“Out-of-the-box” Monitoring of VM-based
High-Interaction Honeypots

Xuxian Jiang, Xinyuan Wang

Department of Information and Software Engineering
George Mason University
Fairfax, VA 22030
{xjiang, xwangc} @ise.gmu.edu

Abstract. Honeypot has been an invaluable tool for the detection and analysis
of network-based attacks by either human intruders or automated malware in the
wild. The insights obtained by deploying honeypots, especially high-interaction
ones, largely rely on the monitoring capability on the honeypots. In practice,
based on the location of sensors, honeypots can be monitored either internally
or externally. Being deployed inside the monitored honeypots, internal sensors
are able to provide a semantic-rich view on various aspects of system dynamics
(e.g., system calls). However, their very internal existence makes them visible,
tangible, and even subvertible to attackers after break-ins. From another perspec-
tive, existing external honeypot sensors (e.g., network sniffers) could be made
invisible to the monitored honeypot. However, they are not able to capture any
internal system events such as system calls executed.

It is desirable to have a honeypot monitoring system that is invisible, tamper-
resistant and yet is capable of recording and understanding the honeypot’s system
internal events such as system calls. In this paper, we present a virtualization-
based system called VMscope which allows us to view the system internal events
of virtual machine (VM)-based honeypots from outside the honeypots. Particu-
larly, by observing and interpreting VM-internal system call events at the vir-
tual machine monitor (VMM) layer, VMscope is able to provide the same deep
inspection capability as that of traditional inside-the-honeypot monitoring tools
(e.g., Sebek) while still obtaining similar tamper-resistance and invisibility as
other external monitoring tools. We have built a proof-of-concept prototype by
leveraging and extending one key virtualization technique called binary transa-
tion. Our experiments with real-world honeypots show that VMscope is robust
against advanced countermeasures that can defeat existing internally-deployed
honeypot monitors, and it only incurs moderate run-time overhead.

1 Introduction

Malware that exploits network and system vulnerabilities has become an increasing
threat to the information systems we are depending on daily: They not only actively
take advantage of zero-day exploits [20-22] to compromise vulnerable machines, but
also stealthily hide in infected machines and inflict contaminations over time [10, 15],
e.g., by deliberately avoiding fast propagation and using rootkits to protect themselves.

From the defender’s perspective, security researchers have proposed and developed
a variety of systems and tools to capture, analyze, and ultimately defend against these

attacks. Among the most notable approaches, the honeypot [9] has been an invaluable
and effective tool for researchers to observe and understand the exploits, methods and
strategies used by attackers and malware. Particularly, high-interaction honeypots al-
low intruders to access a full-fledged operating system running unmodified vulnerable
applications with few restrictions. By closely monitoring the entire process on how the
honeypot is being probed, exploited, and misused, we can obtain unique insights on the
(possibly zero-day) vulnerabilities [17, 48, 59] being exploited, the detailed intrusion
steps used by the attacker, as well as the motivations behind the attack.

The effectiveness of using honeypots to obtain these insights heavily relies on the
monitoring capability on the honeypots that are supposed to be compromised and con-
trolled by the attacker or malware. Ideally, the monitoring should be 1) transparent to the
honeypot; 2) tamper-resistant even after the attacker gains access and takes full control
of the honeypot; and 3) capable of capturing and understanding honeypot system inter-
nal events such as system calls. Unfortunately, none of the existing honeypot monitoring
approaches achieves all the above three goals at the same time. Note that based on the
locations of sensors, existing honeypot monitoring approaches can be classified into
two main categories: internal and external. The external monitoring remains invisible
to the monitored honeypot but at the cost of losing the capability to capture the internal
system events such as system calls executed. On the other hand, the internal monitoring
deploys sensors inside the monitored honeypots and hence provides a semantic-rich
view on various aspects of system dynamics. However, the sensors inside the honeypots
could be detected, subverted and disabled by the attacker. For example, the de-facto
high-interaction honeypot monitoring tool — Sebek [4] — could be completely disabled
by NoSEBrEaK [35].

In this paper, we present a virtualization-based monitoring system called VMscope
that gives us the same deep inspection capability as existing internal monitoring tools
(e.g. Sebek) while being as transparent and tamper-resistant as existing external mon-
itoring tools (e.g. a network sniffer). By deploying itself completely outside the VM-
based honeypot (we call “out-of-the-box” monitoring in the rest of this paper), VM-
scope is tamper-resistant and transparent to the monitored system. Further, without re-
quiring any modification to the monitored system, VMscope runs at the virtual machine
monitor (VMM) layer and is capable of observing, recording, and understanding the
parameters and semantics of various VM-internal system events including system calls.
This gives us the same monitoring capability as existing internal sensors even though
we do not have any sensors inside. As an example, once a Sys_read system call of a VM
is observed, VMscope will examine from outside the VM the corresponding system call
parameters and understand which file is being opened for this read operation and what
will be the return value or content after the system call is completed. Furthermore, these
semantic-level information will be collected and stored outside the vulnerable honeypot
system, which gives us better tamper-resistance than other conventional approaches.

More specifically, to enable “out-of-the-box” monitoring, VMscope leverages and
extends one key software-based virtualization technique ! called binary translation
(implemented in VMware [16], VirtualBox[14], and QEMU [29]) to transparently ob-

!'In this paper, we focus our discussion on software- based VMM implementations and leave
the VMscope support for hardware-based virtualization as our future work.

serve, interpret, and record interested VM events at runtime. Note there exists another
comparable virtualization technique called para-virtualization (implemented in Xen
[27] and User Mode Linux [34]), which, however, is undesirable for VMscope pur-
poses. The reasons are: (1) Binary translation allows us to transparently support legacy
OSes in VMs without any modification on the guest OSes while para-virtualization
requires modification and recompiling of the guest OSes. Such a modification of the
VM-based honeypot not only violates the transparency requirement but also introduces
the risk of being detected and subverted; (2) Para-virtualization requires the access and
modification of guest OS source code, which could significantly limit our choices of
deploying commodity (commercial) OSes as honeypots. We point out that this design
choice differentiates our approach from earlier Xen or UML-based system monitoring
approaches [25, 40, 53]. In the meantime, being deployed completely “out-of-the-box”,
VMscope faces additional challenges, known as the “semantic gap” [31], when inter-
preting VM-internal events and state (Section 3).

To demonstrate the feasibility of “out-of-the-box”” monitoring, we have implemented
a proof-of-concept prototype based on an open-source binary translation-capable VMM
prototype called QEMU [29]. Our experimental results with real-world honeypot de-
ployment as well as the comparison with the de-facto honeypot monitoring tool (i.e.,
Sebek [4]) show that VMscope can achieve the same deep inspection capability as
internal monitoring tools while, at the same time, being transparent and tamper-resistant
against advanced attacks (e.g., NoSEBrEaK [35]).

The rest of the paper is organized as follows: Section 2 examines existing ap-
proaches in honeypot monitoring. Section 3 and 4 present the design and implemen-
tation of VMscope respectively. In Section 5, we show the experimental results with
real-world honeypot incidents as well as the comparison between VMscope and Sebek.
Section 6 reviews related works. Finally, we conclude in Section 7.

2 Traditional Honeypot Monitoring

Honeypot monitoring is one essential component in any honeypot deployment. Since
VMscope is designed to monitor high-interaction VM-based honeypots, we briefly
overview existing approaches that are used for high-interaction honeypot monitoring.
There exist two traditional ways to monitor honeypots: the network-based (i.e. exter-
nal) approach and the host-based (i.e. internal) approach. The network-based approach
uses traffic sniffers such as TCPDUMP [6] and Ethereal [2] to record every network
packet sent to or received from the monitored honeypot; The host-based approach, on
the other hand, uses specialized sensors deployed inside the honeypot to monitor and
record interesting system events (e.g., specific system calls). Note that these two ap-
proaches are complementary and each one has its own unique strengths and weaknesses.
The network-based approach is more transparent as the sniffers are deployed outside of
the vulnerable honeypots. However, it is unable to observe honeypot internal events.
Furthermore, its effectiveness is greatly minimized if the monitored network traffic is
encrypted. In comparison, with internally deployed sensors, the host-based approach
is able to observe the system events of the monitored honeypot. However, sensors
deployed inside the honeypot could be detected and tampered with by the attacker.

Here we choose to use Sebek [4] — the de-facto honeypot monitoring tool that has
been widely used in a variety of high-interaction honeypot systems [9, 39] — to illustrate
how honeypots are monitored in practice. In principle, Sebek works as follows:

— Firstly, Sebek installs itself as a loadable kernel module that will wrap or replace a
number of sensitive system calls in the original OS kernel with its own implementa-
tions. For example, the latest Sebek development (version 3.2.0b) for Linux kernel
2.6 is interested in the following 11 system calls: sys_open, sys_read, sys_readv,
sys_pread64, sys_write, sys_writev, sys_pwrite64, sys_fork, sys_vfork, sys_clone,
sys_socketcall. To intercept these system calls, the corresponding system table en-
tries will be overwritten by Sebek with its own system call handlers.

— Secondly, if the replacement is successful, the system call handlers provided by
Sebek will intercept subsequent invocations of these replaced system calls and
record their arguments as well as other context information (e.g., UID or PID).
After that, Sebek’s system call handlers will invoke the original system call service
routines to complete the requested service.

— Finally, the collected information about the invoked system calls will be stealthily
sent to a remote trusted Sebek server so that we can analyze the collected system
call information in real-time or save the log for later investigation.

In order to reliably monitor potentially malicious activities happening inside the
honeypot, internal sensors such as Sebek need to be stealthy and tamper-resistant.
Unfortunately, any sensor inside the honeypot could be potentially detected, subverted,
or evaded by sophisticated attackers after they gain complete control over the honeypot.
For example, it has been successfully demonstrated [53] that, after the compromise of
a Sebek-based honeypot, attackers can detect the existence of Sebek by identifying
a variety of Sebek-introduced “anomalies”: (1) the modification on the system call
table by Sebek; (2) the inconsistency in the statistics (e.g., transmit-counters) of the
Ethernet device on the system caused by Sebek; and (3) the existence of a hidden
Sebek module in the honeypot. Furthermore, once identified, Sebek can be disabled or
circumvented. For example, an attacker can choose to re-overwrite (e.g., unsebek [32])
those system call entries that are hooked by Sebek or use other alternative system calls
(e.g., NoSEBrEaK [35]) instead of those Sebek-hooked system calls (e.g., Sys_read) to
achieve the same goal. Further information about Sebek as well as possible attacks can
be found in [4, 35, 53].

In summary, while existing host-based (i.e. internal) honeypot monitoring approaches
are capable of observing and interpreting the honeypot’s system internal events, they
are fundamentally limited in achieving transparency and tamper-resistance due to the
internal deployment of sensors inside the honeypot. Existing network-based (i.e. ex-
ternal) honeypot monitoring approaches are transparent, invisible and tamper-resistant,
but they could not monitor honeypots’ system internal events. In other words, currently
available honeypot monitoring approaches would force the honeypot designer to either
sacrifice the tamper-resistance for the deep inspection capability or sacrifice the deep
inspection capability for the tamper-resistance of honeypot monitoring. In the rest of
this paper, we show via VMscope that it is indeed possible to achieve transparency,
tamper-resistance and deep inspection capability at the same time when monitoring
honeypots.

A Honeypot A Virtual Honeypot

.......
.......
Apach Firefox
Apachi Firefox | e

77777777777777777777777777777777 Guest OS
Operating System (OS) Log
>>>>>> Virtual Machine Monitor (WVMM)
(a) The traditional Sebek-based approach (b) The proposed VMscope-based approach

Fig. 1. A comparison between the traditional Sebek-based approach and the proposed VMscope-
based approach in honeypot monitoring

3 VMscope

In this section, we present the VMscope design, which enables the deep inspection of
VM-based high-interaction honeypots without deploying any sensors inside.

3.1 Placement of Event Logging

Figure 1 shows the main difference between VMscope and traditional (internal) hon-
eypot monitoring tools (Sebek is chosen as the representative example). Unlike the tra-
ditional approach where the monitoring tools are deployed “inside the box”, the place-
ment of VMscope is unique in that it is deployed outside of the monitored VMs. Such
“out-of-the-box” placement is desirable because it leverages the isolation property from
virtual machines to strictly confine processes running inside the VM such that, even if
they are compromised by attackers, it will be hard, if not impossible, to compromise the
VMscope outside of the VM. In the meantime, since VMscope runs underneath the VM-
based honeypots, it has access to all VM-internal system state and can intercept every
network packet from/to the VM, indicating that it can still reliably monitor the system
dynamics of a honeypot even after being compromised. In comparison, the effectiveness
of existing tools including Sebek, which are deployed inside the monitored honeypots,
becomes susceptible after the honeypot is compromised. The reason is that they could
also be identified, circumvented, or compromised. The development of unsebek [32] as
well as disclosed ptrace-related vulnerabilities [19] ? clearly demonstrate this weakness.
The proposed VMscope approach also has another benefit in the way of collecting
and saving honeypot logs. In order to protect the integrity and trustworthiness of col-
lected honeypot logs, they can not be stored inside the vulnerable honeypot systems
and typically should be securely transferred to a remote trusted location. The network-
based transmission is unavoidable for traditional monitoring tools that are deployed
“inside the box”. Unfortunately, such transmission behavior can lead to certain side-
effects (e.g., the transmit-counters of a particular NIC), some of which can be exploited
by attackers to identify the very internal existence of these honeypot monitoring tools
and cascadingly compromise them [53]. In comparison, VMscope directly stores the
collected log data at the host domain, which is outside the monitored honeypot.
% In Section 5.1, we will describe a honeypot incident that exploits one ptrace vulnerability to
completely compromise the honeypot.

3.2 Interception and Interpretation

The “out-of-the-box” deployment does significantly improve the tamper-resistance of
VMscope. However, it also poses significant challenges on the interception and inter-
pretation of interesting system call events that are currently happening inside monitored
VMs. For instance, the external placement prevents VMscope from hooking system
calls by directly overwriting certain entries in the VM’s system call table.

The distinctions between two mainstream virtualization techniques (Section 1) are
useful in understanding the well-known “semantic gap” challenge [31] when observing
and interpreting the internal VM state/event at the VMM layer. Particularly, the modi-
fication on the guest OS source code by para-virtualization-based approaches naturally
enables the interpretation of the VM state as the modified components are already a
part of the guest OS kernel. However, the transparent support from binary translation-
based approaches unintentionally creates a significantly larger gap in semantically un-
derstanding VM-internal state or events as the VMM is now completely running “out
of the box”.

Our approach leverages and extends the original binary translation technique to
selectively rewrite other “interesting” instructions, in addition to those non-virtualizable
instructions (e.g., POPF). More precisely, to intercept system call events of a VM,
we are also interested in translating those system call instructions (e.g., int $0x80 or
sysenter/sysexit) that are being invoked by internal processes.

Moreover, the semantics implicitly associated with these system call instructions are
used for their interpretation. Specifically, upon the interception of an interesting system
call event, the corresponding interpretation code will be executed to understand and
collect the associated context information to resolve the semantic gap. Note that, similar
to the interception, the interpretation code is also running in the context of virtual
machine monitor (VMM), not inside the guest VM. As such, VMscope instantiates a
general methodology known as virtual machine introspection (VMI) [38], which allows
to analyze software running in a VM by examining its system state from outside the
VM. For example, upon the interception of a Sys_execve event, we need to find out
which new process is being launched. The answer lies in the arguments or the context of
this system call. Specifically, for the sys_execve system call, the EBX register contains a
memory address that points to the string of process file name; the ECX register has the
memory address of an array of strings with all command line arguments (i.e., argv[]);
and the EDX register contains the memory address of another array of strings with all
environment settings (i.e., envp[]). Finally, we would like to point out that every above-
mentioned memory address is a virtual address, which is specific to an internal process
and would be different for different processes. As such, its interpretation requires the
traversal of the page table of that particular process running inside the VM. We defer
the technical discussion to Section 4.

3.3 Sdection of System Events

It is important to select a right set of system events which could provide important
“leads” to understand attackers’ behavior. Since the main way for an attacker to inflict
damages on a system is by making system calls, we choose system call events as
the main source for honeypot logging. However, we do point out that VMscope is

capable of capturing other system-wide events. For example, the context switch event
is useful to identify the moment when a new process is being switched in for execution.
Such event is valuable if additional monitoring events should be activated just for a
particular process. In this paper, we only examine the application of collecting system
call events for honeypot monitoring purposes. The exclusive focus on system call events
is consistent with existing approaches [39, 33] for honeypot log collection. Particularly,
the fact that Sebek only replaces 11 system calls (Section 2) actually implies that
VMscope may only need to intercept these 11 system calls.

However, we notice that a system call could be somehow substituted with other
system calls to achieve the same goal. Consequently, the log with an incomplete set
of system calls could not reveal a complete picture of attack behavior. Moreover, if
these alternative system calls are not selected for interception, they can be leveraged by
attackers to inflict their damages without being logged, hence significantly undermining
the honeypot value. For example, the Sys_read system call is commonly used to read
a file’s content and this event is mainly intercepted by Sebek to provide important
information about attackers, including the keystrokes that are not possible to uncover
by only analyzing encrypted network communication. A program or a malware can
alternatively call sys_-mmap or sys_-mmap2 to map the file into memory and directly use
memory pointers to access the file content without being logged.

As another example, if a file is being opened (Sys_open) and its content will be
read (sys_read) and written (Sys_write) to a network socket, a single system call, i.e.,
sys_sendfile, can be used to consolidate these two system calls sys_read and sys_write
without undermining the functionality. In fact, a countermeasure tool called NoSE-
BrEaK [35] has already been developed to effectively circumvent Sebek — the de-facto
honeypot monitoring tool. More specifically, NoSEBrEaK could exploit and control a
honeypot monitored by Sebek in such a way that any commands issued through NoSE-
BrEaK will not be captured by Sebek. Considering these possible attacks, VMscope
is designed to capture all system call events. We will present the comparison between
VMscope and Sebek more thoroughly in Section 5.

Finally, we point out that VMscope captures all system call events during the life-
time of a monitored honeypot, starting from the first moment when it is booted to the
last moment it is shut down. This is different from most of existing approaches that
need a working normal system before activating the log collection. As such, there exists
a window of vulnerability within which system call events will not be monitored and
attackers could potentially exploit this vulnerability window to invoke certain backdoor
services without being noticed. As an example, the loadable kernel module of Sebek
is not able to capture those system call events executed during the system bootstrap
phrase. We point out that some stealthy rootkits such as Suckit [56] is able to manipulate
the system bootstrap process to start some backdoor services before launching logging
processes. This interesting capability of VMscope can be uniquely used to detect any
anomaly during the system’s bootstrap process.

4 Implementation

We have implemented a proof-of-concept system based on an open-source emulation-
based VM implementation called QEMU [29]. The two main reasons why we choose

QEMU are: (1) It implements a basic approach of performing dynamic binary transla-
tion, which is leveraged and extended by VMscope to observe and interpret interesting
system call events from outside the VM; (2) Upon the observation of VM system events,
we need to embed our own interpretation logic to extract related context information.
The open-source nature of QEMU provides great convenience and flexibility in making
our implementation possible.

4.1 Interception

To better understand how the interception of VMscope works, we need to first under-
stand the dynamic binary translation technique of QEMU [29]. We briefly summarize
it as follows: (1) Firstly, QEMU splits each target CPU instruction into fewer simpler
instructions called micro operations, each of which is implemented by a small piece of
native C code and compiled by GCC to an object file; (2) The generated object file is
then used by a compile time tool called dyngen[29] to generate a dynamic code gener-
ator. The dynamic code generator will be invoked at runtime to dynamically translate
target instruction sequences into executable host code in the form of basic blocks.

To speed up the process of translating a sequence of target code, QEMU keeps
translating the target code sequence until it encounters an jmp instruction (including
other variants such as je/jne/jcxz/ljmp instructions) or an instruction that will essentially
modify the target CPU state in a way that cannot be deduced at translation time [29].
One such example is the instruction — repz stos %ax,%es:(%di), which will modify the
zero flag (ZF) in the target CPU state. Another example is the system call instruction
in Linux — int $0x80, which will trigger the transition from the user mode to the kernel
mode and directly modify the target CPU state. Another interesting trick of QEMU
is to take advantage of the native compiler to construct the target code sequences
automatically and the chore of each individual instruction translation largely occurs
at the compilation time, instead of at the runtime.

To log all system call events, VMscope leverages and extends this binary transla-
tion capability to intercept all system call instructions, namely int $0x80 and sysen-
ter/sysexit. More specifically, before a system call instruction is executed, a VMscope-
provided callback routine will be invoked to collect the associated context information
(Section 4.2). In addition, right after the system call is completed, another callback
routine will be invoked to obtain the return value, which essentially requires the inter-
ception of the instruction immediately following the system call instruction (simplified
as the post-syscall instruction). Considering the fact that the actual execution of a
system call instruction will trigger the transition from the user mode to the kernel mode,
we need to keep a local copy of the location of the post-syscall instruction 3. Once the
post-syscall instruction is being translated, the interpretation code should be invoked
again to collect the return value(s) of the previous system call instruction.

Intuitively, we can have a single VM-wide variable to hold that location. Unfor-
tunately, the multitasking support in modern OS kernels makes it more complicated.
Considering the following scenario: process A is opening a local file with the system
call sys_open. Before this system call returns, a context switch occurs and another

3 The local copy is not needed for the system call instruction pair Sysenter/sysexit as the
instruction Sysexit can uniquely identify itself.

process B is chosen for execution, which leads to the return from a previous Sys_read
system call (of process B). To correctly interpret this return value, we need to correlate
it with the corresponding system call from the same process. As such, we need to
maintain a per-process memory area at the VMM layer to keep this syscall context
information, which essentially requires the capability of VMM to keep track of the
lifetime of running processes.

It is interesting to point out that our initial prototype avoids this problem by exploit-
ing the way how the kernel-level process stack is organized and utilized. Specifically, for
each process, Linux consolidates two different data structures — the process descriptor
thread_info* and kernel-level process stack — in a single per-process memory area called
thread_union (defined in the include/linux/sched.h).

union thread uni on {
struct thread info thread i nfo;
unsigned long stack|2048]; /* 1024 for 4KB stacks */

1

The length of this memory area is usually two page frames (8, 192 bytes or 8K), which,
for efficiency reasons, are stored consecutively with the first page frame aligned to a
multiple of 2'3. Based on the observations that the current kernel-level stack pointer is
maintained in the ESP register and the size of 8/ contains enough space for the stack
and the thread_info data structure, we could choose to store the location of the post-
syscall instruction right after the thread_info data structure. This approach does bring
two advantages: (1) Firstly, it avoids the need to keep track of the lifetime of an internal
process; (2) Secondly, we can efficiently access the post-syscall location value’ through
the ESP register, i.e., ESP&(8192-1)+sizeof(struct thread_info). However, considering
that the variable is stored inside the guest OS kernel and therefore could be poten-
tially manipulated by attackers, our current prototype maintains them in the per-process
memory area at the VMM layer, which is outside of the VM.

4.2 Interpretation

The correct interpretation of intercepted system call events requires the understanding
of the calling convention on how to invoke a system call. On Linux, it will pass system
call arguments mainly through registers. For example, the system call number is kept in
the EAX register and, for system calls with no more than 6 arguments, the arguments are
passed in EBX, ECX, EDX, ESI, EDI, and EBP registers, respectively. For system calls
with more than 6 arguments, they are simply pushed on the stack and a pointer to the
block of arguments is passed in the EBX register. After the system call is completed,
the result will be returned in the EAX register. Note that the placement of VMscope
allows us to observe the content of these registers.

In addition to reading the numerical values of these registers, VMscope will also
correlate them with run-time information to identify the associated semantic meaning.

4 For Linux kernel 2.4 versions, the process control block structure task_struct is packed together
with the kernel level stack into the per-process memory area.

3 For Linux kernel 2.4 versions, the post-syscall location value can be calculated as ESP& (8192-
1)+sizeof(struct task_struct).

Process ID (Process Nane) [System Cal | #]: System Cal | Arguments

PID 675 (httpd)[sys_accept 102]: socket 3

PID 675 (htt pd) 102]: 12 [syscal | return]
PID 675 (httpd)[sys_getskna 102]: socket 12

PID 675 (htt pd) 102]: O famly 2; 192.168.1.2:80 [syscal | return]
PID 675 (httpd)[sys_pol | 168]: nfd 1; tinmeout 300000; fds[0].fd 12 (events 1);

PID 675 (htt pd) 168]: 1(nfds 1) fds[0].fd 12 (revents 1); [syscal | return]
PID 675 (httpd)[sys_read 3]: 12

PID 675 (ht t pd) 3]: (GET /12345.htni HTTP/1.1 Host ...)440 [syscall return]
PID 675 (httpd)[sys_stat64 195]: /var/wwy htn /12345, htni

PID 675 (ht t pd) 195]: 0 [syscal | return]
PID 675 (htt pd) [sys_open 5]: /var/ww/ htm /12345 htnl; flags O

PID 675 (htt pd) 5]: 13 [syscal | return]
PID 675 (httpd)[sys_witev 146]: fd 12; iov[0].base 0x08223f58 |en 277; iov[0] (HTTP/1.1 200 CK..)
PID 675 (htt pd) 146]: 277 [syscal | return]
PID 675 (httpd)[sys_sendfil 187]: out-fd 12; in-fd 13

PID 675 (htt pd) 146]: 1627 [syscal | return]
PID 675 (httpd) [sys_shut dow 102]: socket 12 (SHUT_WR)

Fig. 2. VMscope log excerpt showing how the Apache web server (Redhat 8.0) responses to an
incoming request for the /var/www/html/12345.html

As an example, for a Sys_open system call event, the EBX register contains the memory
address pointing to the file name that is intended to open. As mentioned earlier, this
memory address is a virtual address and it is specific to the internal monitored process.
As such, after obtaining the EBX content, VMscope further needs to traverse the page
table related to the internal process to find the actual file name. Since VMscope is
running outside the VM, the actual traversal requires a slightly different memory ad-
dressing scheme. We accomplish this by externally traversing the page table related to
the internal process responsible for the intercepted system call. Note that the page table
base address can be located through the CR3 control register. To protect the virtual
memory process space from each other, each process will have its own, unique page
directory and Linux loads the CR3 register for the new process that is switched in for
execution on every context switch.

As a concrete example, Figure 2 shows the log excerpt collected when the Apache
web server (version 2.0.40) serves an incoming request that asks for a web file named
12345.html. The collection of these system call events enables the understanding on the
dynamics of the Apache web server. More specifically, the sys_accept’ system call is
used to accept the incoming TCP 3-way handshake request and the sys_poll is used to
wait for actual HTTP request content. The arrival of the HTTP request will be followed
by a sys_read system call and the payload is then interpreted to find out the intent of
the client. In this case, it is requesting for the 12345.html file through the HTTP/1.1
protocol. The web server checks the existence of the requested file (via Sys_stat64) and
then opens it (via sys_open). Instead of directly reading the file content (via Sys_read)
and writing the content back to the client (via sys_write), the server directly uses the

® There exists a top-level network-related system call, i.e., Sys_socketcall, which supports
a number of sub-commands such as socket, bind, connect, listen, accept, getsockname,
getpeername, socketpair, send, recv, sendto, recvfrom, shutdown, setsockopt, getsockopt,
sendmsg, and recvmsg etc.

sys_sendfile to send the file content. Finally, the connection with the client is shut down
(via sys_shutdown).

Our current prototype supports 259 system calls (with 2835 lines of code implemen-
tation) and will interpret the semantic meaning of their arguments and return values.
Note that the way to interpret the return value is the same as the way in interpreting
the system call under the context of the corresponding system call. As pointed out
earlier, it is complicated by the multitasking support in modern OS kernels because
potential context switches require VMscope to remember these context information.
Similar to the way in handling the post-syscall instruction, we store the associated
system call context information (e.g., EBX, ECX, etc) in the per-process memory area
at the VMM layer when processing the system call instructions. Once the system call
is returned, VMscope can conveniently examine its context information from the per-
process memory area and then interpret the return value accordingly. As shown in
Figure 2, VMscope is able to print out the client request payload (e.g., GET /12345.html
HTTP/1.1 Host...) that is not contained in the system call return value — the EAX
register. Also notice that for each intercepted system call event, VMscope will collect
the associated process information such as PID and process name. Note that these
information are kept in the task_struct data structure, which can be deducted from the
first member of the thread_info data structure.

5 Evaluation

In this section, we evaluate the effectiveness and efficiency of VMscope. In particular,
we conduct two sets of experiments (Section 5.1) to show: (1) How advanced intrusions
that successfully evade internal logging can still be captured by VMscope; and (2)
Whether the collected log by VMscope is sufficient in practice to reconstruct detailed
attackers’ behavior. We present performance measurement results in Section 5.2 and
discuss possible limitations in Section 5.3.

5.1 Effectiveness

Experiments with NoOSEBrEaK VMscope advances existing honeypot monitoring
techniques by eliminating the need of installing logging sensors inside the honeypots
while maintaining the same deep inspection capability as traditional internal honeypot
monitoring tools. To demonstrate this capability, we perform a number of experiments
to compare the effectiveness of VMscope and Sebek, which is the de-facto honeypot
monitoring tool, especially under advanced attacks. More specifically, we choose a
recent development of NoSEBrEaK that is able to maintain its tight control on a com-
promised honeypot system while all of its commands can circumvent the logging by
Sebek.

We prepare a Linux-based honeypot with Sebek 3.2.0b installed to monitor the
system dynamics. Similar to the NoSEBrEaK attack outlined in [35], we introduce a
vulnerable CGI program that will be exploited to load and execute a binary from the
network. During the attack, a binary consisting of the Python runtime environment as
well as a specialized kebes[35] server program is launched after the exploitation. In
this experiment, we simply start the server program and use the corresponding client to

VMScope

Fedora Core release 5 (Bordeaux)
Kernel 2.6.15.1 on an iH686

fairfax login: root
Password:

Last login: Tue Mar 28 17:22:49 on ttyl Linux Fedora Core 5 Honeypot

[root@fairfax "1# cd honeypot_demo/ . .
[root@fairfax honeypot_demol#t sh demo.sh with Sebek installed
[rootRfairfax honeypot_demol#t Installing Sebek:

iptables-nat.ko installed successfully

[root@fairfax honeypot_demol
[root@fairfax honeypot_demol

h xjiang@centreville:~ fhoneypot_demo /sebekd-3.0.3 = O] %
[xjiangBoentreville sebekd-3,0,31% sudo ,#sbk_extract -i br0 -p 1101 | ,/sbk_ks_log,pl
monitoring bri: looking for UDP dst port 1101

129,174,442, 43 2007/03/20 21:23120: record O recieved 1 counter roll or out of order packets,
[2007-03-20 21:23:28 Host:129,174,42,43 UID:0 PID:1813 FI30 IND:999 COMibash]#

[2007-03-20 21323:28 Host3129,174,42,43 UID:0 PID;1813 FD:0 IND:939 COMibash 1#
%ﬁ9‘1?4‘42‘43 20070320 21524126 record 381 recieved 381 lost 0 (0,00 percent])

The Sebek server

[xjiangBcentreville kebes]$ more demo,sh
#l/bindbash

python shell-demo,py

[xjiangBcentreville kebes]$ sh demo,sh
03 connecting to fairfax ...

1: uploading our rootkit (adore-ng)

23 installing the rootkit

23 creating an interactive shell
[MoSEBrEakRf airfax” 1#/usr/bindid -a
uid=0{root) gid=0{root) groups=0iroot),1(bin},2{daenon},3(sys] 4ladn) Bidisk) 10{uheel} context=root:system_riunconf
ned_t;Systenlow-Systemtigh

MNoSEBrEakif airfax J#/binthost .
Lt lonioe The NoSEBrEaK dlient

HoSEBrEak@fairfax" 14l

(a) Sebek versus NoSEBrEaK

ng@centr
sh demo,sh
zh . /start_sebek,sh
sh ./start_nozebek,sh
L#zbk_install,sh
python server,py
cp sroc/sbk,ko iptables-nat.ko
/#sbindinamod ,/iptables—nat.ko al51=129,174,42, 44 a134=00:18:8b:36:94:e
=0 a107=1111 ad3=1
chmod +x installish

FID 1844 (bash}[sys_execve 11
FID 1345 sh)[sys_execve 11
FID 1846 § shi[sys_execve 11
PID 1847 (shilsys_execve 11
PID 1848 © shi[sys_execve 11
PID 18439 { sbk_install,sh)[sys_execve 11
PID 1850 { sbk_install,shi[sys_execve 11
U oal2d=1101 a62=1101 aldZ=ethd a73=1 a92=1 &
FID 1857 puthon}[sys_execve 11

P R Y

PID 1858 £ python}[sys_execve 11]: chmod +x ava

FID 1859 § puthoni[sys_execve 1111 install,sh

PID 1860 iristall,shi[=ys execve 1113 insmod |, Aadore-ng=2,.6.ko
FID 1863 © install,shi[sys execve 1113 .Java h ava

PID 1264 i install.shi[sys_execve 1113 .Java h adore-ng-2.6.ko
FID 1865 f install,shi[=ys_execve 1111 ,Fava h install.sh

PID 1867 § puthon[sys_execve 11]: Ausr/bindid -a

FID 1868 python)[sys_execve 1111 Abinfhostname

s

(b) VMscope versus NoSEBrEaK

Fig. 3. The comparison of honeypot monitoring results from Sebek and VMscope when under the
NoSEBrEaK attack: the VMscope log shows related Sys_execve events.

communicate with it through an AES-based encryption channel. The secure communi-
cation is set up by following a standard Diffie-Hellman key exchange procedure, which
avoids the need of pre-shared secrets between the client and the server.

Figure 3(a) shows the screenshot of the experiment, which has three xterm windows.
The top window (with the black background color) is a Linux honeypot running Fedora
Core 5; the middle one (with the white background color) shows the log output from
Sebek that is pre-installed inside the honeypot; the bottom one (also with the white
background color) is the NoSEBrEaK-based attack window after launching the kebes
client, which communicates with the server program and gains access to the honeypot
system. As shown in the bottom window of Figure 3(a), the NoSEBrEaK-based attack
leverages the kebes communication channel to stealthily upload and install a kernel
level rootkit named adore-ng [7]. The rootkit is used to hide the existence of related
adore-ng rootkit files or processes. After that, an interactive shell is created and two
shell commands — /usr/bin/id -a and /bin/hostname — are subsequently executed. It is
interesting to note that the middle Sebek window does not record any activities about
this NoSEBrEaK attack, indicating that it has been successfully circumvented.

In comparison, we show in Figure 3(b) the VMscope log entries related to the same
attack. The result shows that VMscope successfully records every command executed,
starting from the very beginning of setting up the Sebek module, i.e., the command
/sbin/insmod ./iptables-nat.ko a151=129.174.42.44 a134=00:18:8b:36:94:e0 a121=1101
a62=1101 al42=eth0 a73=1 a92=1 a95=0 al107=1111 a43=1 that hides the Sebek
module as iptables-nat.ko, to the very end of two additional shell commands —/usr/bin/id
-a and /bin/hostname. In the middle of Figure 3(b), it also records those commands
involved in installing the adore-ng rootkit as well as how the rootkit is instructed to
hide malicious files. This direct comparison clearly shows the unique advantages from
VMscope, which can not be provided by existing honeypot monitoring tools.

Experiments with the Slapper worm The previous experiment demonstrates the
capability of VMscope to reliably record stealthy attackers’ behavior. In the following
experiment, we aim to show the sufficiency of VMscope logs in reconstructing attack-
ers’ behavior. To this end, we choose a well-known Slapper worm attack [51]. This
experiment is conducted in a local isolated lab environment.

Instead of showing the detailed VMscope log (> 190, 000 system call events) about
the worm infection, we choose to show in Figure 4 the contamination graph inflicted on
the compromised system by the worm. In the contamination graph, an oval represents
a running process, a rectangle represents a file, and a diamond represents a network
socket. Inside the oval are the PID and name of the process. Note that the contamination
graph is constructed by following the same algorithm as outlined in [42].

To show the sufficiency, we compare our result with a detailed log file collected
by an internal (open-source) system call tracking tool called syscalltrack [5] as well
as another detailed Slapper worm analysis [51] and confirm that Figure 4 reveals all
contaminations by the Slapper worm. Specifically, our log shows that the Slapper worm
infection mainly involves three steps:

Step 1: It first exploits a buffer overflow vulnerability [51] in an httpd worker pro-
cess (PID:1691 in this experiment) to obtain system access to the vulnerable system. As

Step 1: Exploiting the Apache web _ - - ---__
server vulnerability -7 —wwme— \’}/6915 httpd

4 - N
\

1 \

,: /bin/bash —i

e Step 2: Uploading and generating
Ve the Slapper worm binary

1714: fusr/lib/gee—lib/i386-redhatinux/2.96/cc |

Fig. 4. Slapper worm infection reconstructed from VMscope log

indicated by the execution of the command (/bin/bash -i), the exploitation is successful
and it leads to the creation of a remote shell.

Step 2: From the spawned remote shell, it further uploads a uuencoded[13] version
of the worm source code to the compromised system and then decodes it (/usr/bin/uudecode
-0 /tmp/.bugtrag.c /tmp/.uubugtraq), locally compiles (/usr/bin/gcc -0 /tmp/.bugtraq
/tmp/.bugtrag.c -lcrypto) it to generate the worm binary code.

Step 3: After that, the binary code is launched (/tmp/.bugtraq 192.168.10.5) to
start next-round of propagation. Further investigation shows that the Slapper worm is
rather sophisticated in creating a customized peer-to-peer attack network from these
compromised machines. The IP address involved in this step is the one that infected
this vulnerable machine, not the victim IP address chosen for next-round of infection.
Experimentswith honeypots We also deployed a number of honeypots in the wild to
demonstrate the effectiveness of VMscope in monitoring real-world attacks. In the fol-
lowing, we choose one representative incident and describe how VMscope effectively
reveal the detailed attack behavior.

Process ID (Process Nane) [System Cal | #] System Cal | Argunents

PID 1562 (sh)[sys_execve 11]: bash -i

. 1. Gaining a regul ar
PID 1572 (bash)[sys_execve 11]: unane -a .

PID 1573 (bash)[sys_execve 11]: id account: apache

PID 1574 (bash) [sys_execve 11]: w

PID 1632 (bash)[sys_execve 11]: Is

PID 1633 (bash)[sys_execve 11]: wget xxxxxxx.xx.ro/soft/expl 2. Escalating to the
PID 1634 (bash)[sys_execve 11]: chnod +x expl root privilege
PID 1635 (bash)[sys_execve 11]: ./expl

PID 1674 (sh)[sys_execve 11]: wget Xxxxxxxx.xx.ro/soft/naky.tgz | ~~ -~~~ "~~~ """
PID 1676 (sh)[sys_execve 11]: tar -zxvf naky.tgz 3 i ¢
PID 1679 (sh)[sys_execve 11]: chrmod +x * . "?‘g ng a se
PI D 1680 (sh)[sys_execve 11]: ./install o ackdoors

PI D 1882 (bash) [sys_execve 11]: nkdir ". " | oo oo nTons
PI D 1883 (bash)[sys_execve 11]: wget wwwv XXXxxxxx.org/vul turul/bnc.tgz

PID 1886 (bash)[sys_execve 11]: tar xvfz bnc.tgz 4 Lg‘st ?luln'"g& gne\llz«n:
PID 1888 (bash)[sys_execve 11]: rm-rf bnc.tgz after reboot

PI D 1889 (bash)[sys_execve 11]: nv psybnc crond

PID 1892 (bash)[sys_execve 11]: crond

PID 1894 (bash) [sys_execve 11]: pico /etc/rc.d/rc.local | - === - === - - -

Fig. 5. VMscope log of intruder activities after Apache break-in

This honeypot incident is related to an OpenSSL vulnerability [18] in the Apache
web server (version 1.3). It was deployed at 23:00pm, Jan. 26th, 2007 and then com-
promised 3 hours later. From the collected log, a TCP connection heading for port 443
is firstly established. The connection is used by the attacker to send a specially-crafted
chunk-encoded HTTP request. The request will cause a buffer overflow in the Apache
web server, resulting in the execution of malicious code, which is also contained in
the request. In this incident, the code spawns a UNIX shell using the exploited Apache
account. VMscope records all of related system call events and, particularly, we show
in Figure 5 the subsequent keystrokes issued by the attacker after the exploitation.

We observe that after obtaining the system access by exploiting the Apache vulner-
ability, the intruder attempts to escalate into the root privilege by leveraging some local
vulnerability. The recorded keystrokes (Figure 5) show that the intruder downloads a
tool named expl, which turns out to exploit the ptrace [19] vulnerability to obtain the
root privilege. After that, the attacker begins to run a customized script and install a
pre-packaged package named naky.tgz. Later forensic analysis shows that the package
contains a trojaned ssh daemon, two infamous kernel-level rootkits — adore and knark,
and a log cleaner. The trojaned ssh daemon will directly give the intruder a root shell
after authentication. After executing the customized script, the intruder also downloads
a software package bnc.tgz, which contains a bot software named psybnc. The attacker
renames the bot software as crond and modifies a system-wide configuration file, i.e.,
[etc/rc.d/rc.local, so that the trojan service will be restarted even after machine reboot.

5.2 Performance

We evaluate the performance of VMscope with a number of benchmarks, including real
applications and standard micro-benchmarks. Our testing platform was a Dell Pow-
erEdge server with a 3.73GHz Intel Xeon processor and 4GB of RAM. Table 1 shows
the configuration details for each benchmark test. For each benchmark, we run 10
experiments and record the average results. Each result has been normalized with re-
spect to the speed of the unmodified QEMU system, which is referred to as the BASE
measurement.

Table 1. Configuration information used for performance evaluation

Item \ersion Configuration
RedHat Fedora Core 5|Run a customized Linux kernel 2.6.15-1
Apache 2.2.0-5.1.2 |Default configuration in the Apache Worker MPM mode
ApacheBench|0.63 ./ ApacheBench -n 100 -c 10 <url/file>
Nbench 222 Default configuration
Gzip 1.33 Compress a 256 MB file
Make 3.8.0 Compile Linux kernel 2.6.15-1
Unixbench [4.1.0 Default configuration
100 [O BASE W \VMscope]
g 60 -
E
20
o
Apachez2.2 nbench gzip make unixbench

Fig. 6. Normalized performance for applications and benchmarks

Five benchmarks that we consider to be a reasonable assessment of the system’s
performance can be found in Figure 6. First, the Apache [8] web server was run in the
Worker MPM mode to serve a 32k-size web page. The ApacheBench program was then
run on another machine in the same Ethernet to determine the request throughput of
the system as a whole. VMscope achieved 96.4% of the BASE throughput. Next, the
nbench [3] suite was used to show the performance under a set of primarily computation
based tests. The slowest test (LU DECOMPOSITION [3]) in the nbench system came
in at 92.1% of fullspeed. Third, gzip was used to compress a 256 megabyte file, and the
operation was timed. The VMscope-monitored system was found to run at 96.6% of
fullspeed. Fourth, make was used to compile the Linux kernel 2.6.15-1 source code and
the VMscope achieves the 93.4% of fullspeed. Finally, the Unixbench [12] unix bench-
marking suite was used as a microbenchmark to test various aspects of the system’s
performance at tasks such as process creation, pipe throughput, filesystem throughput,
etc. The overall score indicates that the monitored system ran at 85.6% of normal speed.
As a result, the overall performance of VMscope is reasonable with no less than 85%
of the BASE system.

5.3 Limitations

There are a few limitations to our approach. Firstly, VMscope assumes a trustworthy
virtualization-based substrate layer to host high-interaction honeypots. In other words,
though attackers might compromise the vulnerable system arbitrarily, we assume that
they cannot break out of the VM environment and compromise the underlying VMM.
VMscope itself should also be considered as a part of the trusted computing base (TCB)

of the system, which would result in a slightly larger TCB base. For example, when
interpreting the observed system call events, current prototype would add 2835 lines of
code (LOCs) to the TCB.

Secondly, to properly interpret system call events, VMscope requires the knowledge
of system calls and system call convention. As such, it is possible that an attacker might
choose to remap the system calls or system call convention in a non-standard way to
mislead or escape VMscope. However, the syscall remapping requires the modification
of either interrupt descriptor table (IDT) or the system call hander routine and the
unauthorized modification on these important kernel objects could be detected and
prevented with security-enhanced VMMs [61]. Note that it still remains a challenge
to accurately identify those dynamic kernel objects (e.g., the VFES dispatch table).

Finally, the VMscope-based VM environment can be potentially fingerprinted and
detected by attackers. In fact, a number of recent malware are able to check whether they
are running inside VM environments and, if so, choose to exhibit different behavior [1].
As a counter-measure, we can improve the fidelity of VM implementation to mitigate
some of existing detection schemes [49]. However, there are more fundamental ones
(e.g., timing-based detection or performance slowdown-related methods [37,57,45])
that are more difficult to defend. Also, from another perspective, as virtualization gains
in popularity, the concern on VM detection can be reduced because most malware
would become VMM-agnostic again and the VMs could also be attractive targets for
attackers.

6 Redated Work

Over the past decade, we have witnessed considerable progress made on the develop-
ment and real-world deployment of honeypots. A number of advanced honeypot sys-
tems [26, 39, 52, 58, 59] have been built to observe and understand the new means and
methods by attackers. Particularly, the recent advancement on virtualization technology
has created unique capability and tremendous convenience in deploying and managing
honeypots. Our system, along with other research efforts [25, 53], complements and
strengthens these efforts by providing the desirable capability of transparently observ-
ing, intercepting, and recording interested system events about monitored VMs.

Our work is mainly motivated by the NoSEBrEaK system [35] that has successfully
demonstrated the possibility of circumventing the widely used honeypot monitoring
tool — Sebek — while still maintaining its tight control on compromised systems. Note
that in addition to our work, a number of other systems [25, 40,47, 53] were also pro-
posed to enable better honeypot monitoring. For example, both Xebek [53] and VMM-
based sensors [25] take the approach of extending the para-virtualization-based VMMs
(either Xen[27] or User Mode Linux [34]) to aim for invisible honeypot monitoring.
However, as pointed out in Section 1, para-virtualization based VMMs need to access
and modify guest OS source code and the modification on guest OS still creates internal
“presence” within the VM. We argue that any internal presence of logging sensors
would lead to the possibility of being misused or subverted once the attacker takes
the full control of the honeypot. As such, a more tamper-resistant honeypot monitoring
system should require its entirety being deployed “out-of-the-box” from the monitored

VMs. In fact, this is one main design decision made when developing the VMscope
system (Section 1).

Besides system monitoring, researchers also leverage virtual machines to detect

intrusions [38,41,23], analyze intrusions [36,46] or malware [28], diagnose system
problems [43, 60], and isolate services [30, 50]. These services leverage the desirable
properties (e.g., isolation and encapsulation) provided by virtual machines to enhance
the security of systems without relying on the correctness of the guest OS and other
application-level programs. Particularly, Livewire [38] and IntroVirt [41] apply the
general methodology of virtual machine introspection to detect intrusions on the mon-
itored VMs and the detection is based on the knowledge of specific vulnerabilities
being exploited or certain kernel objects (e.g., the system call table) that should not
be modified. VMscope has a different goal for honeypot monitoring but utilizes the
same VMI methodology when interpreting the observed system call events. It is worth
mentioning that, leveraging the very same virtualization techniques, researchers also
demonstrated possible threats in implementing stealthy “undetectable” malware [44,
54, 62]. We believe that these emerging threats could be mitigated or even defeated with
recent efforts on building secure hypervisors (e.g., sHype [55] and TRANGO [11]) and
enabling trusted booting [24].

7

Conclusion

We have presented VMscope, a virtualization-based honeypot monitoring system that
is capable of inspecting and interpreting system internal events from outside the VM-
based honeypot. Such an out-of-the-box monitoring system provides the desirable trans-
parency and tramper-resistance in monitoring honeypots. In the meantime, it still retains
the same deep inspection capability as traditional honeypot internal sensors (e.g. Sebek
[4]). We have built a proof-of-concept prototype and our experimental results with real-
word deployment as well as the comparison with existing de-facto honeypot monitoring
tools have successfully demonstrated its robustness and effectiveness.

References

O O 0 IO Lk~ W~

. Agobot. http://mww.f-secure.com/v-descs/agobot.shtml.

. Ethereal: A Network Protocol Analyzer. http://www.ethereal.com.

. Linux/unix nbench. http://Amww.tux.org/ mayer/linux/bmark.html.

. Sebek. http://mwww.honeynet.org/tool /sebek/.

. Syscalltrack. http://syscalltrack.sourceforge.net/.

. Tepdump. http://mww.tcpdump.org.

. The adore-ng Rootkit. http://stealth.openwall.net/rootkits/.

. The Apache HTTP Server Project. http://httpd.apache.org.

. The Honeynet Project. http://Amww.honeynet.org.

. The Strange Decline of Computer Worms. http://www.theregister.co.uk/2005/03/17/f-

secure_websec/print.html.

. TRANGO, the Real-Time Embedded Hypervisor. http://www.trango-systems.cony.

. Unixbench. http://www.tux.org/pub/tux/benchmarks/System/unixbench.

. Uuencoding. http://en.wikipedia.org/wiki/Uuencode.

. VirtualBox. http://www.virtualbox.org/.

. Virus Writers Get Stealthy. http://news.zdnet.co.uk/inter net/security/0,39020375,39191840,00.htm.

16.
17.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.
31.
32.

33.

34.
35.

36.

37.

38.

39.

40.

VMware. http://mwww.vmware.com.
CERT Advisory CA-2001-31 Buffer Overflow in CDE Subprocess Control Service.
http: //www.cert.org/advisories/ CA-2001-31.html, January 2002.

. CERT Advisory CA-2002-17 Apache Web Server Chunk Handling Vulnerability.

http: //www.cert.org/advisories/ CA-2002-17.html, March 2003.

Linux Kernel Ptrace Privilege Escalation Vulnerability.
http: //mww.secunia.conmvadvisories/8337/, March 2003.

Windows WMF Zero-Day Attack. http://www.counter pane.conval ert-cis-ra-0030-01.html,
December 2005.

Windows PowerPoint Zero-Day Attack. http://mww.eweek.com/article2/0,1895,1988874,00.asp.

Windows Word Zero-Day Attack. http://www.eweek.convarticle2/0,1895,1965042,00.asp.
K. G. Anagnostakis, S. Sidiroglou, P. Akritidis, K. Xinidis, E. Markatos, and A. D.
Keromytis. Detecting Targeted Attacks Using Shadow Honeypots. Proc. of the 14th USENIX
Security Symposium, August 2005.

William A. Arbaugh, David J. Farbert, and Jonathan M. Smith. A Secure and Reliable
Bootstrap Architecture. Proc. of the 1997 |EEE Symposium on Security and Privacy, 1997.
Kurniadi Asrigo, Lionel Litty, and David Lie. Using VMM-Based Sensors to Monitor
Honeypots. Proc. of the 2nd VEE, June 2006.

Paul Baecher, Markus Koetter, Thorsten Holz, Maximillian Dornseif, and Felix Freiling.
The Nepenthes Platform: An Efficient Approach to Collect Malware. Proc. of the 9th RAID,
September 2006.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, R. Neugebauer A. Ho, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. Proc. of the 2003 SOSP, October 2003.
Ulrich Bayer, Christopher Kruegel, and Engin Kirda. TTAnalyze: A Tool for Analyzing
Malware. Proc. of the 15th European Institute for Computer Antivirus Research Annual
Conference, April 2006.

Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. Proc. of USENIX Annual
Technical Conference 2005 (FREENIX Track), July 2005.

Eric Bryant, James Early, Rajeev Gopalakrishna, Gregory Roth, Eugene H. Spafford, Keith
Watson, Paul Williams, and Scott Yost. Poly2 Paradigm: A Secure Network Service
Architecture. Proc. of the 19th ACSAC, December 2003.

Peter M. Chen and Brian D. Noble. When Virtual is Better Than Real. HotOS VIlI1,, 2001.
Joseph Corey. Local Honeypot Identification. Phrack 62:article 07 of 15, July 2004.

D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levine, and H. Owen. HoneyStat: Local
Worm Detection Using Honeypots. Proc. of the 7th RAID, September 2004.

J. Dike. User Mode Linux. http://user-mode-linux.sourceforge.net.

M. Dornseif, T. Holz, and C. Klein. NoSEBrEaK - Attacking Honeynets. Proc. of the 5th
Annual |EEE Information Assurance Workshop, Westpoint, June 2004.

George W. Dunlap, Samuel T. King, Sukru Cinar, Murtaza A. Basrai, and Peter M. Chen.
ReVirt: Enabling Intrusion Analysis Through Virtual-Machine Logging and Replay. Proc.
of the 2002 OSDI, December 2002.

Jason Franklin, Mark Luk, Jonathan M. McCune, Arvind Seshadri, Adrian Perrig, and Leen-
dert van Doorn. Remote Detection of Virtual Machine Monitors with Fuzzy Benchmarking.
Technical Report, CMU-CyLab-07-001, January 2007.

T. Garfinkel and M. Rosenblum. A Virtual Machine Introspection Based Architecture for
Intrusion Detection. Proc. of the 2003 NDSS February 2003.

X. Jiang and D. Xu. Collapsar: A VM-Based Architecture for Network Attack Detention
Center. Proc. of the 13th USENIX Security Symposium, August 2004.

Stephen T. Jones, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Antfarm:
Tracking Processes in a Virtual Machine Environment. Proc. of the 2006 USENIX Annual
Technical Conference, March 2006.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.
57.

58.

59.

60.

61.

62.

Ashlesha Joshi, Samuel T. King, George W. Dunlap, and Peter M. Chen. Detecting Past and
Present Intrusions through Vulnerability-specific Predicates. Proc. of the 2005 Symposium
on Operating Systems Principles (SOSP), October 2005.

S. T. King and P. M. Chen. Backtracking Intrusions. Proc. of the 19th ACM Symposium on
Operating Systems Principles, October 2003.

S. T. King, George W. Dunlap, and P. M. Chen. Debugging Operating Systems with Time-
Traveling Virtual Machines. Proc. of the 2005 Annual USENI X Technical Conference, 2005.
Samuel T. King, Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang, and
Jacob R. Lorch. SubVirt: Implementing Malware with Virtual Machines. Proc. of the 2006
IEEE Symposium on Security and Privacy, 2006.

Tadayoshi Kohno, Andre Broido, and kc claffy. Remote Physical Device Fingerprinting.
Proc. of the 2005 | EEE Symposium on Security and Privacy, May 2005.

Toshihiko Koju, Shingo Takada, and Norihisa Doi. An Efficient and Generic Reversible
Debugger using the Virtual Machine based Approach. Proc. of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, June 2005.

Kenichi Kourai and Shigeru Chiba. HyperSpector: Virtual Distributed Monitoring Envi-
ronments for Secure Intrusion Detection. Proc. of the 1st ACM/USENIX International
Conference on Mirtual Execution Environments, June 2005.

Corrado Leita, Marc Dacier, and Frederic Massicotte. Automatic Handling of Protocol
Dependencies and Reaction to 0-day Attacks with ScriptGen based Honeypots . Proc. of
the 9th RAID, September 2006.

Tom Liston. On the Cutting Edge: Thwarting Virtual Machine Detection (Invited Talk at
NDSS’07). http://handlers.sans.org/tliston/ThwartingVMDetection_Liston_Skoudis.pdf.

R. Meushaw and D. Simard. NetTop: Commercial Technology in High Assurance Applica-
tions. Tech Trend Notes: Preview of Tomorrow's | nformation Technologies, 2000.

F. Perriot and P. Szor. An Analysis of the Slapper Worm Exploit. Symantec White Paper
http: //securityresponse.symantec.com/avcenter/reference/analysis.slapper.wor m.pdf.

N. Provos. A Virtual Honeypot Framework. Proc. of the 13th USENIX Security Symposium,
August 2004.

Nguyen Anh Quynh. Xebek: A Next Generation Honeypot Monitoring System.
http: //mww.eusecwest.com/esw06/esw06-nguyen.ppt, February 2006.

Joanna Rutkowska. Subverting Vista Kernel For Fun And Profit. Blackhat 2006.

R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, and S. Berger.
sHype: Secure Hypervisor Approach to Trusted Virtualized Systems. |BM Research Report
RC23511, February 2005.

sd. Linux on-the-fly kernel patching without LKM. Phrack, 11(58):article 7 of 15, 2001.
Arvind Seshadri, Mark Luk, Elaine Shi, Adrian Perrig, Leendert van Doorn, and Pradeep
Khosla. Pioneer: Verifying Integrity and Guaranteeing Execution of Code on Legacy
Platforms. Proc. of the 2005 SOSP, October 2005.

M. Vrable, J. Ma, J. Chen, D. Moore, E. Vandekieft, A. C. Snoeren, G. M. Voelker, and
S. Savage. Scalability, Fidelity and Containment in the Potemkin Virtual Honeyfarm. Proc.
of the 20th ACM Symposium on Operating Systems Principles, October 2005.

Y.-M. Wang, D. Beck, X. Jiang, R. Roussev, C. Verbowski, S. Chen, and S. King. Auto-
mated Web Patrol with Strider HoneyMonkeys: Finding Web Sites That Exploit Browser
Vulnerabilities. Proc. of the 2006 NDSS, February 2006.

Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. Using Time Travel to Diagnose
Computer Problems. Proc. of the 11th S GOPS European Workshop, September 2004.

Min Xu, Xuxian Jiang, Ravi Sandhu, and Xinwen Zhang. Towards a VMM-based Usage
Control Framework for OS Kernel Integrity Protection. Proc. of the 12th ACM Symposium
on Access Control Models and Technologies, June 2007.

Dino Dai Zovi. Hardware Virtualization Based Rootkits. Blackhat 2006, August 2006.

