, b, c, d\}$

Example 2

- $P \rightarrow \underline{\mathrm{i}}|\underline{\mathrm{c}}| \underline{\mathrm{n}} \mathrm{TS}$
- $\mathrm{Q} \rightarrow \mathrm{P}|\mathrm{aS}| \mathrm{dScST}$
- $\mathrm{R} \rightarrow \underline{\mathrm{b}} \mid \underline{\varepsilon}$
- $\mathrm{S} \rightarrow \mathrm{e}|\mathrm{Rn}| \varepsilon$
- $\mathrm{T} \rightarrow \mathrm{RSq}$
- $\operatorname{FIRST}(\mathrm{P})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}\}$
- $\operatorname{FIRST}(\mathrm{Q})=$
- $\operatorname{FIRST}(\mathrm{R})=\{\mathrm{b}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=$
- $\operatorname{FIRST}(\mathrm{T})=$

Example 2

- $P \rightarrow i|c| n T S$
- $\mathrm{Q} \rightarrow \underline{\mathrm{P}}|\underline{\mathrm{a}} \mathrm{S}| \underline{\mathrm{d}} \mathrm{Sc}$ c T
- $\mathrm{R} \rightarrow \mathrm{b} \mid \varepsilon$
- $\mathrm{S} \rightarrow \mathrm{e}|\mathrm{Rn}| \varepsilon$
- $\mathrm{T} \rightarrow \mathrm{RSq}$
- $\operatorname{FIRST}(\mathrm{P})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}\}$
- $\operatorname{FIRST}(\mathrm{Q})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}, \mathrm{a}, \mathrm{d}\}$
- $\operatorname{FIRST}(\mathrm{R})=\{\mathrm{b}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=$
- $\operatorname{FIRST}(\mathrm{T})=$

Example 2

- $\mathrm{P} \rightarrow \mathrm{i}|\mathrm{c}| \mathrm{nTS}$
- $\mathrm{Q} \rightarrow \mathrm{P}|\mathrm{aS}| \mathrm{dScST}$
- $\mathrm{R} \rightarrow \mathrm{b} \mid \varepsilon$
- $S \rightarrow \underline{\mathrm{e}}|\underline{\mathrm{Rn}}| \underline{\varepsilon}$
- $\mathrm{T} \rightarrow \mathrm{RSq}$
- $\operatorname{FIRST}(\mathrm{P})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}\}$
- $\operatorname{FIRST}(\mathrm{Q})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}, \mathrm{a}, \mathrm{d}\}$
- $\operatorname{FIRST}(\mathrm{R})=\{\mathrm{b}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{e}, \mathrm{b}, \mathrm{n}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{T}) \neq$

Note:
$\mathrm{S} \Rightarrow \mathrm{Rn} \Rightarrow \mathrm{n}$ because $\mathrm{R} \Rightarrow{ }^{*} \varepsilon$

Example 2

- $\mathrm{P} \rightarrow \mathrm{i}|\mathrm{c}| \mathrm{nTS}$
- $\mathrm{Q} \rightarrow \mathrm{P}|\mathrm{aS}| \mathrm{dScST}$
- $\mathrm{R} \rightarrow \mathrm{b} \mid \varepsilon$
- $\mathrm{S} \rightarrow \mathrm{e}|\mathrm{Rn}| \varepsilon$
- $\mathrm{T} \rightarrow \underline{\mathrm{RS} \text { q }}$
- $\operatorname{FIRST}(\mathrm{P})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}\}$
- $\operatorname{FIRST}(\mathrm{Q})=\{\mathrm{i}, \mathrm{c}, \mathrm{n}, \mathrm{a}, \mathrm{d}\}$
- $\operatorname{FIRST}(\mathrm{R})=\{\mathrm{b}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{e}, \mathrm{b}, \mathrm{n}, \varepsilon\}$
- $\operatorname{FIRST}(T)=\{\mathrm{b}, \mathrm{c}, \mathrm{n}, \mathrm{q}\}$

Note:

$$
\mathrm{T} \Rightarrow \mathrm{RSq} \Rightarrow \mathrm{Sq} \Rightarrow \mathrm{q}
$$

because both R and $\mathrm{S} \Rightarrow^{*} \varepsilon$

Example 3

- $\mathrm{S} \rightarrow \mathrm{aSe\mid STS}$
- $\mathrm{T} \rightarrow \mathrm{RSe\mid Q}$
- $\mathrm{R} \rightarrow \mathrm{rSr\mid} \mathrm{\varepsilon}$
- $\mathrm{Q} \rightarrow \mathrm{ST} \mid \varepsilon$
- $\operatorname{FIRST}(\mathrm{S})=$
- $\operatorname{FIRST}(\mathrm{R})=$
- $\operatorname{FIRST}(\mathrm{T})=$
- $\operatorname{FIRST}(\mathrm{Q})=$

Example 3

- $\mathrm{S} \rightarrow \mathrm{aSe\mid STS}$
- $\mathrm{T} \rightarrow \mathrm{RSe\mid} \mathrm{Q}$
- $\mathrm{R} \rightarrow \mathrm{rSr\mid} \mathrm{\varepsilon}$
- $\mathrm{Q} \rightarrow \mathrm{ST} \mid \varepsilon$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}\}$
- $\operatorname{FIRST}(\mathrm{R})=\{\mathrm{r}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{T})=\{\mathrm{r}, \mathrm{a}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{Q})=\{\mathrm{a}, \varepsilon\}$

FOLLOW Sets

- FOLLOW(A) is the set of terminals (including end of file - \$) that may follow non-terminal A in some sentential form.
- $\operatorname{FOLLOW}(\mathrm{A})=\left\{\mathrm{c}\right.$ in $\left.\mathrm{V}_{\mathrm{t}} \mid \mathrm{S} \Rightarrow^{+} \ldots \mathrm{Ac} \ldots\right\} \cup$ $\{\$\}$ if $S \Rightarrow^{+} \ldots \mathrm{A}$
- For example, consider $\mathrm{L} \Rightarrow^{+}(())(\mathrm{L}) \mathrm{L}$

Both ')' and end of file can follow L

- NOTE: ε is never in FOLLOW sets

Computing FOLLOW(A)

1. If A is start symbol, put $\$$ in FOLLOW(A)
2. Productions of the form $B \rightarrow \alpha A \beta$,
$\operatorname{Add} \operatorname{FIRST}(\beta)-\{\varepsilon\}$ to $\operatorname{FOLLOW}(\mathrm{A})$
INTUITION: Suppose B \rightarrow AX and $\operatorname{FIRST}(\mathrm{X})=$ \{c $\}$
$\mathrm{S} \Rightarrow^{+} \alpha \mathrm{B} \beta \Rightarrow \alpha \mathrm{AX} \beta \Rightarrow^{+} \alpha \mathrm{A}, \mathrm{c} \delta \beta$
$=\operatorname{FIRST}(\mathrm{X})$
CS 540 Spring 2009 GMU
3. Productions of the form $\mathrm{B} \rightarrow \alpha \mathrm{A}$ or

$$
\mathrm{B} \rightarrow \alpha \mathrm{~A} \beta \text { where } \beta \Rightarrow^{*} \varepsilon
$$

Add FOLLOW(B) to FOLLOW(A)
INTUITION:

- Suppose B \rightarrow Y A

$$
\begin{aligned}
& \mathrm{S} \Rightarrow^{+} \alpha \mathrm{B} \beta \Rightarrow \alpha \mathrm{YA} \beta \\
& \text { follow(b) }
\end{aligned}
$$

- Suppose B \rightarrow A X and $X \Rightarrow^{*} \varepsilon$

$$
\mathrm{S} \Rightarrow+\underset{\text { Foloow(B) }}{+\mathrm{B}} \beta \Rightarrow \alpha \mathrm{~A} \mathrm{X} \beta \Rightarrow^{*} \alpha \mathrm{~A} \beta
$$

Assume the first non-terminal is

 the start symbol
Example 4

- $\mathrm{S} \rightarrow \mathrm{aSe\mid B}$
- $\mathrm{B} \rightarrow \mathrm{bBCf} \mid \mathrm{C}$
- $\mathrm{C} \rightarrow \mathrm{c} \mathrm{Cg}|\mathrm{d}| \varepsilon$
- $\operatorname{FIRST}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{B})=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FOLLOW}(\mathrm{C})=$
- $\operatorname{FOLLOW}(\mathrm{B})=$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\$\}$

Using rule \#1

Example 4

- $\mathrm{S} \rightarrow \mathrm{a} \underline{\mathrm{Se}} \mid \mathrm{B}$
- $\mathrm{B} \rightarrow \mathrm{bBCf} \mid \mathrm{C}$
- $\mathrm{C} \rightarrow \mathrm{c} \underline{\mathrm{Cg}|\mathrm{d}| \varepsilon}$
- $\operatorname{FIRST}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FIRST}(B)=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\} \quad$ • $\operatorname{FOLLOW}(\mathrm{S})=\{\$, \mathrm{e}\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\}$

Using rule \#2

Example 4

- $\mathrm{S} \rightarrow \mathrm{aS}$ e| $\underline{\mathrm{B}}$
- $\mathrm{B} \rightarrow \mathrm{bBCf} \mid \underline{\mathrm{C}}$
- $\mathrm{C} \rightarrow \mathrm{c} \mathrm{Cg}|\mathrm{d}| \varepsilon$
- $\operatorname{FIRST}(\mathrm{C})=\{\mathrm{c}, \mathrm{d}, \varepsilon\}$
- FOLLOW(C) = $\{f, g\} \cup$ FOLLOW (B) $=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{B}\}$
- FOLLOW(B) = $\{c, d, f\} \cup \operatorname{FOLLOW}(S)$
$=\{\mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{S}\}$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\mathrm{s}, \mathrm{e}\}$
- $\operatorname{FIRST}(\mathrm{B})=\{\mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \varepsilon\}$

Using rule \#3

Example 5

- $\mathrm{S} \rightarrow \mathrm{ABC\mid AD}$
- $\mathrm{A} \rightarrow \varepsilon \mid \mathrm{a} \mathrm{A}$
- $\mathrm{B} \rightarrow \mathrm{b}|\mathrm{c}| \varepsilon$
- $\mathrm{C} \rightarrow \mathrm{DdC}$
- $\mathrm{D} \rightarrow \mathrm{eb} \mid \mathrm{fc}$
- $\operatorname{FIRST}(\mathrm{D})=\{\mathrm{e}, \mathrm{f}\}$
- $\operatorname{FIRST}(C)=\{\mathrm{e}, \mathrm{f}\}$
- $\operatorname{FIRST}(\mathrm{B})=\{\mathrm{b}, \mathrm{c}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{A})=\{\mathrm{a}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}\}$

Example 5

- $\mathrm{S} \rightarrow \mathrm{ABC\mid AD}$
- $\mathrm{A} \rightarrow \varepsilon \mid \mathrm{a} \mathrm{A}$
- $\mathrm{B} \rightarrow \mathrm{b}|\mathrm{c}| \varepsilon$
- $\mathrm{C} \rightarrow \mathrm{DdC}$
- $\mathrm{D} \rightarrow \mathrm{eb} \mid \mathrm{fc}$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\$\}$
- $\operatorname{FOLLOW}(\mathrm{A})=\{\mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}\}$
- FOLLOW(B) = \{e,f\}
- $\operatorname{FOLLOW}(\mathrm{C})=\{\$\}$
- FOLLOW(D) = $\{\$\}$
- $\operatorname{FIRST}(\mathrm{D})=\{\mathrm{e}, \mathrm{f}\}$
- $\operatorname{FIRST}(C)=\{\mathrm{e}, \mathrm{f}\}$
- $\operatorname{FIRST}(\mathrm{B})=\{\mathrm{b}, \mathrm{c}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{A})=\{\mathrm{a}, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{S})=\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{e}, \mathrm{f}\}$

Example 6

- $\mathrm{S} \rightarrow(\mathrm{A}) \mid \varepsilon$
- $\mathrm{A} \rightarrow \mathrm{TE}$
- $\mathrm{E} \rightarrow$ \& $\mathrm{TE} \mid \varepsilon$
- $\mathrm{T} \rightarrow(\mathrm{A})|\mathrm{a}| \mathrm{b} \mid \mathrm{c}$
- $\operatorname{FOLLOW}(\mathrm{S})=$
- $\operatorname{FOLLOW}(\mathrm{A})=$
- $\operatorname{FOLLOW}(\mathrm{E})=$
- $\operatorname{FOLLOW}(\mathrm{T})=$
- $\operatorname{FIRST}(\mathrm{T})=\{(, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\operatorname{FIRST}(\mathrm{E})=\{\&, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{A})=\{(\mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\operatorname{FIRST}(S)=\{(, \varepsilon\}$

Example 6

- $\mathrm{S} \rightarrow(\mathrm{A}) \mid \varepsilon$
- $\mathrm{A} \rightarrow \mathrm{TE}$
- $\mathrm{E} \rightarrow \& \mathrm{TE} \mid \varepsilon$
- $\mathrm{T} \rightarrow(\mathrm{A})|\mathrm{a}| \mathrm{b} \mid \mathrm{c}$
- $\operatorname{FIRST}(\mathrm{T})=\{(, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\operatorname{FIRST}(E)=\{\&, \varepsilon\}$
- $\operatorname{FIRST}(\mathrm{A})=\{(, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$
- $\operatorname{FIRST}(S)=\{(, \varepsilon\}$
- $\operatorname{FOLLOW}(\mathrm{S})=\{\$\}$
- $\operatorname{FOLLOW}(\mathrm{A})=\{)\}$
- $\operatorname{FOLLOW}(\mathrm{E})=$
$\operatorname{FOLLOW}(\mathrm{A})=\{)\}$
- $\operatorname{FOLLOW}(\mathrm{T})=$

FIRST(E) \cup FOLLOW $(A) \cup$ $\operatorname{FOLLOW}(\mathrm{E})=\{\&)$,

Example 7

- $\mathrm{E} \rightarrow \mathrm{T} \mathrm{E}^{\prime}$
- $\mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon$
- T \rightarrow F T'
- $\mathrm{T}^{\prime} \rightarrow$ * $\mathrm{FT} \mathrm{T}^{\prime} \mid \varepsilon$
- $\mathrm{F} \rightarrow$ (E$) \mid \mathrm{id}$
- $\operatorname{FOLLOW}(\mathrm{E})=$
- $\operatorname{FOLLOW}\left(\mathrm{E}^{\prime}\right)=$
- $\operatorname{FOLLOW}(\mathrm{T})=$
- $\operatorname{FOLLOW}\left(\mathrm{T}^{\prime}\right)=$
- $\operatorname{FOLLOW}(\mathrm{F})=$
- $\operatorname{FIRST}(\mathrm{F})=\operatorname{FIRST}(\mathrm{T})=\operatorname{FIRST}(\mathrm{E})=$ \{(,id\}
- $\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*}, \varepsilon\right\}$
- $\operatorname{FIRST}\left(\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$

Example 7

- $\mathrm{E} \rightarrow \mathrm{T} \mathrm{E}^{\prime}$
- $\mathrm{E}^{\prime} \rightarrow+\mathrm{T} \mathrm{E}^{\prime} \mid \varepsilon$
- T \rightarrow F T'
- $\mathrm{T}^{\prime} \rightarrow{ }^{*} \mathrm{FT} \mathrm{T}^{\prime} \mid \varepsilon$
- $\mathrm{F} \rightarrow$ (E$) \mid \mathrm{id}$
- $\operatorname{FOLLOW}(\mathrm{E})=\{\$)$,
- $\left.\operatorname{FOLLOW}\left(\mathrm{E}^{\prime}\right)=\operatorname{FOLLOW}(\mathrm{E})=\{\$),\right\}$
- $\operatorname{FOLLOW}(T)=\operatorname{FIRST}\left(E^{\prime}\right) \cup$ FOLLOW(E) \cup FOLLOW (E') = \{+,\$,)
- $\left.\operatorname{FOLLOW}\left(\mathrm{T}^{\prime}\right)=\operatorname{FOLLOW}(\mathrm{T})=\{+, \$),\right\}$
- FOLLOW(F) = FIRST(T') \cup FOLLOW(T) $\left.\cup \operatorname{FOLLOW}\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*},+, \$,\right)\right\}$
- $\operatorname{FIRST}(\mathrm{F})=\operatorname{FIRST}(\mathrm{T})=$ $\operatorname{FIRST}(\mathrm{E})=\{(, \mathrm{id}\}$
- $\operatorname{FIRST}\left(\mathrm{T}^{\prime}\right)=\left\{{ }^{*}, \varepsilon\right\}$
- $\operatorname{FIRST}\left(\mathrm{E}^{\prime}\right)=\{+, \varepsilon\}$

