
Lecture 7: Type Systems and
Symbol Tables

CS 540

George Mason University

CS 540 Spring 2009 GMU 2

Static Analysis

Compilers examine code to find semantic
problems.

– Easy: undeclared variables, tag matching
– Difficult: preventing execution errors

Essential Issues:
– Part I: Type checking
– Part II: Scope
– Part III: Symbol tables

Part I: Type Checking

CS 540 Spring 2009 GMU 4

Type Systems
• A type is a set of values and associated operations.
• A type system is a collection of rules for

assigning type expressions to various parts of the
program.
– Impose constraints that help enforce correctness.
– Provide a high-level interface for commonly used

constructs (for example, arrays, records).
– Make it possible to tailor computations to the type,

increasing efficiency (for example, integer vs. real
arithmetic).

– Different languages have different type systems.

CS 540 Spring 2009 GMU 5

Inference Rules - Typechecking

• Static (compile time) and Dynamic (runtime).

• One responsibility of a compiler is to see that all
symbols are used correctly (i.e. consistently with
the type system) to prevent execution errors.

• Strong typing – All expressions are guaranteed to
be type consistent although the type itself is not
always known (may require additional runtime
checking).

CS 540 Spring 2009 GMU 6

What are Execution Errors?
• Trapped errors – errors that cause a computation

to stop immediately
– Division by 0
– Accessing illegal address

• Untrapped errors – errors that can go unnoticed for
a while and then cause arbitrary behavior
– Improperly using legal address (moving past end of

array)
– Jumping to wrong address (jumping to data location)

• A program fragment is safe if it does not cause
untrapped errors to occur.

CS 540 Spring 2009 GMU 7

Typechecking

Input: x * y + f(a,b)

We need to be able to assign types to all expressions
in a program and show that they are all being used
correctly.

E

E + E

E * E

x y

f(a,b)

•Are x, y and f declared?
•Can x and y be multiplied
together?
•What is the return type of
function f?
•Does f have the right number
and type of parameters?
•Can f’s return type be added to
something?

CS 540 Spring 2009 GMU 8

Program Symbols

• User defines symbols with associated
meanings. Must keep information around
about these symbols:
– Is the symbol declared?

– Is the symbol visible at this point?

– Is the symbol used correctly with respect to its
declaration?

CS 540 Spring 2009 GMU 9

Using Syntax Directed Translation
to process symbols

While parsing input program, need to:
• Process declarations for given symbols

– Scope – what are the visible symbols in the current
scope?

– Type – what is the declared type of the symbol?

• Lookup symbols used in program to find current
binding

• Determine the type of the expressions in the
program

CS 540 Spring 2009 GMU 10

Syntax Directed Type Checking

Consider the following simple language
P  D S

D  id: T ; D | 
T  integer | float | array [num] of T | ^T

S  S ; S | id := E

E  int_literal | float_literal | id | E + E | E [E] | E^

How can we typecheck strings in this language?

CS 540 Spring 2009 GMU 11

Example of language:

i: integer; j: integer

i := i + 1;

j := i + 1

P

D ; S

D ; D S ; S

id : T id : T

integer integer

id := E

E + E

id num

id := E

E + E

id num

CS 540 Spring 2009 GMU 12

Processing Declarations

D  id : T ; D {insert(id.name,T.type);}

D  
T  integer {T.type = integer;}

T  float {T.type = float;}

T  array [num] of T1 {T.type = array(T1.type,num); }

T  ^T1 {T.type = pointer(T1.type);}

Put info into
the symbol table

Accumulate information about
the declared type

CS 540 Spring 2009 GMU 13

Can use Trees (or DAGs) to Represent Types

array[25] of array[10]
of ^(integer)

array[100] of ^(float)

array

pointer

integer

pointer

float

array

100

Build data structures while we parse

array

10

25

CS 540 Spring 2009 GMU 14

Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^

P

D S

id : T ; D
I

integer

…

Parse Tree

integer

I

CS 540 Spring 2009 GMU 15

Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^

Parse Tree

integer

array

20

I
A

P

D S

id : T ; D
I

integer

…
id : T ; D

A

array[20] of T

integer

CS 540 Spring 2009 GMU 16

Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^

Parse Tree

integer

pointer

array

array

20

20

I
A
B

P

D S

id : T ; D
I

integer

…
id : T ; D

A

array[20] of T

integer

id : T ; D
B

array[20] of T

^ T



integer

CS 540 Spring 2009 GMU 17

Typechecking Expressions

E  int_literal { E.type := integer; }
E  float_literal { E.type = float; }
E  id { E.type := lookup(id.name); }
E  E1 + E2 { if (E1.type = integer & E2.type = integer)

then E.type = integer;
else if (E1.type = float & E2.type = float)
then E.type = float;
else type_error(); }

E  E1 [E2] { if (E1.type = array of T & E2.type = integer)
then E.type = T; else …}

E  E1^ { if (E1.type = ^T)
then E.type = T; else …} These rules define

a type system for
the language

CS 540 Spring 2009 GMU 18

Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^
P

D S

id := E

E ^

E [E]

id num

E [E]id

integer

pointer

array

array

20

20

I
A
B

CS 540 Spring 2009 GMU 19

Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^
P

D ; S

E [E]

id num

E [E]id

integer

pointer

array

array

20

20

I
A
B

I

B

A

id := E

E ^

CS 540 Spring 2009 GMU 20

Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := A[B[2]]^
P

D ; S

E [E]

id num

E [E]id

integer

pointer

array

array

20

20

I
A
B

I

A

B

id := E

E ^

Type error!

CS 540 Spring 2009 GMU 21

Typechecking Statements

S  S1 ; S1 {if S1.type = void & S1.type = void)

then S.type = void; else error(); }

S  id := E { if lookup(id.name) = E.type

then S.type = void; else error(); }

S  if E then S1 { if E.type = boolean and S1.type = void

then S.type = void; else error();}

In this case, we assume that statements do not have types
(not always the case).

CS 540 Spring 2009 GMU 22

Typechecking Statements

What if statements have types?

S  S1 ; S2 {S.type = S2.type;}
S  id := E { if lookup(id.name) = E.type then

S.type = E.type; else error();
}

S  if E then S1 else S2

{ if (E.type = boolean & S1.type = S2.type) then
S.type = S1.type;
else error();

}

CS 540 Spring 2009 GMU 23

Untyped languages

Single type that contains all values

• Ex:
Lisp – program and data interchangeable

Assembly languages – bit strings

• Checking typically done at runtime

CS 540 Spring 2009 GMU 24

Typed languages

• Variables have nontrivial types which limit
the values that can be held.

• In most typed languages, new types can be
defined using type operators.

• Much of the checking can be done at
compile time!

• Different languages make different
assumptions about type semantics.

CS 540 Spring 2009 GMU 25

Components of a Type System

• Base Types

• Compound/Constructed Types

• Type Equivalence

• Inference Rules (Typechecking)

• …

Different languages make different choices!

CS 540 Spring 2009 GMU 26

Base (built-in) types

• Numbers
– Multiple – integer, floating point

– precision

• Characters

• Booleans

CS 540 Spring 2009 GMU 27

Constructed Types
• Array

• String

• Enumerated types

• Record

• Pointer

• Classes (OO) and inheritance relationships

• Procedure/Functions

• …

CS 540 Spring 2009 GMU 28

Type Equivalence

Two types: Structural and Name
Type A = Bool

Type B = Bool

• In Structural equilivance: Types A and B
match because they are both boolean.

• In Name equilivance: A and B don’t match
because they have different names.

CS 540 Spring 2009 GMU 29

Implementing Structural
Equivalence

To determine whether two types are structurally
equilivant, traverse the types:
boolean equiv(s,t) {

if s and t are same basic type return true
if s = array(s1,s2) and t is array(t1,t2)

return equiv(s1,t1) & equiv(s2,t2)
if s = pointer(s1) and t = pointer(t1)

return equiv(s1,t1)
…
return false;

}

CS 540 Spring 2009 GMU 30

Other Practical Type System
Issues

• Implicit versus explicit type conversions
– Explicit  user indicates (Ada)
– Implicit  built-in (C int/char) -- coercions

• Overloading – meaning based on context
– Built-in
– Extracting meaning – parameters/context

• Objects (inheritance)
• Polymorphism

CS 540 Spring 2009 GMU 31

OO Languages

• Data is organized into classes and sub-classes

• Top level is class of all objects

• Objects at any level inherit the attributes (data,
functions) of objects higher up in the hierarchy.
The subclass has a larger set of properties than the
class. Subclasses can override behavior inherited
from parent classes. (But cannot revise private
data elements from a parent).

CS 540 Spring 2009 GMU 32

class A {
public: A() {cout << "Creating A\n"; }
W() {cout << "W in A\n"; }

};
class B: public A {

public: B() {cout << "Creating B\n"; }
S() {cout << "S in B\n"; }

};
class C: public A {

public: C() {cout << "Creating C\n"; }
Y() {cout << "Y in C\n"; }

};
class D: public C {

public: D() {cout << "Creating D\n"; }
S() {cout << "S in D\n"; }

};

Object

A (W)

B (S) C (Y)

D (S)

CS 540 Spring 2009 GMU 33

The Code: Output:
B b; Creating A

Creating B
D d; Creating A

Creating C
Creating D

b.W(); W in A
b.S(); S in B
d.W(); W in A
d.Y(); Y in C
d.S(); S in D

Object

A (W)

B (S) C (Y)

D (S)

CS 540 Spring 2009 GMU 34

OO Principle of Substitutability

• Subclasses possess all data areas associated with
parent classes

• Subclasses implement (through inheritance) at
least all functionality defined for the parent class

If we have two classes, A and B, such that class B
is a subclass of A (perhaps several times
removed), it should be possible to substitute
instances of class B for instances of class A in
any situation with no observable effect.

CS 540 Spring 2009 GMU 35

Typechecking OO languages

• Without inheritance, the task would be
relatively simple (similar to records)

• Difficulties:
– Method overriding

– When can super/sub types be used? Consider
function f: A  B

• Actual parameter of type A or subtype of A

• Return type B or supertype of B

– Multiple inheritance

CS 540 Spring 2009 GMU 36

Function parameters

• Function parameters make typechecking more
difficult

procedure mlist(lptr: link; procedure p)
while lptr <> nil begin

p(lptr);
lptr = lptrnext;

end
end

CS 540 Spring 2009 GMU 37

Polymorphism
• Functions – statements in body can be executed on

arguments with different type – common in OO languages
because of inheritance

• Ex: Python for determining the length of a list
def size (lis):

if null(lis):
return 0

else:
return size(lis[1:]) + 1;

size([‘sun’,’mon’,’tue’])
size([10,11,12])
size(A)

CS 540 Spring 2009 GMU 38

Type Inferencing
def size (lis):
if null(lis):
return 0

else:
return size(lis[1:])+1;

Goal: determine a type
for size so we
can typecheck the
calls.

Greek symbols are
type variables.

lis

 size

TypeExpression

Fig 6.30 of your text

CS 540 Spring 2009 GMU 39

Type Inferencing
def size (lis):

if null(lis):

return 0

else:

return size(lis[1:])+1;

Built-in language constructs

and functions provide

clues.

Given what we have in

the table, we now know

that list(n) = 

boolnull(lis)

list(n)  boolnull

bool x i x i iif

list(n))lis

 size

TypeExpression

Fig 6.30 of your text

CS 540 Spring 2009 GMU 40

Type Inferencing
def size (lis):

if null(lis):

return 0

else:

return size(lis[1:])+1;

i = int

list(n)lis[1:]

int x int int+

int0

boolnull(lis)

list(n)  boolnull

bool x i x i iif

list(n))lis

 size

TypeExpression

Fig 6.30 of your text

CS 540 Spring 2009 GMU 41

Type Inferencing
def size (lis):
if null(lis):
return 0

else:
return size(lis[1:])+1;

int

All of this tells us that
size: list()  int
(in other words, maps from
anything with type list to
type integer) intif(…)

intsize(lis[1:]) + 1

size(lis[1:])

list(n)lis[1:]

int x int int+

int0,1

boolnull(lis)

list(n)  boolnull

bool x i x i iif

list(n))lis

 size

TypeExpression

Fig 6.30 of your text

CS 540 Spring 2009 GMU 42

Formalizing Type Systems

• Mathematical characterizations of the type
system – Type soundness theorems.

• Requires formalization of language syntax,
static scoping rules and semantics.

• Formalization of type rules

• http://research.microsoft.com/users/luca/Papers/TypeSystems.pdf

Part II: Scope

CS 540 Spring 2009 GMU 44

Scope

In most languages, a complete program will
contain several different namespaces or
scopes.

Different languages have different rules for
namespace definition

CS 540 Spring 2009 GMU 45

Fortran 77 Name Space

f1()
variables
parameters
labels

f2()
variables
parameters
labels

f3()
variables
parameters
labels

common block a

common block b

Global

Global scope holds
procedure names
and common block
names. Procedures
have local variables
parameters, labels
and can import
common blocks

CS 540 Spring 2009 GMU 46

Scheme Name Space

• All objects (built-in
and user-defined)
reside in single global
namespace

• ‘let’ expressions create
nested lexical scopes

Global

map

2

cons

var

f1()
f2()

let

let

let

CS 540 Spring 2009 GMU 47

C Name Space
• Global scope holds

variables and functions

• No function nesting

• Block level scope
introduces variables
and labels

• File level scope with
static variables that are
not visible outside the
file (global otherwise)

Global a,b,c,d,. . .

File scope
static names

x,y,z

File scope
static names

w,x,y
f1() f2()

f3()
variables
parameters
labels

variables

variables, param

Block
Scope
variables
labels

Block scope

Block
scope

CS 540 Spring 2009 GMU 48

Java Name Space

• Limited global name
space with only public
classes

• Fields and methods in a
public class can be public
 visible to classes in
other packages

• Fields and methods in a
class are visible to all
classes in the same
package unless declared
private

• Class variables visible to
all objects of the same
class.

Public Classes

package p1 package p2

package p3

public class c1

class c2

fields: f1,f2
method: m1

locals
method: m2
locals

fields: f3
method: m3

CS 540 Spring 2009 GMU 49

Scope

Each scope maps a set of variables to a set of
meanings.

The scope of a variable declaration is the
part of the program where that variable is
visible.

CS 540 Spring 2009 GMU 50

Referencing Environment

The referencing environment at a particular
location in source code is the set of variables that
are visible at that point.

• A variable is local to a procedure if the
declaration occurs in that procedure.

• A variable is non-local to a procedure if it is
visible inside the procedure but is not declared
inside that procedure.

• A variable is global if it occurs in the outermost
scope (special case of non-local).

CS 540 Spring 2009 GMU 51

Types of Scoping

• Static – scope of a variable determined from
the source code.
– “Most Closely Nested”

– Used by most languages

• Dynamic – current call tree determines the
relevant declaration of a variable use.

CS 540 Spring 2009 GMU 52

Static: Most Closely Nested Rule

The scope of a particular declaration is given by the
most closely nested rule

• The scope of a variable declared in block B,
includes B.

• If x is not declared in block B, then an occurrence
of x in B is in the scope of a declaration of x in
some enclosing block A, such that A has a
declaration of x and A is more closely nested
around B than any other block with a declaration
of x.

CS 540 Spring 2009 GMU 53

Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible
at this point
(globally)?

CS 540 Spring 2009 GMU 54

Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible
at this point
(sub1)?

CS 540 Spring 2009 GMU 55

Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible
at this point
(sub3)?

CS 540 Spring 2009 GMU 56

Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible
at this point
(sub2)?

CS 540 Spring 2009 GMU 57

Dynamic Scope

• Based on calling sequences of program
units, not their textual layout (temporal
versus spatial)

• References to variables are connected to
declarations by searching the chain of
subprogram calls (runtime stack) that forced
execution to this point

CS 540 Spring 2009 GMU 58

Scope Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...

...
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

Which x??

CS 540 Spring 2009 GMU 59

Scope Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...

...
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

For static scoping,
it is main’s x

CS 540 Spring 2009 GMU 60

Scope Example

• In a dynamic-scoped language, the
referencing environment is the local
variables plus all visible variables in all
active subprograms.

• A subprogram is active if its execution has
begun but has not yet terminated.

CS 540 Spring 2009 GMU 61

Scope Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...

...
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

For dynamic scoping,
it is sub1’s x

MAIN
(x)

SUB1
(x)

SUB2

CS 540 Spring 2009 GMU 62

Dynamic Scoping

• Evaluation of Dynamic Scoping:
– Advantage: convenience (easy to implement)

– Disadvantage: poor readability, unbounded
search time

Part III: Symbol Tables

CS 540 Spring 2009 GMU 64

Symbol Table

• Primary data structure inside a compiler.
• Stores information about the symbols in the input program

including:
– Type (or class)
– Size (if not implied by type)
– Scope

• Scope represented explicitly or implicitly (based on table
structure).

• Classes can also be represented by structure – one
difference = information about classes must persist after
have left scope.

• Used in all phases of the compiler.

CS 540 Spring 2009 GMU 65

Symbol Table Object

Symbol table functions are called during
parsing:

• Insert(x) –A new symbol is defined.

• Delete(x) –The lifetime of a symbol ends.

• Lookup(x) –A symbol is used.

• EnterScope(s) – A new scope is entered.

• ExitScope(s) – A scope is left.

CS 540 Spring 2009 GMU 66

Scope and Parsing

func_decl : FUNCTION NAME {EnterScope($2);}
parameter decls stmts ; {ExitScope($2); }

decl : name ‘:’ type {Insert($1,$3); }

…
statements: id := expression {lookup($1);}
…
expression: …

id {lookup($1);}

Note: This is a greatly simplified grammar including only the symbol table
relevant productions.

CS 540 Spring 2009 GMU 67

Symbol Table Implementation

• Variety of choices, including arrays, lists,
trees, heaps, hash tables, …

• Different structures may be used for local
tables versus tables representing scope.

CS 540 Spring 2009 GMU 68

Example Implementation

• Local level – within a scope, use a table or
linked list.

• Global – each scope is represented as a
structure that points at –
– Its local symbols

– The scopes that it encloses

– Its enclosing scope } A tree?

CS 540 Spring 2009 GMU 69

Implementing the table

• Need variable CS for current scope

• EnterScope – creates a new record that is a child of the
current scope. This scope has new empty local table. Set
CS to this record.

• ExitScope – set CS to parent of current scope. Update
tables.

• Insert – add a new entry to the local table of CS

• Lookup – Search local table of CS. If not found, check the
enclosing scope. Continue checking enclosing scopes until
found or until run out of scopes.

CS 540 Spring 2009 GMU 70

Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

sub2 sub3

a,b,c,
sub1

a,d,
sub2,
sub3

c,d
a

CS 540 Spring 2009 GMU 71

Implementing the table
We can use a stack instead!!!

• EnterScope – creates a new record that is a child of the
current scope. This scope has new empty local table. Set
CS to this record  PUSH

• ExitScope – set CS to parent of current scope. Update
tables  POP

• Insert – add a new entry to the local table of CS

• Lookup – Search local table of CS. If not found, check the
enclosing scope. Continue checking enclosing scopes until
found or until run out of scopes.

CS 540 Spring 2009 GMU 72

Example Program – As we compile …

Program main;
a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main
a,b,c

CS 540 Spring 2009 GMU 73

Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

a,b,c,
sub1

a,d

CS 540 Spring 2009 GMU 74

Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

sub2

a,b,c,
sub1

a,d
sub2

c,d

CS 540 Spring 2009 GMU 75

Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

sub3

a,b,c,
sub1

a,d
sub2,
sub3

a

CS 540 Spring 2009 GMU 76

Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

a,b,c,
sub1

a,d,
sub2,
sub3

CS 540 Spring 2009 GMU 77

Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main a,b,c,
sub1

