Lecture 5: LR Parsing

CS 540
George Mason University

Static Analysis - Parsing

LL vs. LR

- LR (shift reduce) is more powerful than LL (predictive parsing)
- Can detect a syntactic error as soon as possible.
- LR is difficult to do by hand (unlike LL)

LR(k) Parsing - Bottom Up

- Construct parse tree from leaves, 'reducing' the string to the start symbol (and a single tree)
- During parse, we have a 'forest' of trees
- Shift-reduce parsing
- 'Shift' a new input symbol
- 'Reduce' a group of symbols to a single nonterminal
- Choice is made using the k lookaheads
- LR(1)

Example

- Rightmost derivation:

LR parsing corresponds to the rightmost derivation in reverse.

CS 540 Spring 2009 GMU

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$

Remaining input: abbcde

Shift Reduce Parsing

$\mathrm{S} \rightarrow$ aTRe
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b

Remaining input: bcde

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$

Remaining input: bcde

Rightmost derivation:

$$
\begin{aligned}
S & \Rightarrow \text { aTRe } \\
& \Rightarrow \text { aTde } \\
& \Rightarrow \text { aTbcde } \\
& \Rightarrow \text { abbcde }
\end{aligned}
$$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c

Remaining input: de

Rightmost derivation:

S	\Rightarrow a TR e
	\Rightarrow aTdle
	\Rightarrow aTb c de
CS 540 Spring 2009 GMU	\Rightarrow ab b c d e

Shift Reduce Parsing

$\mathrm{S} \rightarrow$ aTRe
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$

Remaining input: de

Rightmost derivation:

	$\mathrm{S} \rightarrow \mathrm{aTRe}$
	\Rightarrow aTde
	\Rightarrow aTbcde
CS 540 Spring 2009 GMU	$\rightarrow \mathbf{a b b c d e}$

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$ \rightarrow Shift d

Remaining input: e

Shift Reduce Parsing

$\mathrm{S} \rightarrow \mathrm{aTRe}$
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\rightarrow Shift d
\rightarrow Reduce $\mathrm{R} \rightarrow$ d

Remaining input: e

Shift Reduce Parsing

$\mathrm{S} \rightarrow$ a TRe
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\Rightarrow Shift d
\rightarrow Reduce $\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shifte

Remaining input:

Shift Reduce Parsing

$\mathrm{S} \rightarrow$ a TRe
$\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}$
$\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift a, Shift b
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{b}$
\rightarrow Shift b, Shift c
\rightarrow Reduce $\mathrm{T} \rightarrow \mathrm{Tbc}$
\rightarrow Shift d
\rightarrow Reduce $\mathrm{R} \rightarrow \mathrm{d}$
\rightarrow Shift e
\rightarrow Reduce $\mathrm{S} \rightarrow$ a TRe

Remaining input:

S	\Rightarrow a TR e
	\Rightarrow a T d e
CS 540 Spring 2009 GMU	\Rightarrow a T b c d e
	\Rightarrow a b b c d e

LR Parsing

- Data Structures:
- Stack - contains symbol/state pairs. The state on top of stack summarizes the information below.
- Tables:
- Action: state x $\Sigma \rightarrow$ reduce/shift/accept/error
- Goto: state $\times \mathrm{V}_{\mathrm{n}} \rightarrow$ state

Example LR Table

State	a	b	c	d	e	S	S	T	R
0	s1								
1		s3						2	
2		s5		s6					4
3		r3		r3					
4					s7				
5			s8						
6					r4				
7						acc			
8		r2		r2					

1: $\mathrm{S} \rightarrow$ a TRe 2: $\mathrm{T} \rightarrow \mathrm{Tbc}$ 3: $\mathrm{T} \rightarrow \mathrm{b}$
4: $\mathrm{R} \rightarrow \mathrm{d}$

Action table Goto table
s means shift to
to some state
r means reduce by
CS 540 Spring 2009 GMU some production

Algorithm: LR(1)

```
push($,0); /* always pushing a symbol/state pair */
lookahead = yylex();
loop
    s = top(); /*always a state */
    if action[s,lookahead] = shift s'
        push(lookahead,s'); lookahead = yylex();
    else if action[s,lookahead] = reduce A }->
        pop size of }\beta\mathrm{ pairs
        s' = state on top of stack
        push(A,goto[s',A]);
    else if action[s,lookahead] = accept then return
    else error();
end loop;
```


LR Parsing Example 1

Stack	Input	Action
$\$ 0$	a b b c d e \$	s1
	CS 540 Spring 2009 GMU	

LR Parsing Example 1

Stack	Input	Action
$\$ 0$	a b b c d e $\$$	s1
$\$ 0, \mathrm{a} 1$	$\mathrm{~b} \mathrm{~b} \mathrm{c} \mathrm{d} \mathrm{e} \$$	s 3

LR Parsing Example 1

Stack	Input	Action
$\$ 0$	$\mathrm{a} \mathrm{b} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \$$	s 1
$\$ 0, \mathrm{a} 1$	$\mathrm{~b} \mathrm{~b} \mathrm{c} \mathrm{d} \mathrm{e} \$$	s 3
$\$ 0, \mathrm{a} 1, \mathrm{~b} 3$	$\mathrm{~b} \mathrm{c} \mathrm{de} \$$	$\mathrm{r} 3(\mathrm{~T} \rightarrow \mathrm{~b})$

LR Parsing Example 1

Stack	Input	Action
$\$ 0$	$\mathrm{ab} \mathrm{b} \mathrm{c} \mathrm{de} \$$	s 1
$\$ 0, \mathrm{a} 1$	$\mathrm{~b} \mathrm{~b} \mathrm{c} \mathrm{d} \mathrm{e} \$$	s 3
$\$ 0, \mathrm{a} 1, \mathrm{~b} 3$	$\mathrm{~b} \mathrm{c} \mathrm{de} \$$	$\mathrm{r} 3(\mathrm{~T} \rightarrow \mathrm{~b})$
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2$	$\mathrm{~b} \mathrm{c} \mathrm{de} \$$	s 5
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2, \mathrm{~b} 5$	$\mathrm{c} \mathrm{d} \mathrm{e} \$$	s 8
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2, \mathrm{~b} 5, \mathrm{c} 8$	$\mathrm{~d} \mathrm{e} \$$	$\mathrm{r} 2(\mathrm{~T} \rightarrow \mathrm{~T} \mathrm{~b} \mathrm{c})$
$\operatorname{goto}(\mathrm{T}, 1)=2$		

LR Parsing Example 1

Stack	Input	Action
$\$ 0$	$\mathrm{a} \mathrm{b} \mathrm{b} \mathrm{c} \mathrm{d} \mathrm{e} \$$	s 1
$\$ 0, \mathrm{a} 1$	$\mathrm{~b} \mathrm{~b} \mathrm{c} \mathrm{d} \mathrm{e} \$$	s 3
$\$ 0, \mathrm{a} 1, \mathrm{~b} 3$	$\mathrm{~b} \mathrm{c} \mathrm{de} \$$	$\mathrm{r} 3(\mathrm{~T} \rightarrow \mathrm{~b})$
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2$	$\mathrm{~b} \mathrm{c} \mathrm{de} \$$	s 5
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2, \mathrm{~b} 5$	$\mathrm{c} \mathrm{d} \mathrm{e} \$$	s 8
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2, \mathrm{~b} 5, \mathrm{c} 8$	$\mathrm{~d} \mathrm{e} \$$	$\mathrm{r} 2(\mathrm{~T} \rightarrow \mathrm{~T} \mathrm{~b} \mathrm{c})$
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2$	$\mathrm{~d} \mathrm{e} \$$	s 6
$\$ 0, \mathrm{a} 1, \mathrm{~T} 2, \mathrm{~d} 6$	$\mathrm{e} \$$	$\mathrm{r} 4(\mathrm{R} \rightarrow \mathrm{d})$

LR Parsing Example 1

Stack	Input	Action
\$0	abbcde \$	s1
\$0,a1	bbcde \$	s3
\$0,a1,b3	bcde \$	r3 ($\mathrm{T} \rightarrow \mathrm{b}$)
\$0,a1,T2	bcde \$	s5
\$0,a1,T2,b5	c de \$	s8
\$0,a1,T2,b5,c8	de \$	$\mathrm{r} 2(\mathrm{~T} \rightarrow \mathrm{Tbc})$
\$0,a1,T2	de \$	s6
\$0,a1,T2,d6	e \$	r4 (R \rightarrow d)
\$0,a1,T2,R4	e \$	s7
\$0,a1,T2,R4,e7	\$	accept!
$=4$		

LR Parse Stack

- During LR parsing, there is always a 'forest' of trees.
- Parse stack holds root of each of these trees:
- For example, that stack $\$ 0, \mathrm{a} 1, \mathrm{~T} 2, \mathrm{~b} 5, \mathrm{c} 8$
represents the corresponding forest

The next stack: $\$ 0, \mathrm{a} 1, \mathrm{~T} 2$

Later, we have \$0,a1,T2,R6,e7

Where does the table come from?

Handle - "a substring that matches the right side of a production and whose reduction to the non-terminal represents one step along the reverse of a rightmost derivation"
Using the grammar, want to create a DFA to find handles.

SLR parsing

- Simplest LR algorithm
- Provide an understanding of
- the basic mechanics of shift/reduce parsing
- source of shift/reduce and reduce/reduce conflicts
- There are better (more powerful) algorithms (LALR, LR) but we won't study them here.

Generating SLR parse tables

- Augmented grammar: grammar with new start symbol and production $S^{\prime} \rightarrow \mathrm{S}$ where S is old start symbol.
- Augmentation only required if there is no single production to signal the end.
- Construct $C=\{\ldots\}$ the $\mathbf{L R}(0)$ items
- Construct Action table for state i of parser:
- All undefined entries are error

LR(0) items

- Canonical $\operatorname{LR}(0)$ collections are the basis for constructing SLR (simple LR) parsers
- Defn: LR(0) item of a grammar G is a production of G with a dot at some point on the right side.
- A \rightarrow X Y Z yields four different $\operatorname{LR}(0)$ items:
$-\mathrm{A} \rightarrow$. XYZ
$-\mathrm{A} \rightarrow \mathrm{X} . \mathrm{YZ}$
$-\mathrm{A} \rightarrow \mathrm{XY} . \mathrm{Z}$
$-\mathrm{A} \rightarrow \mathrm{XYZ}$.
- $\mathrm{A} \rightarrow \varepsilon$ yields one item
$-\mathrm{A} \rightarrow$.

Closure(I) function

Closure(I) where I is a set of $\operatorname{LR}(0)$ items $=$

- Every item in I (kernel) and
- If $\mathrm{A} \rightarrow \alpha \cdot \mathrm{B} \beta$ in closure(I) and $\mathrm{B} \rightarrow \gamma$ is a production, add $\mathrm{B} \rightarrow . \gamma$ to closure(I) (if not already there).
- Keep applying this rule until no more items can be added.

Closure Example

$$
\begin{aligned}
& E^{\prime} \rightarrow E \\
& E \rightarrow E+T \mid T \\
& T \rightarrow T^{*} F \mid F \\
& F \rightarrow(E) \mid \text { id }
\end{aligned}
$$

$\operatorname{Closure}(\{\mathrm{T} \rightarrow \mathrm{T} * . \mathrm{F}\})=\{\mathrm{T} \rightarrow \mathrm{T} * . \mathrm{F}, \mathrm{F} \rightarrow .(\mathrm{E}), \mathrm{F} \rightarrow . \mathrm{id}\}$
$\operatorname{Closure}(\{\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}, \mathrm{F} \rightarrow . \mathrm{id}\})=\{\mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}, \mathrm{F} \rightarrow . \mathrm{id}\}$

Closure Example

$$
\begin{aligned}
& E^{\prime} \rightarrow E \\
& \mathrm{E} \rightarrow \mathrm{E}+\mathrm{T} \mid \mathrm{T} \\
& \mathrm{~T} \rightarrow \mathrm{~T}^{*} \mathrm{~F} \mid \mathrm{F} \\
& \mathrm{~F} \rightarrow(\mathrm{E}) \mid \mathrm{id}
\end{aligned}
$$

Closure $(\{\mathrm{F} \rightarrow(\mathrm{E})\}$

$$
\begin{aligned}
= & \{\mathrm{F} \rightarrow(. \mathrm{E}), \mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \cdot \mathrm{~T}\} \\
= & \{\mathrm{F} \rightarrow(. \mathrm{E}), \mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \cdot \mathrm{~T}, \mathrm{~T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F}, \mathrm{~T} \rightarrow \cdot \mathrm{~F}\} \\
= & \{\mathrm{F} \rightarrow(\cdot \mathrm{E}), \mathrm{E} \rightarrow \cdot \mathrm{E}+\mathrm{T}, \mathrm{E} \rightarrow \cdot \mathrm{~T}, \mathrm{~T} \rightarrow \cdot \mathrm{~T} * \mathrm{~F}, \mathrm{~T} \rightarrow \cdot \mathrm{~F}, \\
& \mathrm{F} \rightarrow \cdot \mathrm{Id}, \mathrm{~F} \rightarrow \cdot(\mathrm{E})\}
\end{aligned}
$$

Goto function

Goto(I, X), where I is a set of items and X is a grammar symbol, is the closure $(A \rightarrow \alpha X . \beta$) where $\mathrm{A} \rightarrow \alpha . \mathrm{X} \beta$ is in I .

```
Ex: \(\operatorname{Goto}\left(\left\{\mathrm{E}^{\prime} \rightarrow \mathrm{E} ., \mathrm{E} \rightarrow \mathrm{E} .+\mathrm{T}\right\},+\right)\)
    \(=\operatorname{closure}(\{\mathrm{E} \rightarrow \mathrm{E}+. \mathrm{T}\})\)
    \(=\{\mathrm{E} \rightarrow \mathrm{E}+. \mathrm{T}, \mathrm{T} \rightarrow . \mathrm{T} * \mathrm{~F}, \mathrm{~T} \rightarrow . \mathrm{F}, \mathrm{F} \rightarrow . \mathrm{id}\),
    \(\mathrm{F} \rightarrow\). ( E\()\}\)
```


Goto function

- $\operatorname{Goto}(\{\mathrm{T} \rightarrow \mathrm{T} * . \mathrm{F}, \mathrm{T} \rightarrow . \mathrm{F}\}, \mathrm{F})$

$$
\begin{aligned}
& =\operatorname{closure}(\{\mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} ., \mathrm{T} \rightarrow \mathrm{~F} \cdot\}) \\
& =\{\mathrm{T} \rightarrow \mathrm{~T} * \mathrm{~F} ., \mathrm{T} \rightarrow \mathrm{~F} .\}
\end{aligned}
$$

- Goto($\left\{\mathrm{E}^{\prime} \rightarrow \mathrm{E} ., \mathrm{E} \rightarrow \mathrm{E}+. \mathrm{T}\right\},+$)
$=\operatorname{closure}(\varnothing)=\varnothing$
since + does not occur before the. symbol

Algorithm: Finding canonical collection

$$
\mathrm{C}=\left\{\mathrm{I}_{0}, \mathrm{I}_{1}, \ldots, \mathrm{I}_{\mathrm{n}}\right\} \text { for grammar } \mathrm{G}
$$

- $\mathrm{C}=\left\{\operatorname{closure}\left(\left\{\mathrm{S}^{\prime} \rightarrow . \mathrm{S}\right\}\right)\right\}$ for start symbol S^{\prime}
- Repeat
- For each I_{k} in C and grammar symbol X such that $\operatorname{Goto}\left(\mathrm{I}_{\mathrm{k}}, \mathrm{X}\right)$ is not empty and not in C
- Add $\operatorname{Goto}\left(\mathrm{I}_{\mathrm{k}}, \mathrm{X}\right)$ to C

Example 1

Grammar: $\mathrm{S} \rightarrow$ a T Re, $\mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}, \mathrm{R} \rightarrow \mathrm{d}$ $\mathrm{I}_{0}: \mathrm{S} \rightarrow$.aTRe $\operatorname{Goto}(\{\mathrm{S} \rightarrow$.aTRe $\}, \mathrm{a})=\mathrm{I}_{1}$
$\mathrm{I}_{1}: \mathrm{S} \rightarrow \mathrm{a} . \mathrm{TRe} \backslash \operatorname{Goto}(\{\mathrm{S} \rightarrow \mathrm{a} . \mathrm{TRe}, \mathrm{T} \rightarrow$. Tbc $\}, \mathrm{T})$ $\mathrm{T} \rightarrow$. $\mathrm{Tbc} \quad=\mathrm{I}_{2}$ $\mathrm{T} \rightarrow . \mathrm{b} \quad \operatorname{Goto}(\{\mathrm{T} \rightarrow . \mathrm{b}\}, \mathrm{b})=\mathrm{I}_{3}$
$\mathrm{I}_{2}: \mathrm{S} \rightarrow$ aT.Re goto 4
$\mathrm{T} \rightarrow \mathrm{T} . \mathrm{bc}$ goto 5
$\mathrm{R} \rightarrow$. d goto 6

kernel of each item set is in blue

Example 1

Grammar: $\mathrm{S} \rightarrow \mathrm{aTRe}, \mathrm{T} \rightarrow \mathrm{Tbc} \mid \mathrm{b}, \mathrm{R} \rightarrow \mathrm{d}$ $\mathrm{I}_{3}: \mathrm{T} \rightarrow \mathrm{b}$. reduce
$\mathrm{I}_{4}: \mathrm{S} \rightarrow$ aTR.e goto state 7
$\mathrm{I}_{5}: \mathrm{T} \rightarrow \mathrm{T}$ b.c goto state 8
$\mathrm{I}_{6}: \mathrm{R} \rightarrow \mathrm{d}$. reduce
$\mathrm{I}_{7}: \mathrm{S} \rightarrow$ aTRe. reduce
$\mathrm{I}_{8}: \mathrm{T} \rightarrow \mathrm{Tbc} . \quad$ reduce

Algorithm: Canonical sets

```
state = 0; max_state = 1;
kernel[0] = [S' }->\mathrm{ . S]
loop
    c = closure(kernel[state]);
    for t in c, where all productions are form A }->\alpha,B
    if exists k<= state where t = kernel[k] then goto(state,B)=k;
    else
        kernel[max_state] = goto(state,B)=t;
        max_state++;
    state++;
until state+1 = max_state;
```


Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{A} \mathrm{S}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA}| \mathrm{c}$

$$
\begin{gathered}
\mathrm{I}_{0}: \mathrm{S}^{\prime} \rightarrow . \mathrm{S} \\
\mathrm{~S} \rightarrow . \mathrm{A} \mathrm{~S} \\
\mathrm{~S} \rightarrow . \mathrm{b} \\
\mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} \\
\mathrm{~A} \rightarrow . \mathrm{c} \\
\mathrm{I}_{1}: \mathrm{S}^{\prime} \rightarrow \mathrm{S} \cdot \\
\mathrm{~A} \rightarrow \mathrm{~S} . \mathrm{A} \\
\mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} \\
\mathrm{~A} \rightarrow . \mathrm{c} \\
\mathrm{~S} \rightarrow . \mathrm{A} \mathrm{~S} \\
\mathrm{~S} \rightarrow . \mathrm{b}
\end{gathered}
$$

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{A} \mathrm{S}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA}| \mathrm{c}$

$$
\begin{gathered}
\mathrm{I}_{2}: \mathrm{S} \rightarrow \mathrm{~A} . \mathrm{S} \\
\mathrm{~S} \rightarrow . \mathrm{AS} \\
\mathrm{~S} \rightarrow . \mathrm{b} \\
\mathrm{~A} \rightarrow . \mathrm{SA} \\
\mathrm{~A} \rightarrow . \mathrm{c} \\
\mathrm{I}_{3}: \mathrm{A} \rightarrow \mathrm{c} . \\
\mathrm{I}_{4}: \mathrm{S} \rightarrow \mathrm{~b} .
\end{gathered}
$$

So far:

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{A} \mathrm{S}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA}| \mathrm{c}$

$$
\begin{array}{lll}
\mathrm{I}_{5}: \mathrm{S} \rightarrow \mathrm{~A} . \mathrm{S} & \mathrm{I}_{6}: \mathrm{A} \rightarrow \mathrm{~S} . \mathrm{A} & \mathrm{I}_{7}: \mathrm{S} \rightarrow \mathrm{~A} \mathrm{~S} . \\
\mathrm{A} \rightarrow \mathrm{~S} \mathrm{~A} . & \mathrm{A} \rightarrow . \mathrm{S} \mathrm{~A} & \mathrm{~A} \rightarrow \mathrm{~S} . \mathrm{A} \\
\mathrm{~S} \rightarrow . \mathrm{AS} & \mathrm{~A} \rightarrow . \mathrm{c} & \mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} \\
\mathrm{~S} \rightarrow . \mathrm{b} & \mathrm{~S} \rightarrow . \mathrm{A} \mathrm{~S} & \mathrm{~A} \rightarrow . \mathrm{c} \\
\mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} & \mathrm{~S} \rightarrow . \mathrm{b} & \mathrm{~S} \rightarrow . \mathrm{AS} \\
\mathrm{~A} \rightarrow . \mathrm{c} & & \mathrm{~S} \rightarrow . \mathrm{b}
\end{array}
$$

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{A}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA}| \mathrm{c}$

$$
\begin{aligned}
& \mathrm{I}_{0}: \mathrm{S}^{\prime} \rightarrow \mathrm{S} \\
& \mathrm{I}_{1}: \mathrm{S}^{\prime} \rightarrow \mathrm{S} \cdot \\
& \mathrm{~A} \rightarrow \mathrm{~S} \cdot \mathrm{~A} \\
& \mathrm{I}_{2}: \mathrm{S} \rightarrow \mathrm{~A} \cdot \mathrm{~S} \\
& \mathrm{I}_{3}: \mathrm{A} \rightarrow \mathrm{c} \cdot \\
& \mathrm{I}_{4}: \mathrm{S} \rightarrow \mathrm{~b} \cdot \\
& \mathrm{I}_{5}: \mathrm{S} \rightarrow \mathrm{~A} \cdot \mathrm{~S} \\
& \mathrm{~A} \rightarrow \mathrm{~S} \mathrm{A.} \\
& \mathrm{I}_{6}: \mathrm{A} \rightarrow \mathrm{~S} \cdot \mathrm{~A} \\
& \mathrm{I}_{7}: \mathrm{S} \rightarrow \mathrm{~A} \mathrm{S.} \\
& \mathrm{~A} \rightarrow \mathrm{~S} . \mathrm{A}
\end{aligned}
$$

So far:

I5--I7 also have connections to I3 and I4

Generating SLR parse tables

- Construct $\mathrm{C}=\{\ldots\}$ the $\operatorname{LR}(0)$ items as in previous slides
- Action table for state \boldsymbol{i} of parser:
- If $[A \rightarrow \alpha, a \beta]$ in $\mathbf{I}_{\mathbf{i}}, \boldsymbol{\operatorname { g o t o }}\left(\mathbf{I}_{\mathrm{i}}, \mathbf{a}\right)=\mathbf{I}_{\mathrm{j}}$ then action $[i, a]=\operatorname{shift} j$
- If $[A \rightarrow \alpha,, b]$ in I_{i}, where A is not S^{\prime}, then action $[\mathrm{i}, \mathrm{a}]=$ reduce $A \rightarrow \alpha$ for all a in FOLLOW(A)
- If $\left[\mathbf{S}^{\prime} \rightarrow \mathbf{S}, \$\right.$] in $\mathbf{I}_{\mathbf{i}}$, set action $[\mathbf{i}, \$]=$ accept

All undefined entries are error

- Goto Table for state i of parser:
- If $[A \rightarrow \alpha . B]$ in I_{i} and $\operatorname{goto}\left(I_{i}, B\right)=I_{j}$ then goto $[i, B]=\mathbf{j}$

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{AS}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA}| \mathrm{c}$

	First	Follow
S^{\prime}	cb	$\$$
S	cb	$\$ \mathrm{cb}$
A	cb	cb

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{A} S$ $\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA} \mid \mathrm{c}$		State	C	b	\$	S	A
$\mathrm{I}_{0}: \mathrm{S}^{\prime} \rightarrow$. S	goto 1	0	s4	s3		1	2
$\mathrm{S} \rightarrow$. A S	goto 2	1	s4	s3	acc	6	5
$\mathrm{S} \rightarrow$. b	goto 3	2					
$\mathrm{A} \rightarrow$. SA	goto 1	3					
$\mathrm{I}_{1}: \mathrm{S}^{\prime} \rightarrow \mathrm{S}$.	reduce	4					
$\mathrm{A} \rightarrow \mathrm{S} . \mathrm{A}$	goto 5	5					
$\mathrm{A} \rightarrow$. SA	goto 6	6					
$\mathrm{A} \rightarrow$. c	goto 4						
$\mathrm{S} \rightarrow$. A S	goto 5	7					
$\mathrm{S} \rightarrow$. b	goto 3	8					
	CS 540 Spr	2009 GMU					45

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{AS}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{S} A| \mathrm{c}$

$$
\begin{gathered}
\mathrm{I}_{2}: \mathrm{S} \rightarrow \mathrm{~A} \cdot \mathrm{~S} \\
\mathrm{~S} \rightarrow . \mathrm{A} \mathrm{~S} \\
\mathrm{~S} \rightarrow . \mathrm{b} \\
\mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} \\
\mathrm{~A} \rightarrow . \mathrm{A} \\
\mathrm{I}_{3}: \mathrm{S} \rightarrow \mathrm{~b} . \\
\mathrm{I}_{4}: \mathrm{A} \rightarrow \mathrm{c} .
\end{gathered}
$$

So far:

LR Table for Example 2

State	c	b	$\$$	S	A
0	s 4	s 3		1	2
1	s 4	s 3	acc	6	5
2	s 4	s 3		7	2
3	r 3	r 3	r 3		
4	r 5	r 5			
5					
6					
7					
8					

$$
\begin{aligned}
& \text { 1: } S^{\prime} \rightarrow \mathrm{S} \\
& \text { 2: } \mathrm{S} \rightarrow \mathrm{AS} \\
& \text { 3: } \mathrm{S} \rightarrow \mathrm{~b} \\
& \text { 4: } \mathrm{A} \rightarrow \mathrm{~S} \mathrm{~A} \\
& \text { 5: } \mathrm{A} \rightarrow \mathrm{c}
\end{aligned}
$$

Example 2

Grammar: $\mathrm{S}^{\prime} \rightarrow \mathrm{S}, \mathrm{S} \rightarrow \mathrm{A} \mathrm{S}|\mathrm{b}, \mathrm{A} \rightarrow \mathrm{SA}| \mathrm{c}$

$$
\begin{array}{lll}
\mathrm{I}_{5}: \mathrm{S} \rightarrow \mathrm{~A} . \mathrm{S} & \mathrm{I}_{6}: \mathrm{A} \rightarrow \mathrm{~S} . \mathrm{A} & \mathrm{I}_{7}: \mathrm{S} \rightarrow \mathrm{~A} \mathrm{~S} . \\
\mathrm{A} \rightarrow \mathrm{~S} \mathrm{~A} . & \mathrm{A} \rightarrow . \mathrm{S} \mathrm{~A} & \mathrm{~A} \rightarrow \mathrm{~S} . \mathrm{A} \\
\mathrm{~S} \rightarrow . \mathrm{AS} & \mathrm{~A} \rightarrow . \mathrm{c} & \mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} \\
\mathrm{~S} \rightarrow . \mathrm{b} & \mathrm{~S} \rightarrow . \mathrm{A} \mathrm{~S} & \mathrm{~A} \rightarrow . \mathrm{c} \\
\mathrm{~A} \rightarrow . \mathrm{S} \mathrm{~A} & \mathrm{~S} \rightarrow . \mathrm{b} & \mathrm{~S} \rightarrow . \mathrm{AS} \\
\mathrm{~A} \rightarrow . \mathrm{c} & & \mathrm{~S} \rightarrow . \mathrm{b}
\end{array}
$$

LR Table for Example 2

State	c	\mathbf{b}	\mathbf{S}	S	A
0	s 4	s 3		1	2
1	s 4	s 3	acc	6	5
2	s 4	s 3		7	2
3	r 3	r 3	r 3		
4	r 5	r 5			
5	$\mathrm{~s} 4 / \mathrm{r} 4$	$\mathrm{~s} 3 / \mathrm{r} 4$		7	2
6	s 4	s 3		6	5
7	$\mathrm{~s} 4 / \mathrm{r} 2$	$\mathrm{~s} 3 / \mathrm{r} 2$	r 2	6	5

1: $S^{\prime} \rightarrow \mathrm{S}$
2: $\mathrm{S} \rightarrow \mathrm{AS}$
3: $\mathrm{S} \rightarrow \mathrm{b}$
4: $\mathrm{A} \rightarrow \mathrm{SA}$
5: $\mathrm{A} \rightarrow \mathrm{c}$

LR Conflicts

- Shift/reduce
- When it cannot be determined whether to shift the next symbol or reduce by a production
- Typically, the default is to shift.
- Examples: previous grammar, dangling else
if_stmt \rightarrow if expr then stmt | if expr then stmt else stmt
if exl then
if ex2 then
stmt;
else \leftarrow which 'if' owns this else??

LR Conflicts

- Reduce/reduce
- When it cannot be determined which production to reduce by
- Example: stmt \rightarrow id (expr_list) \leqslant function call expr \rightarrow id (expr_list) \leqslant array (as in Ada)
- Convention: use first production in grammar or use more powerful technique

Error Recovery in LR parsing

Just as with LL, we typically want to discard some part of the input and resume parsing from some 'known' point.

- Search back in the stack for some non-terminal A (how to choose A?) then process input until find token in Follow(A)
- Can also decorate the LR table with error recovery routines tailored to the state and token - more complicated to get right.

