Building SLR Parse Tables

The easiest technique for generating LR-based parse table is known as SLR (Simple LR).
Understanding this technique should provide you with what you need to know to
understand how LR parsers work in general; it is also the foundation for the more
complex techniques (LR and LALR).

Remember that the idea behind LR parsing is to produce a DFA that defines the handles
(string of terminals and non-terminals that indicate a reduction) of the input language.
The SLR technique is based on generating sets of LR(0) items that describe the states of
the DFA, as well as a transition function that maps between these states.

Defn: An LR(0) item of a grammar G is a production of G with a dot (.) at some
point on the right side.

Example: For production E - E + T, there are four distinct LR(0) items:
E>.E+T
E>E.+T
E>E+.T
E>E+T.

A production that directly derives g, only generates a single LR(0) item. Hence, E > ¢
has only one associate item : E - .

In order to generate these LR(0) item sets, we need to be able to compute closures across
them.

Defn: Closure(l) where | is a set of LR(0) items consists of

e everyitemin |

e If A-> a.B pin closure(l), for all productions B - y, add B - . y to
closure(l) if not already there. Keep applying this rule until no more items can
be added.

Initial elements (I) are often referred to as the kernel elements of closure(l).

Example: we can use the expression grammar:
E>E+T|T

T>T*F|F

F>(E)]|id

Closure {T=>T.*Fp)={T>T.*F}

Cosure {T2>T.*F,T>T*.FH={T>T*FT>T*.F,F>.(E), F~>.id}
Closure {F> (.E)})={F> (.E),E> .E+T,E>.T, T>.T*F,T>.F F
2>.(E),F>.id}

CS 540 Fall 2004
Page 1 of 6

Generating LR(0) sets are the basis for constructing SLR parsers. To do this generation,
we start with an augmented grammar®. An augmented grammar is produced by adding a
new non-terminal and productions from this new non-terminal to the old start symbol.
The purpose of this is to provide a single production that, when reduced, signals the end
of parsing. For example, adding a symbol E’ and a production E’ = E produces an
augmented expression grammar.

The key to producing the required sets is the Goto function that maps an item set and a
grammar symbol (terminal or non-terminal) to an item set. Remember that items sets
represent states in the handle DFA; that means the Goto function gives us the transitions.

Defn: Goto(l,X), where I is a set of items, X is a terminal or non-terminal, is the
closure(A > aX.b)where A>a.Xbisinl.

Here are some examples of computing the Goto function for the expression grammar.
Goto({E’>E .,E>E.+T}+) = closure{E > E+.T}) =
{E2>E+.T,T>.T*F,T>.FF>.idF>.(E)}
Goto({T>T*.F, T>.F}F)=closure{T2>T*F., T2>F.})=
{T>T*F.,T2>F.}
Goto{E’2E.,E>E +.T}+)=closure{})={}

We are now ready to look at the actual algorithm for generating the DFA.

Algorithm:
o C ={closure({S’—>. S})}, where S’ - S is the production added for augmentation
* Repeat

— For each item | in C and grammar symbol X such that Goto(l,X) is not
empty and not in already an element of C
e Add Goto(l,X) to C

This is easiest to see by working through the augmented expression grammar example.
We start with the computing

C={closure{E’ > .E}) }={F'> .EE> .E+T,E>.T,T>.T*F,T>
.F, F>. (E),F~>.id}.

This gives us the items for the first state (state 0) of our DFA. Now we need to compute
Goto functions for all of the relevant symbols in the set. In this case, we care about the
symbols E, T, F, (, and id, since those are the symbols that have a . symbol in front of
them in some item of the set C.

! Augmentation is only required if the grammar does not have a single production that signals the end of the
parsing. However, augmentation never changes the language, so it never hurts.

CS 540 Fall 2004
Page 2 of 6

e Forsymbol E,Goto{E’ > .E,E> .E+T,E>.T,T>.T*F, T>.
F, F>. (E),F>.id}E) =closure {E* > E.,E>E.+T}) ={F’
> E. E->E.+T} Wecan call this state 1.

e Forsymbol T,Goto{E’ > .E,E> .E+T,E>.T,T>.T*F,T>.
F, F>. (E),F>.id}T) =closure {(E>T. T>T.*F}) ={E
2> T. T->T.*F} Wecan call this state 2.

e Forsymbol F,Goto({E’ > .E,E> .E+T,E>. T, T>.T*FT>.
F, F>. (E),F>.id}F) =closure {T>F.}) ={T>F.} We
can call this state 3.

e Forsymbol (,Goto{E’ > .E,E> .E+T,E> . T, T>.T*FT>.
F, F>. (E),F>.id} () =closure {F> (.E)}) ={F~> (.E),
E>.E+TED>.T,TO.T*FT>.F F>. (E),F>.id}. We
can call this state 4.

e Forsymbolid, Goto{E’ > .E,E> .E+T,E> . T, T>.T*F, T>.
F, F>. (E),F>.id },id) =closure ({F > id.}) ={F > id.}. We
can call this state 5.

I typically write the above information in a table format where each item of each state is
annotated with the appropriate state 1-5. The kernel of each state (the items we started
with before computing the closure) is in boldface.

oto State Item Goto
1: E'">E.
E>E.+T 6

State Item

0: E'’>.E
E>.E+T
E=>.T
T>.T*F
T>.F
F->. (E)
F->.id

2: E->T. 3: T2>F.
T=>T.*F

4: F=>(.E)
E2>.E+T
E=>.T
T>.T*F
T>.F
F->.(E)
F->.id

GRWNNER P

5 F-=>id.

Ol B W NN 0O O

We continue by computing Goto in each of the newly created states. When the . occurs
at the end of a production this is going to correspond to a reduction in the parsing
algorithm so we won’t have a goto value there. We will deal with this situation once we
have completed the DFA.

CS 540 Fall 2004
Page 3 of 6

State Item

o
—
o

State

Item

Goto

O: E>.E
E>.T
T>.F

F->.(E)
F->.id

E->.E+T

T>.T*F

R WNNRERPQ

1

E'2>FE.
E>E.+T

2: E->T.

TOT.*F

T>F.

4 F>(.E)
E>.T
T>.F

F->.(E)
F->.id

E->.E+T

T>.T*F

Ol B W NN 00 00|~

F->id.

6: ED>E+.T
T>.T*F

T>.F
F>.(E)
F>.id

T>T*.F
F>.(E)
F>.id

8: F>(E.)

E2>E.+T

Notice in the table that we don’t have to create new states when the goto function can use
a state that already exists. In state 4, we have transitions to states 2, 3 and 4 because any
newly created state (using our rules) would look like these states. However, we can only
re-use a state if it is exactly the same. For example, we must create a state 8 even though
its kernel is similar to that of state 2.

The table on the next page has the complete table for the grammar. Before using this
table to find the SLR action/goto tables, we need to compute the follow sets for all of the

non-terminals in the grammar and we need to number the productions.

'S>E
SE+T
>T
ST*F
>F
> (E)

0:
1
2.
3:
4.
5:
6: F>id

MM ddmmm

CS 540 Fall 2004
Page 4 of 6

Follow(E’) = {$}
Follow(E) = {$,),+}
Follow(T) = {$,),+,*}
Follow(F) = {$,),+,*}

State

Item

o
—
o

State

Item

Goto

0:

E'">.E
E->.E+T
E=>.T
T>.T*F
T>.F
F>. (E)
F->.id

R WNNRERPQ

1

E'2>FE.
E>E.+T

E>T.
TOT.*F

T>F.

F>(.E)
E->.E+T
E->.T
T>.T*F
T>.F
F>.(E)
F->.id

F->id.

E>E+.T
T>.T*F
T>.F
F>.(E)
F->.id

T>T*.F
F>.(E)
F>.id

(62 5

F=>(E.)
E2>E.+T

ORI, WOOUITE WNDNOO®IN

E>E+T.
TOT.*F

10:

TOT*F.

11:

F> (E).

The action/goto tables are extracted directly from the above information in the following

manner. First, each state in the above table will be a row in the action/goto tables.

Filling in the entries for row I is done as follows:
Action[l,c] = shift to state goto(items in state I, ¢) for terminal ¢
Goto[l,c] = goto(items in state I, ¢) for non-terminal ¢

Consider state 6. Action[6,(] = shift 4, Action[6,id] = shift 5, Goto[6,T] = 9, and
Goto[6,F] = 3. For state 5, Action[5,*] = Action[5,)] = Action[5,+] = Action[5,$] =

For production number n: A = a in state | where . occurs at the end, Action[l,a] =

reduce production n, for all elements a in Follow(A)

For the added production(augmented production) with the . at the end in state I,

Action[l,$] = accept.

reduce 6. The derived action/goto tables are given on the next page.

CS 540 Fall 2004
Page 5 of 6

State + * () id $ T F
0 s4 s5 2 3
1 S6 accept
2 r2 s7 r2 r2
3 r4 r4 r4 r4
4 s4 sb 2 3
5 re ré re ré
6 s4 sb 9 3
7 s4 s5 10
8 S6 s11
9 rl s7 rl rl

10 r3 r3 r3 r3
11 r5 r5 r5 r5

CS 540 Fall 2004
Page 6 of 6

