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Static Analysis

Compilers examine code to find semantic 
problems.

– Easy:  undeclared variables, tag matching
– Difficult: preventing execution errors

Essential Issues:
– Part I: Type checking
– Part II: Scope
– Part III: Symbol tables



Part I: Type Checking



CS 540 Spring 2009 GMU 4

Type Systems
• A type is a set of values and associated operations.
• A type system is a collection of rules for 

assigning type expressions to various parts of the 
program.
– Impose constraints that help enforce correctness.
– Provide a high-level interface for commonly used 

constructs (for example, arrays, records).
– Make it possible to tailor computations to the type, 

increasing efficiency (for example, integer vs. real 
arithmetic).

– Different languages have different type systems.
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Inference Rules - Typechecking

• Static (compile time) and Dynamic (runtime).

• One responsibility of a compiler is to see that all 
symbols are used correctly (i.e. consistently with 
the type system) to prevent execution errors.

• Strong typing – All expressions are guaranteed to 
be type consistent although the type itself is not 
always known (may require additional runtime 
checking).
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What are Execution Errors?
• Trapped errors – errors that cause a computation 

to stop immediately
– Division by 0
– Accessing illegal address

• Untrapped errors – errors that can go unnoticed for 
a while and then cause arbitrary behavior
– Improperly using legal address (moving past end of 

array)
– Jumping to wrong address (jumping to data location)

• A program fragment is safe if it does not cause 
untrapped errors to occur.
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Typechecking

Input: x * y + f(a,b)

We need to be able to assign types to all expressions 
in a program and show that they are all being used 
correctly.

E

E   + E

E   * E

x             y

f(a,b)

•Are x, y and f declared?
•Can x and y be multiplied 
together?  
•What is the return type of 
function f?
•Does f have the right number 
and type of parameters?
•Can f’s return type be added to 
something?
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Program Symbols

• User defines symbols with associated 
meanings.  Must keep information around 
about these symbols:
– Is the symbol declared?

– Is the symbol visible at this point?

– Is the symbol used correctly with respect to its 
declaration?
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Using Syntax Directed Translation
to process symbols

While parsing input program, need to:
• Process declarations for given symbols

– Scope – what are the visible symbols in the current 
scope?

– Type – what is the declared type of the symbol?

• Lookup symbols used in program to find current 
binding

• Determine the type of the expressions in the 
program
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Syntax Directed Type Checking

Consider the following simple language
P  D  S

D  id: T ; D |  
T  integer | float | array [ num ] of T | ^T 

S  S ; S | id := E

E  int_literal | float_literal | id | E + E | E [ E ] | E^ 

How can we typecheck strings in this language?
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Example of language:

i: integer; j: integer

i := i + 1;

j := i + 1

P

D      ;       S

D    ;     D S    ;     S

id : T id : T

integer    integer

id := E

E + E

id num

id := E

E + E

id num
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Processing Declarations

D  id : T  ; D                   {insert(id.name,T.type);}

D  
T  integer                    {T.type = integer;}

T  float {T.type = float;}

T  array [ num ] of T1 {T.type = array(T1.type,num); }

T  ^T1 {T.type = pointer(T1.type);}

Put info into 
the symbol table

Accumulate information about 
the declared type
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Can use Trees (or DAGs)  to Represent Types

array[25]  of array[10] 
of ^(integer)

array[100] of ^(float)

array

pointer

integer

pointer

float

array

100

Build data structures while we parse

array

10

25
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Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^

P

D                                        S

id    :      T     ;         D
I

integer

…

Parse Tree

integer

I
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Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^

Parse Tree

integer

array

20

I
A

P

D                                        S

id    :      T     ;         D
I

integer

…
id    :      T     ;         D

A

array[20] of T

integer
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Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^

Parse Tree

integer

pointer

array

array

20

20

I
A
B

P

D                                        S

id    :      T     ;         D
I

integer

…
id    :      T     ;         D

A

array[20] of T

integer

id    :      T     ;         D
B

array[20] of T

^  T



integer
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Typechecking Expressions

E  int_literal { E.type := integer; }
E  float_literal { E.type = float; }
E  id               { E.type := lookup(id.name); }
E  E1 + E2 { if (E1.type = integer & E2.type = integer)

then  E.type = integer; 
else if (E1.type = float & E2.type = float)
then  E.type = float; 
else type_error(); }

E  E1 [ E2 ]     { if (E1.type = array of T & E2.type = integer)                     
then  E.type = T; else …}

E  E1^             { if (E1.type = ^T)                     
then  E.type = T; else …} These rules define 

a type system for 
the language
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Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^
P

D                   S

id   :=   E

E    ^

E   [   E   ]

id num

E   [   E   ]id

integer

pointer

array

array

20

20

I
A
B
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Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := B[A[2]]^
P

D        ;          S

E   [   E   ]

id num

E   [   E   ]id

integer

pointer

array

array

20

20

I
A
B

I

B

A

id   :=   E

E    ^
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Example
I: integer;

A: array[20] of integer;

B: array[20] of ^integer;

I := A[B[2]]^
P

D        ;          S

E   [   E   ]

id num

E   [   E   ]id

integer

pointer

array

array

20

20

I
A
B

I

A

B

id   :=   E

E    ^

Type error!
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Typechecking Statements

S  S1 ; S1 {if S1.type = void &  S1.type = void) 

then S.type = void; else error(); }        

S  id := E       { if lookup(id.name) = E.type

then S.type  = void; else error(); }

S  if E then S1 { if E.type = boolean and S1.type = void 

then S.type = void; else error();}

In this case, we assume that  statements do not have types 
(not always the case).
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Typechecking Statements

What if statements have types?

S  S1 ; S2 {S.type = S2.type;}
S  id := E       { if lookup(id.name) = E.type then

S.type  = E.type; else error(); 
}

S  if E then S1 else S2

{ if (E.type = boolean & S1.type = S2.type) then 
S.type = S1.type; 
else error();

}
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Untyped languages

Single type that contains all values

• Ex:
Lisp – program and data interchangeable

Assembly languages – bit strings

• Checking typically done at runtime
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Typed languages

• Variables have nontrivial types which limit 
the values that can be held.

• In most typed languages, new types can be 
defined using type operators.

• Much of the checking can be done at 
compile time!

• Different languages make different 
assumptions about type semantics.
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Components of a Type System

• Base Types

• Compound/Constructed Types

• Type Equivalence

• Inference Rules (Typechecking)

• …

Different languages make different choices!
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Base (built-in) types

• Numbers
– Multiple – integer, floating point

– precision

• Characters

• Booleans
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Constructed Types
• Array

• String

• Enumerated types

• Record

• Pointer

• Classes (OO) and inheritance relationships

• Procedure/Functions

• …
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Type Equivalence

Two types: Structural and Name
Type A = Bool

Type B = Bool

• In Structural equilivance:  Types A and B 
match because they are both boolean. 

• In Name equilivance:  A and B don’t match 
because they have different names.
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Implementing Structural
Equivalence

To determine whether two types are structurally 
equilivant, traverse the types:
boolean equiv(s,t) {

if s and t are same basic type return true
if s = array(s1,s2) and t is array(t1,t2) 

return equiv(s1,t1) & equiv(s2,t2)
if s = pointer(s1) and t = pointer(t1)

return equiv(s1,t1) 
…
return false;

}
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Other Practical Type System
Issues

• Implicit versus explicit type conversions
– Explicit  user indicates (Ada)
– Implicit  built-in (C int/char) -- coercions

• Overloading – meaning  based on context
– Built-in 
– Extracting meaning – parameters/context

• Objects (inheritance)
• Polymorphism
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OO Languages

• Data is organized into classes and sub-classes

• Top level is class of all objects

• Objects at any level inherit the attributes (data, 
functions) of objects higher up in the hierarchy.  
The subclass has a larger set of properties than the 
class.  Subclasses can override behavior inherited 
from parent classes. (But cannot revise private 
data elements from a parent).
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class A {
public: A() {cout << "Creating A\n"; }
W() {cout << "W in A\n"; }

};
class B: public A {

public: B() {cout << "Creating B\n"; }
S() {cout << "S in B\n"; }

};
class C: public A {

public: C() {cout << "Creating C\n"; }
Y() {cout << "Y in C\n"; }

};
class D: public C {

public: D() {cout << "Creating D\n"; }
S() {cout << "S in D\n"; }

};

Object

A (W)

B (S) C (Y)

D (S)
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The Code:               Output:
B b; Creating A

Creating B
D d; Creating A

Creating C
Creating D

b.W(); W in A
b.S(); S in B
d.W(); W in A
d.Y(); Y in C
d.S(); S in D

Object

A (W)

B (S) C (Y)

D (S)
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OO Principle of Substitutability

• Subclasses possess all data areas associated with 
parent classes

• Subclasses implement (through inheritance) at 
least all functionality defined for the parent class

If we have two classes, A and B, such that class B 
is a subclass of A (perhaps several times 
removed), it should be possible to substitute 
instances of class B for instances of class A in 
any situation with no observable effect.
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Typechecking OO languages

• Without inheritance, the task would be 
relatively simple (similar to records)

• Difficulties:
– Method overriding

– When can super/sub types be used?  Consider 
function f: A  B

• Actual parameter of type A or subtype of A

• Return type B or supertype of B

– Multiple inheritance
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Function parameters

• Function parameters make typechecking more 
difficult

procedure mlist(lptr: link; procedure p)
while lptr <> nil begin

p(lptr);
lptr = lptrnext;

end
end
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Polymorphism
• Functions – statements in body can be executed on 

arguments with different type – common in OO languages 
because of inheritance

• Ex: Python for determining the length of a list
def size (lis):

if null(lis):
return 0

else:
return size(lis[1:]) + 1;

size([‘sun’,’mon’,’tue’])
size([10,11,12])
size(A)
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Type Inferencing
def size (lis):
if null(lis):
return 0

else:
return size(lis[1:])+1;

Goal: determine a type
for size so we
can typecheck the
calls.

Greek symbols are 
type variables.

lis

 size

TypeExpression

Fig 6.30 of your text
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Type Inferencing
def size (lis):

if null(lis):

return 0

else:

return size(lis[1:])+1;

Built-in language constructs

and functions provide

clues.

Given what we have in

the table, we now know

that list(n) = 

boolnull(lis)

list(n)  boolnull

bool x i x i iif

list(n) )lis

 size

TypeExpression

Fig 6.30 of your text
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Type Inferencing
def size (lis):

if null(lis):

return 0

else:

return size(lis[1:])+1;

i = int

list(n)lis[1:]

int x int int+

int0

boolnull(lis)

list(n)  boolnull

bool x i x i iif

list(n) )lis

 size

TypeExpression

Fig 6.30 of your text
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Type Inferencing
def size (lis):
if null(lis):
return 0

else:
return size(lis[1:])+1;

int

All of this tells us that
size: list()  int
(in other words, maps from 
anything with type list to 
type integer) intif(…)

intsize(lis[1:]) + 1

size(lis[1:])

list(n)lis[1:]

int x int int+

int0,1

boolnull(lis)

list(n)  boolnull

bool x i x i iif

list(n) )lis

 size

TypeExpression

Fig 6.30 of your text
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Formalizing Type Systems

• Mathematical characterizations of the type 
system – Type soundness theorems.

• Requires formalization of language syntax, 
static scoping rules and semantics.

• Formalization of type rules

• http://research.microsoft.com/users/luca/Papers/TypeSystems.pdf



Part II: Scope
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Scope

In most languages, a complete program will 
contain several different namespaces or 
scopes.

Different languages have different rules for 
namespace definition
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Fortran 77 Name Space

f1()
variables
parameters
labels

f2()
variables
parameters
labels

f3()
variables
parameters
labels

common block a

common block b

Global

Global scope holds 
procedure names
and common block
names.  Procedures
have local variables 
parameters, labels 
and can import 
common blocks
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Scheme Name Space

• All objects (built-in 
and user-defined) 
reside in single global 
namespace

• ‘let’ expressions create 
nested lexical scopes

Global 

map

2

cons

var

f1()
f2()

let

let

let
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C Name Space
• Global scope holds 

variables and functions

• No function nesting

• Block level scope 
introduces variables 
and labels

• File level scope with 
static variables that are 
not visible outside the 
file (global otherwise)

Global a,b,c,d,. . . 

File scope
static names

x,y,z

File scope
static names

w,x,y
f1() f2()

f3()
variables
parameters
labels

variables

variables, param

Block 
Scope
variables
labels

Block scope

Block 
scope
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Java Name Space

• Limited global name 
space with only public 
classes

• Fields and methods in a 
public class can be public 
 visible to classes in 
other packages

• Fields and methods in a 
class are visible to all 
classes in the same 
package unless declared 
private

• Class variables visible to 
all objects of the same 
class.

Public Classes

package p1 package p2

package p3

public class c1

class c2

fields: f1,f2
method: m1

locals
method: m2
locals

fields: f3
method: m3
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Scope

Each scope maps a set of variables to a set of 
meanings.

The scope of a variable declaration is the 
part of the program where that variable is 
visible.
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Referencing Environment

The referencing environment at a particular 
location in source code is the set of variables that 
are visible at that point.

• A variable is local to a procedure if the 
declaration occurs in that procedure. 

• A variable is non-local to a procedure if it is 
visible inside the procedure but is not declared 
inside that procedure. 

• A variable is global if it occurs in the outermost 
scope (special case of non-local).
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Types of Scoping

• Static – scope of a variable determined from 
the  source code. 
– “Most Closely Nested”

– Used by most languages

• Dynamic – current call tree determines the 
relevant declaration of a variable use. 
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Static: Most Closely Nested Rule

The scope of a particular declaration is given by the 
most closely nested rule

• The scope of a variable declared in block B, 
includes B. 

• If x is not declared in block B, then an occurrence 
of x in B is in the scope of a declaration of x in 
some enclosing block A, such that A has a 
declaration of x and A is more closely nested 
around B than any other block with a declaration 
of x. 
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Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible 
at this point 
(globally)?
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Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible 
at this point 
(sub1)?
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Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible 
at this point 
(sub3)?
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Example Program: Static
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

What is visible 
at this point 
(sub2)?
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Dynamic Scope

• Based on calling sequences of program 
units, not their textual layout (temporal 
versus spatial)

• References to variables are connected to 
declarations by searching the chain of 
subprogram calls (runtime stack) that forced 
execution to this point



CS 540 Spring 2009 GMU 58

Scope Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...  

...
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

Which x??
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Scope Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...  

...
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

For static scoping,
it is main’s x
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Scope Example

• In a dynamic-scoped language, the 
referencing environment is the local 
variables plus all visible variables in all 
active subprograms. 

• A subprogram is active if its execution has 
begun but has not yet terminated.
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Scope Example
MAIN

- declaration of x
SUB1
- declaration of x -
...
call SUB2
...

SUB2
...
- reference to x -
...  

...
call SUB1
…

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

For dynamic scoping,
it is sub1’s x

MAIN
(x)

SUB1
(x)

SUB2
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Dynamic Scoping

• Evaluation of Dynamic Scoping:
– Advantage: convenience (easy to implement)

– Disadvantage: poor readability, unbounded 
search time



Part III: Symbol Tables
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Symbol Table

• Primary data structure inside a compiler.
• Stores information about the symbols in the input program 

including:
– Type (or class)
– Size (if not implied by type)
– Scope

• Scope represented explicitly or implicitly (based on table 
structure).

• Classes can also be represented by structure – one 
difference = information about classes must persist after 
have left scope.

• Used in all phases of the compiler.
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Symbol Table Object

Symbol table functions are called during 
parsing:

• Insert(x) –A new symbol is defined.

• Delete(x) –The lifetime of a symbol ends.

• Lookup(x) –A symbol is used.

• EnterScope(s) – A new scope is entered.

• ExitScope(s) – A scope is left.
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Scope and Parsing

func_decl : FUNCTION NAME {EnterScope($2);}
parameter decls stmts ;  {ExitScope($2); }

decl :    name ‘:’ type {Insert($1,$3); }

…
statements: id := expression {lookup($1);}
…
expression: …

id {lookup($1);}

Note: This is a greatly simplified grammar including only the symbol table 
relevant productions.
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Symbol Table Implementation

• Variety of choices, including arrays, lists, 
trees, heaps, hash tables, …

• Different structures may be used for local 
tables versus tables representing scope.
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Example Implementation

• Local level – within a scope, use a table or 
linked list.

• Global – each scope is represented as a 
structure that points at –
– Its local symbols

– The scopes that it encloses

– Its enclosing scope } A tree?
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Implementing the table

• Need variable CS for current scope

• EnterScope – creates a new record that is a child of the 
current scope.  This scope has new empty local table.  Set 
CS to this record.

• ExitScope – set CS to parent of current scope.  Update 
tables.  

• Insert – add a new entry to the local table of CS

• Lookup – Search local table of CS.  If not found, check the 
enclosing scope.  Continue checking enclosing scopes until 
found or until run out of scopes.
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Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

sub2 sub3

a,b,c,
sub1

a,d,
sub2,
sub3

c,d
a
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Implementing the table
We can use a stack instead!!!

• EnterScope – creates a new record that is a child of the 
current scope.  This scope has new empty local table.  Set 
CS to this record  PUSH

• ExitScope – set CS to parent of current scope.  Update 
tables  POP

• Insert – add a new entry to the local table of CS

• Lookup – Search local table of CS.  If not found, check the 
enclosing scope.  Continue checking enclosing scopes until 
found or until run out of scopes.
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Example Program – As we compile …

Program main;
a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main
a,b,c
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Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

a,b,c,
sub1

a,d
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Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

sub2

a,b,c,
sub1

a,d
sub2

c,d
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Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

sub3

a,b,c,
sub1

a,d
sub2,
sub3

a
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Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main

sub1

a,b,c,
sub1

a,d,
sub2,
sub3
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Example Program
Program main;

a,b,c: real;
procedure sub1(a: real);

d: int;
procedure sub2(c: int);

d: real;
body of sub2
procedure sub3(a:int)

body of sub3
body of sub1

body of main

Main a,b,c,
sub1


