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Abstract

In urban areas, buildings are often used as landmarks for localization. Reliable and effi-
cient recognition of buildings is crucial for enabling this functionality. Motivated by the
applications which would enhance visual localization and navigation capabilities we pro-
pose in this paper a hierarchical approach for building recognition. In the first recognition
stage the model views are indexed by localized color histograms computed from dominant
orientation structures in the image. This novel representation enables quick retrieval of a
small number of candidate buildings from the database. In the second stage the recogni-
tion results are refined by matching previously proposed SIFT descriptors associated with
local image regions. For this stage we propose a method for selecting discriminative SIFT
features and a simple probabilistic model for integration of the evidence from individual
matches based on the match quality. This enables us to eliminate the sensitive choice of
threshold for match selection as well as the sensitivity to the number of features character-
izing different models. The proposed approach is validated by extensive experiments, with
images taken in different weather conditions, seasons and with different cameras. We re-
port superior recognition results on a publicly available database-ZuBuD and one additional
database of buildings we collected.

Key words: building recognition, man-made structures retrieval, localization, visual
landmark recognition

1 Introduction

In this paper, we study the problem of building recognition. As an instance of the
recognition problem, this domain is interesting since the class of buildings posses
many similarities, while at the same time calls for techniques which are capable
of fine discrimination between different instances of the class. The problem is of
importance in the context of navigation for robots or visually impaired, where the
buildings or similar man-made structures are often used as landmarks for local-
ization in urban areas. In order to tackle the so called kidnapped robot (person)
problem, the landmarks (e.g. buildings) have to be reliably recognized from var-
ious viewpoints, given the database of previously recorded views. Once the most
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likely landmark has been found, the pose of the camera between the query view
and reference model view can be computed. From the perspective of navigation
applications the natural concern is efficiency and scalability.

1.1 Related work

One of the central issues pertinent to the recognition problem is the choice of suit-
able representation of the class and its scalability to a large number of exemplars.

There is a large amount of literature on general object recognition. The exist-
ing methods exploit geometric and/or appearance information, consider part based
models or more holistic representations. In the context of the presented work we
will review some related works which obtain the desired representations from im-
age appearance, computing either global and local image features.

Global approaches typically consider the entire image as a point in the high-dimensional
space and model the changes in the appearance as a function of viewpoint us-
ing subspace methods [17]. Given the subspace representation the pose of the
camera can be obtained by spline interpolation method, exploiting the continuity
of the mapping between the object appearance and continuously changing view-
point. Alternative global representations proposed in the past include responses to
banks of filters [31], multidimensional receptive field histograms [22] and color
histograms [29]. These representations do not encode spatial information inherent
in the image. Although quite robust to changes in viewpoint and/or scale, they are
often not very discriminative. Partial means of encoding the spatial information can
be obtained by computing the global descriptors over different image regions sepa-
rately [30]. [18] Alternative representations in terms of local features have become
very effective in the context of different object/category recognition problems. In
this case the descriptors are computed only over local image regions, whose lo-
cation is first determined using various saliency measures. These representations
perform favorably in the presence of large amount of clutter and changes in view-
point. The representatives of local image descriptors include scale invariant features
and their associated descriptors, which are robust with respect to affine transfor-
mations [12,24,32,13]. The SIFT features proposed by [11] achieved best perfor-
mance in the matching context based on comparison tests reported by Mikolajczyk
and Schmid [14]. Further improvements were proposed by Ke and Sukthankar [6]
developed an alternative descriptor by applying PCA to image patches detected by
SIFT. Recently, Mikolajczyk and Schmid conducted more comprehensive compar-
ison [15], which showed that SIFT based descriptors outperformed others.

Given a particular representation computed from model view(s) one can proceed
with recognition. There is a large body of related work on techniques employed for
recognition. Simplest methods for recognition using global descriptors typically



use the nearest neighbor classification since each model image is represented by a
single descriptor. In case of recognition based on local features very effective and
simple method for object recognition is based on voting scheme. In voting however,
the contribution (vote) of each match is sensitive to the choice of threshold and
matches are considered independent. To alleviate these problems several structured
probabilistic models for recognition have been proposed in the past, which account
properly for the quality of the match [16], spatial relationships between features
as well as global coherence of the hypothesis [19,23]. They further differ in the
means of integrating the individual matches to form the final hypothesis of object
being present in the image. In our work we will point out that in the context of our
problem the previously proposed models are not suitable and propose an alternative
discriminative probabilistic recognition scheme which favorably accounts for both
the number and quality of the matches.

In the previous sections we reviewed the several object recognition recognition ap-
proaches, which most closely motivate the proposed work. Below we review few
approaches for tackling the problem of recognition, localization and/or image re-
trieval of buildings from large image databases. In [27] authors worked on locating
buildings in a given image. In the context of CBIR application, consistent line clus-
ter was proposed [9] for classifying images as building/no building images. More
challenging problem of detection of man-made structures in cluttered scenes has
been addressed in [8], where the authors modelled the image spatial dependen-
cies using Markov Random Fields. In [20] authors proposed matching descriptors
associated with interest regions extracted from rectified views, obtained using van-
ishing point information. Authors in [26] proposed to extract invariant regions and
used a set of color moments to represent them, recognition was based on the num-
ber of matched regions. In [5] the recognition was achieved by matching descrip-
tors associated with line segments, epipolar constraint was imposed to reject the
false matches. The methods which rely solely on local feature based matching are
often quite slow as pointed out in work of [20]. In [4] the authors proposed to
detect buildings using SIFT descriptors combined with the discriminative feature
selection mechanism which reduced the overall complexity of the representation.
Alternatively when dealing with large databases, it is desirable to use a global de-
scriptor, to preselect a small number of candidates before carrying out recognition
based on local features. For this stage color histogram seems to be a good choice,
because of its simplicity and robustness to changes in object’s scale, orientation and
to some extent viewpoint. In [33] the authors described an approach to recogniz-
ing location from mobile devices using image-based Web search utilizing a hybrid
color histogram and keyword search technique. However global color histograms
are not very discriminative since images with similar color distributions but dif-
ferent content are often present. Furthermore in case of buildings, images contain
background (e.g. trees, sky), which can change dramatically with the change of
viewpoint. Without further labeling of the object (building) and background area,
the global histogram would be affected by background pixels. The localized color
histograms introduced in this paper favorably circumvents the two difficulties and



demonstrates robustness to moderate light changes.

1.2 Outline

In this paper, we propose to tackle the building recognition problem by a two stage
hierarchical scheme. The first stage is comprised of an efficient indexing scheme
based on localized color histograms computed over dominant orientation structures
in the image. A small number ofbestcandidate models is chosen for the second
recognition stage, which is based on the matching of scale invariant keypoints. A
simple probabilistic model for recognition is proposed to integrate the evidence
from individual matches. We assume that there is only one building to be recog-
nized in each image. The two main contributions of the presented work are the
novel localized color histogram representation which enables efficient and accurate
indexing scheme and a discriminative probabilistic model for recognition based
on local features, which correctly accounts for both the quality and the number of
obtained matches. Our approach is tested with the ZuBuD database [25] and an ad-
ditional database of buildings which we collected. For comparison we show better
results than previously reported work [26] [5].

The rest of the paper is organized as follows: In Section 2 we describe the localized
color histogram representation and first recognition stage based on this representa-
tion. In Section 3 we introduce and justify the probabilistic model for recognition
based on local features and in Section 4 we report the experimental results for both
recognition stages. Section 5 contains additional discussion and concludes the pa-
per.

2 Localized color histograms

Man made structures like buildings contain geometric regularities, such as parallel
and orthogonal lines and planar structures. Parallel lines in the world intersect in
the image plane at vanishing points. We propose to compute the color distribution
only based on pixels whose gradient direction complies with main vanishing di-
rections, which are likely to come from buildings. Discriminating power is gained
by weakly encoding the spatial information, achieved by handling the histograms
of the different principle directions separately. In [28], the authors have suggested
to improve discrimination power of plain color indexing technique by encoding of
spatial information, by dividing the image into 5 partially overlapping regions. Our
method is advantageous because it does not rely on fixed regions, thus it’s more ro-
bust to translation and scale change. The term ”localized color histogram” reflects
two facts: pixels contributing to the histogram are typically localized in the building
area and are further divided into several groups, based on the vanishing directions



they belong to. The contribution of each pixel group is then captured by one of the
histograms. The whole process will be described in the following section.

2.1 Dominant vanishing directions

The detection of vanishing directions in the image, which are due to the presence
of dominant man-made structures is based on our earlier work where we proposed
an efficient vanishing point detection scheme [7]. The detection of line segments
is followed by the simultaneous grouping of lines into dominant vanishing direc-
tions and estimation of vanishing points using expectation maximization algorithm
(EM). During each iteration, the posterior probabilitiesp(vk | li) are computed
given the currently available vanishing points estimates. Then in the maximization
step, the vanishing points are estimated by minimizing negative log likelihood. This
yields a linear least-squares estimation problem

J(vk) = min
vk

∑

i

wik(l
T
i vk)

2 = min
vk
‖(WAvk)‖2 (1)

wherevk is a vanishing point associated withk-th direction,W ∈ <n×n is a di-
agonal matrix of weights and rows ofA ∈ <3×n are the detected line segments.
In our experiments, the EM algorithm typically converges in 3-5 iterations, due to
effective initialization stage based on peaks in the orientation histogram. The EM
algorithm is initialized by detecting the straight lines in the images and comput-
ing their orientation histogram. The number of peaks in the orientation histogram
typically serves as good initial guess for number of present vanishing directions.
During the EM iteration, small groups will be merged or removed. The line seg-
ments which do not align with principal directions are classified as outliers and
discarded. For buildings which lack dominant orientations, the vanishing point es-
timation process is terminated due to the lack of line support. In such cases, the first
recognition stage is bypassed and the matching based on local descriptors is carried
out. We have not encountered this situation throughout our experiments.

2.2 Pixels membership assignment

The EM algorithm typically returns two or three vanishing points, which corre-
spond to principal directionsvx,vy andvz in the world coordinate frame. We will
refer to these directions as left (vx), right (vy) and verticalvz, based on coordinates
of their corresponding vanishing points with respect to the center of an image. Such
labels remain the same for a wide range of out-of-plane and in-plane rotation.

Once the vanishing directions are computed each image pixel with its gradient (ob-
tained through convolution of the image with Sobel edge detector) magnitude above



Fig. 1. Three views of the same building. First column: original images. Second column:
pixel membership assigned using geometric constraints. Third column: pixel membership
assigned after connected component analysis. Background pixels are coded with deep blue,
while red, light blue and yellow color represent three groups of pixels, respectively. Last
column: indexing vector for each image.

some small threshold (2 in our experiments)is classified as belonging to one of the
groups (left, vertical and right) if the difference between its gradient direction and
the principal directionvx,vy andvz is less than some thresholdτo; τo = 30o in our
experiments. Otherwise the pixel is classified as an outlier and removed. Cough-
lan and Yuille [3] have demonstrated that small objects like bike and robot can be
detected using such an outlier model. While sky like background will be removed
as the second column of Figure 1 shows, the pixels belonging to the background
clutter (trees and grassland) still remain, because their gradient directions may be
aligned with one of the principal direction. Note that those pixels are located in the
area where gradient directions change frequently, so their neighboring pixels are
unlikely to belong to the same group,i.e., the same group of pixels are unlikely
to be connected in the area of background clutter. Hence most of the remaining
clutter can be eliminated in the following way: for each group of pixels, find con-
nected components based on those pixels only, then remove connected components
whose sizes are less than some threshold. The threshold is set to be half of the im-
age width in our experiment, so it’s adaptive to the change of image size. The final
group membership assignments are shown in the third column of Figure 1, where
bushes and trees have been eliminated. Note that the color coded membership of
foreground pixels remains stable across different views. This enables us to achieve
a representation which is robust with respect to change of viewpoints. We will next
demonstrate that a highly discriminative descriptor can be obtained by extracting
color information augmented by the membership information.



Fig. 2. Three views of another building with more background clutter and viewpoint
change. First column: original images. Middle column: pixel membership assignments.
Last column: indexing vector for each image. Note that the color of this building is similar
to the building in Figure 1, but their indexing vectors are quite different.

2.3 Indexing vector formation

Color information of (only) pixels which belong to principal directions is consid-
ered in the next step. Unlike the traditional color indexing technique where pixel
color is represented in RGB space or HSV space, we adopt the 1D chromaticity
(hue) representation proposed in [1]. The RGB is first transformed to(Y,Cb, Cr)
defined as 
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The hue value is then calculated by

H = arctan(Cb, Cr)/π − 1 ≤ H ≤ (2)

The hue histogram of each group of pixels is computed and quantized into 16 bins.
very fast. In order to avoid the boundary effects, which cause the histogram to
change abruptly when some values shift smoothly from one bin to another, we use
linear interpolation to assign weights to adjacent histogram bins according to the
distance between the value and the bin’s central value. Finally, the three histogram
vectorshx, hy andhz are concatenated into one indexing vectorh to represent each
image. The benefit of using only the hue information is two fold: the hue histogram
representation is robust to illumination change and the indexing vector is more



Fig. 3. Two views of the same building. Pixels which belong to the right principal group in
the left image belong the left group in the right image.

compact compared to other indexing vectors1 . As our experiments show, the hue
histogram is quite discriminative. This is partly due to the object (building) pixels
being grouped according to their direction, thus the spatial information is weakly
encoded in the indexing vector.

2.4 Building retrieval

Given a16×3 = 48 dimensional indexing vector representing each image, building
retrieval can proceed by comparing histogram vector of the test image and model
images. The distance between two indexing vectors is the sum of three individual
histogram distances

d(h1, h2) = d(h1
x, h

2
x) + d(h1

y, h
2
y) + d(h1

z, h
2
z). (3)

There is one subtle issue: because of the viewpoint change, pixels which belong
to the left group in one view may be in the right group in another image, and
vice versa. For instance, in Figure 3 pixels in the front facade belong to different
groups. Consequently, if the distance is computed by the above formula, the result
will be sensitive to this viewpoint change. We resolve this problem by combining
the histograms of left and right groups into one large group and represent its color
distribution using one histogram. The16×2 = 32 dimensional indexing vector still
shows high discriminative power in our experiments. The last columns of Figures
1 and 2 show the actual indexing vectors. As a byproduct we obtain a shorter
indexing vector, which is good for both storage and comparison. If going one step
further and combining the three histograms into one, the discrimination capability
would greatly deteriorate, as shown in Table 1.

To compare a test image to different models we use theχ2 distance between two
histograms. Given the indexing vector of a test imageht and model viewhp, their
χ2 distance is defined as:

χ2(ht, hp) =
32∑

k=1

(ht(k)− hp(k))2

ht(k) + hp(k)
(4)

1 As surveyed by T. Huang in [21], vectors are typically on the order of102.



wherek is the index of the histogram bins. The small size of the descriptor makes
the comparison very fast, which is especially beneficial when dealing with very
large databases. As the output of the first recognition stage, we choose a subset
of models, which will be further considered in the second stage. The cardinality
of the subset will depend on how ambiguous the recognition is. The ambiguity is
quantified as:

Am =
χ2

1
1

n−1
(
∑

i χ
2
i )

(5)

wherei = 2, 3, ..., n, andχ2
i is theith closest distance of the result. We setn to be

5 in our experiments. The ambiguity measure will be very low when the test image
is easy to classify and is close to 1 when it’s hard to identify. The number of results
Nr to be considered by the second stage is calculated asNr = dNm × Am2e,
hereNm is the maximum size of the list, which we set to be 20. Thus when the
closest candidate is very distinctive, the first recognition stage may return only
single candidate and obviate the second recognition stage. If more candidates are
closely matched, we provide a list of candidates with the correct model included.
The typical size of the list is around 3. When each object model has multiple views
in the database, the smallestχ2 distance among those views is used to compute
the size of the list. We report the recognition performance obtained in this first
recognition stage in Section 4.1.

The two histograms which compose indexing vector are meaningful by themselves,
they represent the color distribution of vertical and horizontal pixels respectively.
Therefore, the first stage can be further accelerated by separating them, e.g. the
histogram of vertical group can be used as an indexing vector to choose a subset
of models, then histogram of horizontal group can be used to refine the subset.
We carried out experiments with this sequential indexing method. The first step is
based only on the vertical histogram,Nr is set to 201 (the number of models in our
experiments), the indexing hit rate2 is 99% with average size of subset 38.83 (20%
of original models). Then the horizontal histogram is used to further reduce the
subset withNr setting to be 20. The resulting hit rate is94.5%, which is almost the
same as using them together (95% as in Table 1). This sequential indexing scheme
has clear advantage for extremely large databases .

3 Local feature based refinement

The purpose of the second recognition stage is to refine the results obtained in the
first stage and identify the correct model. In this stage we exploit the SIFT key-
points and their associated descriptors introduced by [12]. The SIFT features repre-
sent salient image locations, which are stable across variations in scale. Candidate

2 Hit rate is defined asNc
Nt

, whereNc is the number of lists which include correct models,
Nt is the total number of lists.



locations are obtained by searching for local extrema in the pyramidD(x, y, σ)
obtained by taking a difference of two neighboring images in the scale space:

D(x, y, σ) = (G(x, y, kσ)−G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ). (6)

The image scale spaceL(x, y, σ) is first build by convolving the image with Gaus-
sian kernel with varyingσ, such that at particularσ, L(x, y, σ) = G(x, y, σ) ∗
I(x, y). This difference operation approximates the convolution of an image with
Laplacian of GaussianD(x, y, σ) ≈ σ2∇2G∗I(x, y), with additional scale normal-
ization [10]. Each region is endowed with a 128 dimensional descriptorf , which
captures the gradient orientation information of the region, is rotationally invari-
ant and has been shown to be robust with respect to large variations in viewpoint
and scale. For each model image, the keypoints are extracted off line and saved
in the database along with the color indexing vectors. After extracting keypoints
from a test image, its descriptors are matched to those of the models selected in the
first recognition stage. Figure 6 shows examples of detected SIFT keypoints. In
the original matching scheme described in [12] a pair of keypoints is considered a
match if the distance ratio between the closest match and the second closest one is
below some thresholdτr:

d2(f, f1st)

d2(f, f2nd)
< τ 2

r (7)

wheref ∈ <n is the descriptor to be matched andf1st andf2nd are the closest
and the second closest descriptors from the model database, withd(., .) denoting
the Euclidean distance between two descriptors. The thresholdτr = 0.8 suggested
in [12] was found effective for the general object recognition. This ratio threshold is
effective because correct discriminative keypoints often have the closest neighbor
significantly closer than the closest incorrect match. In the context of buildings,
which contain many repetitive structures (e.g. windows), the above criterion will
reject many possible matches, since often multiple neighbors may have very close
distances. We chose to add another criterion, which considers two keypoints as
matched, when the cosine of the angle between their descriptorsf andg is above
some thresholdτc:

cos(f, g) =
fT g

‖f‖2‖g‖2

< τc (8)

where‖f‖2 represents the L2-norm of a vector. In case multiple features passτc

(this happens because of repetitive structures), only the one with the highest cosine
value is kept. Although the matches obtained by this criterion may not be the true
correspondences3 , they indicate likely existence of correct matches. Using this
additional criterion the overall number of correct matches will increase as Figure 4
shows, which benefits the subsequent recognition.

3 The two points are in correspondence, when they are projections of the same point in 3D
world.



Fig. 4. Matches obtained using: distance ratio (left, 11 matches); cosine measure (middle,
15 matches); combining both measures (right, 24 matches).

In many instances using a simple voting scheme along with the augmented match-
ing criteria described above is sufficient to resolve the ambiguities and pick the
correct model from the first stage. This is demonstrated in Figure 5 showing an
example of SIFT based matching. The test image is shown in the top row. The top
four candidates returned by the first recognition stage are listed from left to right in
the bottom row. Note that the correct models have many more successful matches
than other candidates. In our experiments with ZuBuD database, voting scheme
always selects the correct model from the candidates list chosen in the first stage.
The reason is that most candidates are rejected by the first stage. As shown in Sec-
tion 4.2, using SIFT based matching and voting directly without the first stage, the
recognition rate decreases.

Even though the voting scheme seems good enough for ZuBuD database, it does
have some problems. Note that the basic point matching process depends on a
threshold. If the threshold between two descriptors is too high, few matches will
be found. On the other hand, if it is set too low, false matches will be introduced.
Moreover, once passing the threshold, every match will be treated equally although
the matches with higher cosine value are more likely to be correct. To address these
two problems with standard voting, next we introduce a simple probabilistic model
which takes into account both the number of matches and the quality of the attained
matches. This enables us to set relatively loose thresholds and weigh the matches
according to their quality. The advantages of the probabilistic model compared to
the voting approach are demonstrated in Section 4.3 with an additional database.

3.1 Probabilistic recognition

Several probabilistic formulations have been considered in the past in the context
of object recognition. The existing models [23,2,19] differ in their complexity and
the number of aspects they account for. In our case the repetitive structures often
cause features to be matched to different locations, consequently spatial relation-
ships between corresponding features wouldn’t be maintained. Therefore spatial
relationships are not taken into account in our model, making it simpler and more



Fig. 5. The correct model has much more matches, although it was listed as a third candidate
by the coarse recognition stage (Figure 10). The top row shows the test image, the bottom
row shows the top 4 candidates returned by the first stage.

efficient. Even though it seems less powerful not to consider spatial relationships,
our experiments show that our probabilistic model outperformed voting scheme
without introducing substantial amount of computation.

Note that we need to reconcile the two criteria based on distance ratio and cosine
measure in order to attain a single quality measure. For keypoints pairs that get
matched by exceeding the distance ratio threshold, their similarity scores can be
relatively low, which does not reflect the fact that they are potentially high quality
matches. This is reconciled by learning the match quality for these matches. More
details about this stage can be found in [34].

In the probabilistic setting the recognition problem can be formulated as the prob-
lem of computing posterior probability of the building model given a query image
Q, P (B = j|Q). The probability that thejth building appears in a query image
Q depends only on the set of matches{mi} = {Ci(Q,Bj)} and can be written
as P (B = j|{mi}). Since the spatial relationships between individual matches
are not considered, the indexes of the keypoints are omitted. Instead of comput-
ing P (B|{mi}) directly, we consider the probability thatQ doesn’t contain thejth

building which can be expressed asP (B 6= j|{mi}) = 1 − P (B = j|{mi}).
Here we assume that only one building appears in each query image. In the fol-
lowing section we also omit the model indexj to improve the clarity, and usēB to
representB 6= j. Assuming that all matched pairs are independent we obtain:

P (B̄|{mi}) =
P ({mi}|B̄)P (B̄)

P ({mi}) =

∏n
i=1 P (mi|B̄)P (B̄)∏n

i=1 P (mi)

=

∏n
i=1(1− P (mi|B))P (B̄)∏n

i=1(P (mi|B) + P (mi|B̄))
(9)

wheren is the number of matches andP (B̄) is the prior which is assumed to be
uniform for all models. The confidence measure obtained from the first stage of
recognition can be used in the place of prior. Denotingαi = (1−P (mi|B))

(P (mi|B)+P (mi|B̄))
we



have:

P (B|Q) = 1−
n∏

i=1

αiP (B̄). (10)

The termαi naturally depends on the quality of theith match pair and is also related
to the number of features representing each model. For every detected candidate
keypoint, even though it’s not a correct match, it still has a small probabilityε of
getting matched. Consequently, for a model image withN keypoints, the probabil-
ity that none of its keypoints match a keypoint from a test image will be(1− ε)N .
The larger the value of N, the smaller the probability. Since the number of detected
keypoints for different models ranges from hundreds to thousands, models with
more keypoints are likely to get more matches (votes). To alleviate the bias caused
by different number of keypoints, we propose a simple feature selection scheme
which enables us to choose approximately the same number of keypoints for each
model. In Section 3.2 we will show how to accomplish this goal.

The rationale of the proposed probabilistic formulation is the following: Each cor-
respondence inCi(Q,Bj) serves as the evidence contributing to the probability that
a query image belongs to a particular model andP (B 6= j|mi) represents the prob-
ability that this contribution to the final classification is wrong.P (B 6= j|{mi})
represents the probability that all the classifications are wrong (i.e. none of the key-
points inQ belongs toBj). ThusP (B = j|{mi}) represents the probability that
at least one keypoint is classified correctly, that is to say, at least one keypoint be-
longs toBj. Note that we are trying to classify all the keypoints as belonging to
one building, if one keypoint belongs to a building, so do the others. Therefore,
P (B = j|{mi}) represents the probability thatBj appears in the query imageQ.

3.2 Model Feature Selection

In order to choose the number of keypoints (features) to be approximately the same
in all models, we need to consider the quality of each feature. This quality of a
feature can be measured by how it’s repeatable across views and how well it char-
acterizes particular model. A feature which appears in multiple views of the same
model is more repeatable and likely to appear in a new view. On the other hand, a
feature which appears in multiple models is less characteristic for one model than
those present only in views of that single model. The two quality measures can be
characterized by the probabilityP (f j

i |Bj), wheref j
i is theith keypoint descriptor

of thejth model. This probability represents how likelyf j
i comes from the model

Bj and is approximated by:

P (f j
i |Bj) =

∑
k wj

k∑
l

∑
k wl

k

(11)

wherewl
k is the contribution of feature withf l

k located inside a local neighborhood
ε, ||f l

k−f j
i || < ε. The contribution depends on the distance between two descriptors



Fig. 6. The original set of 684 keypoints is shown in the left and the selected set of 326
keypoints is shown in the right. The circle center represents location of a keypoint and its
scale is represented by the size of circle.

f l
k andf j

i as:

wl
k ∝ exp

( ||f l
k − f j

i ||2
2σ2

)
(12)

whereσ is set to beε/3. If a feature is more repeatable for one model, it’s neighbor-
hood contains more features from same model, thus the numerator in Equation 11
will be larger and the probability will be higher. When a feature is more character-
istic for one model, it’s neighborhood will contain less features from other models,
thus the normalization factor (the denominator in Equation 11) will be smaller and
probability will also be higher.

For each model image, we keep only those features withP (f j
i |Bi) higher than cer-

tain thresholdτp; τp = 0.03 in our experiments. If the number of features is still
large, we keep the top 500 discriminative features. On the average, this procedure
discarded around 50% of features from the original feature set, reducing the stor-
age requirement and matching computation. Based on our experiments, the feature
selection step does not degrade the recognition. This is due to the fact that the re-
moved features are less repeatable thus unlikely to appear in the test image (i.e.
their chance of getting matched is low) and they are likely to appear in multiple
models, consequently interfering the recognition. As shown in Figure 6, the se-
lected features are mostly located on buildings. Because model images typically
capture buildings from different viewpoints, background pixels appearing in one
view may not appear in other views and hence are not selected.

3.3 Learning the parameterα

With the influence of the number of model features removed, the relationship be-
tweenαi and the match qualitydi (cosine measure) computed for two descriptors
can be represented by a function:F : di → αi. We learn this function in a super-
vised experiment setting. Given one test image and a number of model images (20
in our experiments, with correct model included), by fixing a particular threshold
τc, we can obtain a large set of matched pairs between the test image and those
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Fig. 7. The relationship betweenα and1− d.

model images. Suppose the total number of matches for a particular threshold is
M and among them we can identify a set ofN correct matches. The ratioN/M
reflects the probability of true correspondences for that givenτc. For more accurate
estimation, 8 test images were used to obtain the averageM̄ and N̄ . And M̄−N̄

M̄

is theατ parameter we want for thisτc. Repeating this for a number of different
τc’s, we can approximate the mapping in Figure 7. We adopt the following robust
function to approximateF .

αi = F (di) =
2s3

π(s2 + (1− di)2)2
(13)

This function closely approximates the above mapping whens is 0.3.

4 Experiments

The experiments we report in this section were carried out using mainly the ZuBud
database which is described in detail in [25]. The database is comprised of 201
buildings. 5 images per building were acquired with large variation of viewpoints,
in different seasons, weather and illumination conditions and by two different cam-
eras. Purposely some occlusions by trees and other objects were included in some
images.

4.1 Validation of the proposed indexing vector

To demonstrate the benefits of using the localized histogram we compared it with
few alternatives: a) using pixels from the detected straight lines only to form one
color histogram; detected, unfortunately too b) using all the pixels from the three
groups to form one color histogram. The first views of the 201 buildings are chosen
as models, the second views are chosen as test images. The results are summarized
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Fig. 8. Hit rate and average list size vary with regard to the maximum allowed list size.

in Table 1. The first three columns of the table list the hit rate of top1, top 5 and
the entire list, the last column shows the average size of lists for all the test images.

Table 1
Comparison with other methods.

1st top 5 list average size

Line pixels 65.5% 83.5% 88% 5.5

Single histogram 69% 89% 92% 5.0

Localized histogram 83.5% 93% 95% 5.1

Table 1 shows the clear advantage of the indexing vector. We can also see the benefit
of using variable topk list. While the top 5 list shows93% hit rate, an average size
of 5.1 list provides95% hit rate.

We also tried to evaluate how the indexing vector performs with regard toNm, the
maximum allowed list size. The results are shown in Figure 8. The average size of
lists increases almost linearly with the increasing ofNm, while the hit rate raises
quickly at first, then increase very slowly. Based on this curve, we setNm to be
20 for all our experiments. There are two reasons: the curve is concave downward
around 20; the corresponding average size of list is around 5 ( top 5 list is often
considered in other experiments).

4.2 Experiment with ZuBuD query database

To compare with the existing work, we use the query image database of ZuBuD [25].
With the first stage only, we got90.4% correct recognition and96.5% of them have
the correct model in top 5 list. Some results are shown in Figures 9 and 10. The
remaining 4 images are rather difficult to recognize. Three of them come from
one building, they failed because of a significant lighting and viewpoint change
between the query and the model views. The4-th failure is due to a dramatic view-
point change, which is difficult to recognize even for humans. Figure 11 shows the



two buildings. We can see the 32 dimensional indexing vector has a very good dis-
crimination capability. The first recognition stage alone shows better recognition
rate than the results reported by [26] (86%). Because of multiple model images in
this setting, the ambiguity measure we obtained in this experiment is very small.
For 64 query images only 1 candidate is selected. For the actual lists returned, 9
candidates are listed at most, and the average size is 2.2087. All the correct models
in the selected candidates lists are identified by the second stage, see Figure 5 for an
example. Thus the combined two stage recognition brings96.5% recognition rate,
4.5% better than the best reported work [5]. Since the second stage only needs to
compare few models, the speed problem is greatly alleviated.

Fig. 9. Correctly recognized test images by the first stage. The query image and the top four
results are listed from left to right.

To understand better the advantage of proposed indexing vector, we carried out an-
other experiment with ZuBuD database, which uses SIFT based matching directly
without the first stage. The voting scheme is used as a comparison baseline with our
original experiment. The result was90.4% recognition rate and with94.8% hit rate
in the top 5 list. We can see that the first stage alone provides better hit rate than the
second stage alone, although their recognition rates are the same (note the correctly
recognized buildings are different). The second stage is necessary because it uses
complementary information which can further improve the recognition.

4.3 Validation of the probabilistic model

For the experiment with ZuBuD database, since the first stage screens out most of
the candidates, the correct model has significantly more matches than other chosen
candidates. Thus simple voting scheme is enough to produce good results and the
benefit of the probabilistic model is not so apparent. We carried out additional ex-
periment based on a database of 68 buildings with no color information available.
Figure 12 shows some examples of this database. The first view of each building
is used as the model and the other two views are used as test images. Table 2 sum-
marizes our results. For 6 images which are misclassified by the voting method, the
probabilistic recognition gives correct result with the probability score more dis-
tinct than the number of matches (see Figure 12). Figure 13 shows one example.



Fig. 10. Incorrect recognition with the correct model in the top 4 list.

Fig. 11. The two buildings which were failed to be recognized. The query images are in
left, with their corresponding five model views right. Top: One query view of the building
which has 3 query views in the database, all of the three query views got wrong result.
Bottom: the building which causes4th failure. We can see those queries are rather difficult
to recognize.

Table 2
Recognition performance of SIFT based matching.

testing method view 2 view 3

voting 95.5% 88.2%

probabilistic 98.5% 91.2%

Fig. 12. Examples of additional building database.

This clearly demonstrates the benefits of using the probabilistic model for integra-
tion of the local descriptor matches.



Fig. 13. Wrong model gets 25 matches (left), while the correct model (right) gets 22
matches. U sing voting only would produce incorrect result. The probability of the wrong
model however is only 0.03, much less than the correct one which is 0.12.

From the efficiency standpoint our current implementation in MATLAB and C++
takes about 2s for processing a single query image on a 1.5GHz notebook computer
with the database of 201 building models. In case a planar motion can be assumed,
the processing time can be further improved. Additional speed up can be achieved
using fast approximate nearest neighbor matching in both stages. The first phase
of the proposed recognition scheme is also amenable for implementation using
currently available camera cell-phone image processing capabilities.

5 Conclusion and future work

We have described a hierarchical scheme for building recognition which can be
applied for urban navigation and image retrieval. Exploiting the assumption about
the presence of man-made structures, in the first stage, an indexing vector which
consists of localized color histograms is used to select a small subset of models.
Our experiments show that the localized color histogram has rather good discrimi-
nation capability which is comparable to the local feature based techniques, with-
out the need of finding correspondences. Extraction of the indexing vector is also
very efficient. In the second stage we used local feature based matching to identify
the true model from the subset. A simple and efficient probabilistic model is pro-
posed for integration of the matching results. The number of matches and the match
quality are both taken into account in the model, making the approach insensitive
to the matching threshold. The proposed recognition scheme scales well to large
databases due to the compact sized indexing vector.

In the future, we will consider preprocessing of the image with a suitable color nor-
malization strategy, so that more dramatic illumination can be tolerated. In the ab-
sence of color information, solely the second local descriptor stage can be applied,



with the selection of the discriminative features as well as probabilistic integration
of the matches. Once the correct model is identified further geometric constraints
can be used for computation of the relative pose of the query image with respect
to the model view. We have demonstrated this in our previous work [35]. Provid-
ing that the global information about the location of model image is available (as
provided for example by GPS), the proposed method could provide a complete
solution to the vision based localization problem.
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