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Abstract. We study the benefits of the explicit formulas of a parame-
trized family of bijections and the explicit formula of a certain metric.
These formulas are induced by a family of compactifications of C that
”account for all arguments of infinity”. This family of bijections map the
union of C and a continuum of ideal points onto a family of spherical
bowls. This family of bijections are shown to give rise to a multitude of
expressions that are ”invariant with respect to independent rotations”.
These expressions help us generalize certain geometrical properties that
are associated with the stereographic projection. Application of the metric
to the approximation of unbounded functions is also demonstrated.
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1 Introduction

The geometry of a plane and the geometry of a sphere play a unique role in mathe-
matics and in mathematical physics. The mapping of the plane onto a sphere leads
to the celebrated compactification known as the stereographic projection. However,
the stereographic projection does not distinguish between positive infinity or negative
infinity, or among other, different “values” of infinity. It is important both in mathe-
matics and mathematical physics to possess computational tools that will distinguish
between various “arguments of infinity.” Compare e.g. with [8], and the texts [2, 7, 9].
In this article we study the tools that are the explicit formulas of the bijections and
the metric induced by a family of compactifications that account for all arguments
of infinity. We also provide some of their benefits. The fact that our bijections are
infinitely smooth are of special value to the approximation of unbounded functions.

We first adopt some nomenclature and notations that will be used throughout this
paper.
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Notation 1.1. Denote by Z = (x1, x2, x3) a point in the Euclidean space R3,
where xj satisfy −∞ < xj < ∞, j = 1, 2, 3. Denote by ID the continuum of ideal
points ID := {∞(cos θ, sin θ) | 0 ≤ θ < 2π}. Call the set C ∪ ID the ultra extended
complex plane. Denote by z = (x, y) ∈ C a point in the complex plane which is
to be identified with the point Q = (x, y, 0). Let P = (0, 0, γ) be a fixed point
on the x3 coordinate, 0 < γ ≤ 1. We also put r2 = x2 + y2, R2 = x2

1 + x2
2 and

ω = γ2 + (1 − γ2)r2. The word Bowl stands for the following set of points. Bowl
:=

{
(x1, x2, x3) | x2

1 + x2
2 + x2

3 = 1 and − 1 ≤ x3 ≤ γ
}

.

The mapping soon to be developed, that matches each point z ∈ C ∪ ID with a
point Z on the Bowl, will be denoted by G(z). The derivation of the mapping from
C ∪ ID to the Bowl is as follows. If P , Z, and Q lie on the same straight line, then
the vectors

−→
PZ and

−→
PQ are collinear. This is if and only if

−→
PZ = t

−→
PQ for some real

number t. Videlicet, iff

x1 = tx, x2 = ty, x3 = (1− t)γ.(1.1.1)

Since we want our mapping to contain the stereographic projection as a particular
case, we require t to be positive. Since x1, x2, and x3 are points on the unit sphere,
we have of course

x2
1 + x2

2 + x2
3 = 1.(1.1.2)

We substitute the values of x1, x2, and x3 from Equations (1.1.1) into Equa-
tion (1.1.2) to obtain t2x2 + t2y2 + (1− t)2γ2 = 1.

Solving for t, we obtain

t+,− =
γ2 ±

√
γ4 − (γ2 − 1) (r2 + γ2)

γ2 + r2
.

Because we want G(z) to map to the Bowl, so that x3 ≤ γ, we always choose

t =
γ2 +

√
ω

γ2 + r2
= 1−

√
1−R2

γ
.(1.1.3)

We now define a mapping from C ∪ ID into the Bowl as follows.

Definition 1.2. The mapping G(z) from C ∪ ID into the Bowl is defined by

G(z) =

{
(x1 = tx, x2 = ty, x3 = γ(1− t)) if z ∈ C
(x1 =

√
1− γ2 cos θ, x2 =

√
1− γ2 sin θ, x3 = γ) if z = ∞(cos θ, sin θ)

}
.

(1.1.4)

The following theorem formalizes the previous discussion. Its simple proof is omit-
ted.

Theorem 1.3. G is a bijection from the ultra extended complex plane to the Bowl.
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Remark 1.4. The definition of G given above is a natural one. Indeed, let
0 < γ < 1. Given a sequence zn = rn(cos θn, sin θn) = (xn, yn) where rn →∞ and
(cos θn, sin θn) → (cos θ, sin θ) as n →∞, the sequence is such that with

ωn = γ2 + (1− γ2)r2
n and tn = γ2+

√
ωn

γ2+r2
n

, we have
√

ωn ∼
√

1− γ2rn, tn ∼
√

1−γ2

rn
as

n →∞. Hence x1n ∼
√

1− γ2 cos θn, x2n ∼
√

1− γ2 sin θn.

Remark 1.5. For γ = 1, we obtain t = 2
1+r2 , x1 = tx, x2 = ty, and x3 = 1− t,

the formulas of the stereographic projection. Compare e.g. with [1]. Then the sequence
Zn is such that tn → 0, x1n → 0, x2n → 0, x3n → 1, as n →∞.

Remark 1.6. The difference between each member of our family of compactifica-
tions, with 0 < γ2 < 1 and the stereographic projection, that corresponds to γ2 = 1,
is substantial indeed. First and foremost, Riemann’s compactification of the complex
plane is obtained by adding a single ideal point infinity. Our compactification aug-
ments C with a continuum of points ID. Riemann’s compactification treats the point
infinity like any other finite point. Our compactification recognizes among all the dif-
ferent arguments of infinity. Consequently, the image of the sequence zn = (−1)nn
converges on the Riemann sphere to the north pole. However, it will not converge on
the Bowl in the metric to be introduced in this paper. Given a sequence zn, ezn always
converges on the Riemann sphere with Re{zn} → ∞. However, with Re{zn} → ∞,
ezn does not converge in the ultra extended complex plane unless eiIm{zn} converges.

Remark 1.7. The manner that the continuum of different arguments of infinity
degenerate into one point is manifested in the formulas of the family of bijections
when taking the limit γ2 → 1−. It is noteworthy that the degeneration is accompanied
by nonuniform convergence of t(r2)z as γ2 → 1−.

It is interesting to note the similarities and differences between the family of com-
pactifications studied here and other compactifications related to the venerable sphere
that are given in the literature. Poincare’s compactification [8] uses the projection of
C on two half spheres as an intermediary step that ultimately projects C onto a per-
pendicular plane to C that is tangent to the sphere. The bijection formulas that ensue
are simple to work with in the realm of dynamical systems. However, the resulting
transformations are not the mapping of the plane onto a compact surface but onto
another non-compact plane. Poincare’s half sphere is also utilized in the realization of
non-Euclidean Geometry. See [5]. Equally interesting is Benedixon’s transformations
that are roughly speaking equivalent to an inversion of the plane. The relevance of
these transformations to dynamical systems is documented in [2,7,9].

It is noteworthy that the derivations here uncover an abundance of expressions that
are “invariant with respect to independent rotations.” Essentially, these are mappings
that are functions of the moduli of z1,z1,z2, z2. Quite a few of them turn out to be
positive definite. Their useful occurrence motivates us to dedicate to them a formal
definition.

Definition 1.8. We say that the mapping S(z1, z1, . . . , zn, zn) of 2n points zj , zj ∈
C is an expression invariant with respect to independent rotations, in short EIWRTIR,
if

S(z1,z1, . . . , zn, zn) = S(eiθ1z1, e
−iθ1z1, . . . , e

iθnzn, e−iθnzn)(1.1.5)
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where θj ∈ R, j = 1, 2, . . . , n.

For example, the mapping

S(z1,z1, z2, z2) = (x2 − x1)2 + (y2 − y1)2 + (x1 + x2)2 + (y1 + y2)2

is an EIWRTIR. However, D2 = (x2 − x1)2 + (y2 − y1)2 is not an EIWRTIR. It
is obvious that any S(z1,z1, . . . , zn, zn) that is an EIWRTIR is actually a function
of the moduli |z1| , |z2| , . . . , |zn|. This is easily seen by choosing in Equation (1.1.5)
θj = − arg zj for j = 1, 2, . . . , n and obtaining S(z1,z1, . . . , zn, zn) = S(|z1| , |z1| , . . . , |zn| , |zn|).
Of course, if S is a function of the moduli |z1| , |z2| , . . . , |zn|, then it is also an
EIWRTIR.

The order of the contents in the remainder of this work is as follows. In section 2, we
derive the explicit formulas of a metric. In this formula we encounter positive definite
EIWRTIR’s. Applications are discussed in section 3. Thanks to the explicit formulas of
the bijections of this section, we are able to obtain a generalization of the theorem that
asserts the similarity of two triangles in the setting of the stereographic projection.
With the aid of the metric formula we are able to find certain manifestations of the
power of a point with respect to a circle with infinite radius. They give rise to more
EIWRTIR that are positive definite. Last but not least we show how to apply the
induced metric to the approximation of unbounded functions.

2 An Induced Metric

In this section we derive a metric χ(z, ẑ) for the ultra extended complex plane. To
this end we need more notation.

Notation 2.1. In the sequel we denote by ‖G(z)−G(ẑ)‖ the Euclidean distance
between two points. Denote by Ẑ = (x̂1, x̂2, x̂3) a point in the Euclidean space R3,
where x̂j satisfy −∞ < x̂j < ∞, j = 1, 2, 3. Denote by ẑ = (x̂, ŷ) a point in the ultra
extended complex plane which is identified with the point Q̂ = (x̂, ŷ, 0) such that
G(ẑ) = Ẑ. We also put

r̂2 = x̂2 + ŷ2, ω̂ = γ2 + (1− γ2)r̂2, and t̂ =
γ2 +

√
ω̂

γ2 + r̂2
.

Theorem 2.2. The ultra extended complex plane is a complete metric space with
respect to the chordal metric χ defined below as the Euclidean distance ‖G(z)−G(ẑ)‖.

χ(z, ẑ) ≡ ‖G(z)−G(ẑ)‖ =
√

(x1 − x̂1)
2 + (x2 − x̂2)

2 + (x3 − x̂3)
2
.(2.2.1a)

Specifically, the square of the metric χ2 is given by

χ2(z, ẑ) = F (D2 −∆)(2.2.1b)

where F is a dilation factor

F =
(γ2 +

√
ω)(γ2 +

√
ω̂)

(γ2 + r2)(γ2 + r̂2)
,(2.2.1c)
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D2 is the square of the Euclidean distance between z and ẑ

D2 = (x− x̂)2 + (y − ŷ)2,(2.2.1d)

and ∆ is given by

∆ =
(1− γ2)(r2 − r̂2)2

(
√

ω +
√

ω̂)(γ2 +
√

ω)(γ2 +
√

ω̂)

[
γ2 +

(1− γ2)r2r̂2 + γ4(1 + γ2) + γ2(r2 + r̂2)
(γ2 + r2)

√
ω̂ + (γ2 + r̂2)

√
ω

]
.

(2.2.1e)

F and ∆ are EIWRTIR as functions of |z|, |z|, |ẑ|, and
∣∣∣ẑ

∣∣∣. F , ∆, and D2 are

positive definite functions of their variables. Specifically, ∆ ≥ 0 for γ2 < 1 and ∆ = 0
iff γ2 = 1 or r2 = r̂2.

For z = ∞(cos θ, sin θ), ẑ = (x̂, ŷ),

χ2(z, ẑ) = 2γ2 γ2 +
√

ω̂

γ2 + r̂2
+ 2(1− γ2)− 2

γ2 +
√

ω̂

γ2 + r̂2

√
1− γ2(x̂ cos θ + ŷ sin θ)(2.2.1f)

and for z = ∞(cos θ, sin θ), ẑ = ∞(cos θ̂, sin θ̂),

χ2(z, ẑ) = 4(1− γ2) sin2

(
θ − θ̂

2

)
=

(
2
√

1− γ2

∣∣∣∣∣sin
(

θ − θ̂

2

)∣∣∣∣∣

)2

.(2.2.1g)

Proof. We omit the trivial part that χ(z, ẑ) is a distance function and proceed with
the derivations of Equations (2.2.1a) to (2.2.1g).

To derive χ, we turn to the definition of G, namely

‖G(z)−G(ẑ)‖2 = (x1 − x̂1)2 + (y1 − ŷ1)2 + (z1 − ẑ1)2.(2.2.2)

Expanding the squared terms in Equation (2.2.2) gives us

‖Z − Ẑ‖2 = x2
1 + x2

2 + x2
3 + x̂2

1 + x̂2
2 + x̂2

3 − 2x1x̂1 − 2x2x̂2 − 2x3x̂3.(2.2.3)

Because x1, x2, x3 and x̂1, x̂2, x̂3 are coordinates on the unit sphere, we have

x2
1 + x2

2 + x2
3 = x̂2

1 + x̂2
2 + x̂2

3 = 1.(2.2.4)

Substituting the expression given in Equation (2.2.4) into Equation (2.2.3) leaves
us with

‖Z − Ẑ‖2 = 1 + 1− 2 [x1x̂1 + x2x̂2 + x3x̂3] .(2.2.5)

Expanding x1, x2, x3, x̂1, x̂2, x̂3 given by Notations 1.1 and 2.1 gives us

‖Z − Ẑ‖2 = 2− 2




(
γ2+

√
ω

γ2+r2

) (
γ2+

√
ω̂

γ2+r̂2

)
(xx̂ + yŷ + γ2)

+ γ2 − γ2
(

γ2+
√

ω
γ2+r2

)
− γ2

(
γ2+

√
ω̂

γ2+r̂2

)

 .(2.2.6)

Expanding D2 with the aid of r2 = x2 + y2 and r̂2 = x̂2 + ŷ2 yields the represen-
tation
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2xx̂ + 2yŷ = −D2 + r2 + r̂2.(2.2.7)

Next we substitute the expression given in (2.2.7) into Equation (2.2.6) to obtain

‖Z − Ẑ‖2 =
(

γ2+
√

ω
γ2+r2

)(
γ2+

√
ω̂

γ2+r̂2

)
(D2 − r2 − r̂2) + 2− 2γ2

−2γ2
(

γ2+
√

ω
γ2+r2

) (
γ2+

√
ω̂

γ2+r̂2

)
+ 2γ2

(
γ2+

√
ω

γ2+r2

)
+ 2γ2

(
γ2+

√
ω̂

γ2+r̂2

)
.

(2.2.8)

A lengthy but straightforward calculation leads us to the desired formulas (2.2.1b)
to (2.2.1e).

Note that (1 − γ2) appears as a factor at the front of ∆. For γ2 = 1, ∆ = 0 and
F = 4

(1+r2)(1+r̂2) , leaving us with the Riemann Sphere chordal metric.
Next, when z ∈ ID and ẑ ∈ C, we shall derive the formula stated in Theorem 2.2

by observing the asymptotic behavior of χ as r →∞. First, observe that

ω = γ2 + (1− γ2)r2 = (1− γ2)r2

[
1 +

γ2

(1− γ2)r2

]
∼ (1− γ2)r2 as r →∞.

(2.2.9a)

Furthermore, assume that as r →∞
x

r
∼ cos θ,

y

r
∼ sin θ.(2.2.9b)

Substituting the asymptotic expression for ω given in Equation (2.2.9a) into Equa-
tion (2.2.6) and multiplying the first term inside the bracket by r

r , we see that

‖Z − Ẑ‖2 ∼ 2− 2




(
γ2+r

√
1−γ2

γ2+r2

) (
γ2+

√
ω̂

γ2+r̂2

)
r
(

x
r x̂ + y

r ŷ + γ2

r

)

+ γ2 − γ2

(
γ2+r

√
1−γ2

γ2+r2

)
− γ2

(
γ2+

√
ω̂

γ2+r̂2

)


(2.2.10)

as r → ∞. Substituting the asymptotic expressions for x
r and y

r given in Equa-
tion (2.2.9b) into Equation (2.2.10) and factoring powers of r yields

‖Z − Ẑ‖2 ∼ 2− 2




r
√

1−γ2

(
1+ γ2

r
√

1−γ2

)

r2
(
1+ γ2

r2

)
(

γ2+
√

ω̂
γ2+r̂2

)
r
(
x̂ cos θ + ŷ sin θ + γ2

r

)

+ γ2 − γ2
r
√

1−γ2

(
1+ γ2

r
√

1−γ2

)

r2
(
1+ γ2

r2

) − γ2
(

γ2+
√

ω̂
γ2+r̂2

)




∼ 2− 2
[√

1− γ2
(

γ2+
√

ω̂
γ2+r̂2

)
(x̂ cos θ + ŷ sin θ) + γ2 − γ2

(
γ2+

√
ω̂

γ2+r̂2

)]

∼ 2γ2
(

γ2+
√

ω̂
γ2+r̂2

)
+ 2(1− γ2)− 2

√
1− γ2

(
γ2+

√
ω̂

γ2+r̂2

)
(x̂ cos θ + ŷ sin θ) ,

(2.2.11)

as r →∞. We have now arrived at the stated formula for χ when z ∈ ID, ẑ ∈ C.
Note that for γ2 = 1, χ2(z, ẑ) = 2 1+1

1+r̂2 + 0 = 4
1+r̂2 , leaving us with the Riemann

Sphere chordal metric.
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Finally, we shall derive the formula for χ when both z, ẑ ∈ ID, as stated in Theo-
rem 2.2. We shall do this by observing the asymptotic behavior of χ as both r, r̂ →∞.
The asymptotic expression for ω̂ as r̂ →∞ is given by

ω̂ = γ2 + (1− γ2)r̂2 = (1− γ2)r̂2

[
1 +

γ2

(1− γ2)r̂2

]
∼ (1− γ2)r̂2.(2.2.12a)

Furthermore, assume that as r̂ →∞ we have

x̂

r̂
∼ cos θ̂,

ŷ

r̂
∼ sin θ̂.(2.2.12b)

Then as r, r̂ →∞ we have

‖Z − Ẑ‖2 ∼ 2γ2

(
γ2+r̂

√
1−γ2

γ2+r̂2

)
+ 2(1− γ2)

−2
√

1− γ2

(
γ2+r̂

√
1−γ2

γ2+r̂2

)
r̂
(

x̂
r̂ cos θ + ŷ

r̂ sin θ
)

.

(2.2.13)

Substituting the asymptotic expressions from equations (2.2.12a) and (2.2.12b)
into (2.2.13), after factoring powers of r̂ in (2.2.13), yields as r, r̂ →∞

‖Z − Ẑ‖2 ∼ 2γ2
r̂
√

1−γ2

(
1+ γ2

r̂
√

1−γ2

)

r̂2
(
1+ γ2

r̂2

) + 2(1− γ2)

−2
√

1− γ2
r̂
√

1−γ2

(
1+ γ2

r̂
√

1−γ2

)

r̂2
(
1+ γ2

r̂2

) r̂
(
cos θ cos θ̂ + sin θ sin θ̂

)

∼ 2(1− γ2)− 2(1− γ2)
(
cos θ cos θ̂ + sin θ sin θ̂

)

∼ 2(1− γ2)
[
1−

(
cos θ cos θ̂ + sin θ sin θ̂

)]

∼ 2(1− γ2)
[
1− cos(θ − θ̂)

]
∼ 4(1− γ2) sin2

(
θ−θ̂
2

)
.

(2.2.14)

We have now arrived at the stated formula for χ when z, ẑ ∈ ID. The task of
proving the completeness of C ∪ ID in the metric χ(z, ẑ) is omitted because of its
simplicity.

Remark 2.3. As we expect, for γ2 = 1, χ
(
∞(cos θ, sin θ),∞(cos θ̂, sin θ̂)

)
= 0.

On the Riemann sphere, all arguments of infinity map to the north pole. The nonuni-
form convergence of our metric to the Riemann metric is manifested numerically by
the term

√
1− γ2 occurring in denominators in (2.2.9a), (2.2.11) and (2.2.14).

3 Applications

As a first application to the bijections derived in section 1, we uncover a positive
definite EIWRTIR. It helps us generalize, a well known theorem about the similarity
of certain triangles in the setting of the stereographic projection. We keep in mind
Notations 1.1 and 2.1. Then we have
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Theorem 3.1. The triangles PZẐ and PQ̂Q are similar if γ2 = 1. If γ2 < 1,
then PZẐ and PQ̂Q are similar iff r2 = r̂2.

Proof. We know that

(PQ)2 = x2 + y2 + γ2 = r2 + γ2, (PQ̂)2 = r̂2 + γ2.(3.3.1)

Expanding (PZ)2, we see that

(PZ)2 = x2
1 + x2

2 + (x3 − γ)2 = 1− γ2 + 2γ2t, (PẐ)2 = 1− γ2 + 2γ2t̂.(3.3.2)

Substituting the expressions for (PQ)2, (PQ̂)2, (PZ)2, and (PẐ)2 given in Equa-
tions (3.3.1) and (3.3.2), respectively, into the expression I defined by

I := (PẐ)2(PQ̂)2 − (PZ)2(PQ)2,(3.3.3)

we have

I = [(1− γ2) + 2γ2t̂][r̂2 + γ2]− [(1− γ2) + 2γ2t][r2 + γ2].(3.3.4)

Factoring r̂2 − r2 and grouping terms sharing the coefficient 2γ2 in (3.3.4) gives
us

I = (1− γ2)(r̂2 − r2) + 2γ2 (1− γ2)(r̂2 − r2)√
γ2 + (1− γ2)r̂2 +

√
γ2 + (1− γ2)r2

.(3.3.5)

Finally, we obtain

I = (PẐ)2(PQ̂)2 − (PZ)2(PQ)2 = (1− γ2)(r̂2 − r2)σ,(3.3.6)

where

σ :=

{
1 +

2γ2

√
γ2 + (1− γ2)r̂2 +

√
γ2 + (1− γ2)r2

}
.(3.3.7)

There are three factors on the right hand side of Equation (3.3.7), (1−γ2), (r̂2−r2),
and σ. Luckily, σ ≥ 1. Hence, PZẐ and PQ̂Q are similar if γ2 = 1 or, for γ2 < 1, iff
r2 = r̂2. It is no surprise that I is an EIWRTIR. However, it is a pleasant surprise
that σ − 1 is a positive definite expression.

The power of a point Q with respect to a circle |z − z0| = ς (with center z0 and
radius ς), is defined to be the product QV · QW , where V W is any chord in the
circle above, passing through a fixed point Q that is identified with z0. This product
is a property of the point Q and the circle |z − z0| = ς and is not dependent on the
chord V W . See e.g. [10, p. 232]. (This property is yet another manifestation of the
similarity of certain triangles.) It would be natural to define the power of a point P
with respect to the ideal circle |z| = ∞ as ∞. If V and W are ideal points, it would
be natural to put V Q = WQ = ∞ and define V Q ·WQ = ∞. A question then arises.
Is it possible to obtain via the family of bijections and the spherical Bowl metric of
theorem 2.2 some well determined expressions that would be a manifestation of the
power of a point with respect to a circle with infinite radius? The answer that we
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provide is given in terms of two identities and some inequalities that involve positive
definite EIWRTIR’s.

Rather than start with a formal theorem we prefer at this stage to proceed with an
informal discussion that will lead to the desired results. First we need a few notations.
Fix a point z = (x, y) that is situated inside the ideal circle |z| = ∞. Consider a
triangle with vertices ZAB, where

Z = G(z), A = G(∞(cos θ, sin θ), B = G(∞(cos(θ + π), sin(θ + π)).(3.3.8)

The edges of ZAB are

AB = 2
√

1− γ2, ZA = χ(∞(cos θ, sin θ, z)),
ZB = χ(∞(cos(θ + π), sin(θ + π)), z).

(3.3.9)

Let us find the coordinates of A and B. The points A and B, respectively, are
determined by the intersection of a certain line that passes through the point P =
(0, 0, γ) and intersects the circle x2

1+x2
2 = 1−γ2. This line L2 is parallel to a line in the

complex plane, which we denote by L1, that passes through a fixed point Q = (x, y, 0),
and has direction (a, b, 0), where a2 + b2 = 1. It is easily verified that the parametric
equations of the line L1 that possesses the direction (a, b, 0) and passes through the
point Q = (x, y, 0) are

x1 = x + ηa, x2 = y + ηb, x3 = 0, −∞ < η < ∞.(3.3.10)

The parametric equations of the line L2 that possesses the direction (a, b, 0) and
passes through the point P = (0, 0, γ) is given by

x1 = θa, x2 = θb, x3 = γ, −∞ < θ < ∞.(3.3.11)

The line L2 intersects the sphere at the points

A := (
√

1− γ2a,
√

1− γ2b, γ), B := (−
√

1− γ2a,−
√

1− γ2b, γ).(3.3.12)

Let t = t(r2), r2 = x2 + y2. Then the vectors
−→
ZA and

−→
ZB, their magnitudes, and

their scalar product
−→
ZA · −→ZB are given respectively by

−→
ZA =

〈√
1− γ2a− tx,

√
1− γ2b− ty, γt

〉
,(3.3.13a)

∥∥∥−→ZA
∥∥∥

2

= 1− γ2 − 2
√

1− γ2t(ax + by) + t2r2 + t2γ2,(3.3.13b)

−→
ZB =

〈
−

√
1− γ2a− tx, −

√
1− γ2b− ty, γt

〉
,(3.3.13c)

∥∥∥−→ZB
∥∥∥

2

= 1− γ2 + 2
√

1− γ2t(ax + by) + t2r2 + t2γ2,(3.3.13d)
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−→
ZA · −→ZB = − [

(1− γ2)− t2(r2 + γ2)
]
.(3.3.13e)

Notice that

|ax + by| ≤ (a2 + b2)
1
2 (x2 + y2)

1
2 ≤ r.(3.3.14)

Denote by ẐA and ẐB the respective arcs of the circle generated by the intersec-
tion of the plane passing through the points P,Z, A, B and the sphere. Denote also
by ZA∗, ZB∗, the arcs of the great circles passing through ZAO and ZBO, (with
O being the origin). The arc ẐA corresponds to the chord ZA, and ẐB is the arc
corresponding to the chord ZB. Use the relation (3.3.14) in (3.3.13b) and in (3.3.13d)
to obtain

ẐA
2 ≥ ZA∗2 ≥

∥∥∥−→ZA
∥∥∥

2

≥ (
√

1− γ2 − tr)2 + t2γ2,(3.3.15a)

ẐB
2 ≥ ZB∗2 ≥

∥∥∥−→ZB
∥∥∥

2

≥ (
√

1− γ2 − tr)2 + t2γ2.(3.3.15b)

It is also easily verified that
∥∥∥−→ZA

∥∥∥
2

+
∥∥∥−→ZA

∥∥∥
2

= 2
[
1− γ2 + t2(r2 + γ2)

]
.(3.3.16)

In addition to the lower bounds in (3.3.15), we can obtain upper bounds on the

product of
∥∥∥−→ZA

∥∥∥
2 ∥∥∥−→ZB

∥∥∥
2

in terms of EIWRTIR that are also positive definite. The
relations (3.3.13b), (3.3.13d) and (3.3.14) also imply that

∥∥∥−→ZA
∥∥∥

2

≤ (
√

1− γ2 + tr)2 + t2γ2,
∥∥∥−→ZB

∥∥∥
2

≤ (
√

1− γ2 + tr)2 + t2γ2,(3.3.17)

[
(
√

1− γ2 − tr)2 + t2γ2
]2

≤
∥∥∥−→ZA

∥∥∥
2 ∥∥∥−→ZB

∥∥∥
2

≤
[
(
√

1− γ2 + tr)2 + t2γ2
]2

.(3.3.18)

The relations (3.3.13e), (3.3.16), together with the inequalities (3.3.17), (3.3.18),
are a manifestation of the power of the point z with respect to the circle with center
at the origin and radius infinity.

Remark 3.2. We notice that on the Riemann Sphere, in the case γ2 = 1, the
right hand side of (3.3.16) tends to zero as r2 →∞. This is in glaring contradiction
to the case 1 − γ2 > 0, where the right hand side of (3.3.16) is positive even when
z is an ideal point. Then, r2 = ∞, t(r2) = 0, and the right hand side of (3.3.16) is
2(1− γ2).

Next, we demonstrate the application of the formulas of the bijections and of the
metric, to the problem of the approximation of unbounded functions. Consider the
family of possibly unbounded real valued functions f(s) on the interval [0, 1] such that
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x1(s) = t(f2(s))f(s) ∈ C[0, 1]. Notice that unlike the theory of Pade approximants
or the theory of Jacobi polynomials, we impose no restriction on the order of growth
of the function f(s). Let Cn

j be the binomial coefficients. Consider the Bernstein
polynomials

B(s, n) =
n∑

j=0

x1

(
j

n

)
Cn

j sj(1− s)n−j ,(3.3.19)

with

x1

(
j

n

)
=

[
γ2 +

√
γ2 + (1− γ2)f2

(
j
n

)]
f

(
j
n

)

γ2 + f2
(

j
n

) .(3.3.20)

We shall prove the following theorem.

Theorem 3.3. Given a function f(s) such that

[
γ2+

√
γ2+(1−γ2)f2(s)

]
f(s)

γ2+f2(s) ∈ C[0, 1],

(i) the sequence of approximants B(s,n)

1−
√

1−B2(s,n)
γ

converges uniformly on [0, 1] to f(s)

in the Spherical Bowl metric given by Equation (2.2.1).

(ii) On every closed subset I ∈ [0, 1] where f(s) is continuous, we have

lim
n→∞

Sups∈I

∣∣∣∣∣∣
f(s)− B(s, n)

1−
√

1−B2(s,n)

γ

∣∣∣∣∣∣
= 0.(3.3.21)

Proof. Notice that the properties of the bijection (1.1.4) together with the properties
of the Bernstein Polynomials guarantee that

−
√

1− γ2 ≤
[
γ2+

√
γ2+(1−γ2)f2(s)

]
f(s)

γ2+f2(s) ≤
√

1− γ2

⇒ −
√

1− γ2 ≤ B(s, n) ≤
√

1− γ2.
(3.3.22)

Consequently the preimage of

[
γ2+

√
γ2+(1−γ2)f2(s)

]
f(s)

γ2+f2(s) under our bijection is f(s),

and the image of B(s,n)

1−
√

1−B2(s,n)
γ

under our bijection is B(s, n), where

−
√

1− γ2 ≤ B(s, n) ≤
√

1− γ2. In other words, we are assured that the values of
the image of B(s,n)

1−
√

1−B2(s,n)
γ

are on the spherical Bowl and never in its complement set

with respect to the sphere. This concludes the proof of (i).
The proof of (ii)follows from the following observations. Consider a compact disk

CD := {z | |z| ≤ R < ∞} together with its image IM := {Z | Z = G(z), z ∈ CD}
on the spherical Bowl. Then an arbitrarily small neighborhood in IM must be the
image of a small neighborhood of CD and Equation (3.3.21) follows.
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