
Pixelated Image Abstraction with Integrated User Constraints

Timothy Gerstnera, Doug DeCarloa, Marc Alexac, Adam Finkelsteinb, Yotam Gingolda,d, Andrew Nealena

aRutgers University
bPrinceton University

cTU Berlin
dColumbia University

Abstract

We present an automatic method that can be used to abstract high resolution images into very low resolution
outputs with reduced color palettes in the style of pixel art. Our method simultaneously solves for a mapping
of features and a reduced palette needed to construct the output image. The results are an approximation
to the results generated by pixel artists. We compare our method against the results of two naive methods
common to image manipulation programs, as well as the hand-crafted work of pixel artists. Through a
formal user study and interviews with expert pixel artists we show that our results offer an improvement
over the naive methods. By integrating a set of manual controls into our algorithm, we give users the ability
to add constraints and incorporate their own choices into the iterative process.

Keywords: pixel art, image abstraction, non-photorealistic rendering, image segmentation, color
quantization

1. Introduction1

We see pixel art every day. Modern day handheld2

devices such as the iPhone, Android devices and the3

Nintendo DS regularly utilize pixel art to convey4

information on compact screens. Companies like5

Coca-Cola, Honda, Adobe, and Sony use pixel6

art in their advertisements [1]. It is used to7

make icons for desktops and avatars for social8

networks. While pixel art stems from the need9

to optimize imagery for low resolution displays,10

it has emerged as a contemporary art form in its11

own right. For example, it has been featured by12

Museum of Modern Art, and there are a number of13

passionate online communities devoted to it. The14

“Digital Orca” by Douglas Coupland is a popular15

sight at the Vancouver Convention Center. France16

recently was struck by a “Post-it War”1, where17

people use Post-It notes to create pixel art on their18

windows, competing with their neighbors across19

workplaces, small businesses, and homes.20

Email address: timgerst@cs.rutgers.edu (Timothy
Gerstner)

1http://www.postitwar.com/

Figure 1: Examples of pixel art.“Alice Blue” and “Kyle Red”
by Alice Bartlett. Notice how faces are easily distinguishable
even with this limited resolution and palette. The facial
features are no longer proportionally accurate, similar to
deformation in a caricature.

What makes pixel art both compelling and dif-21

ficult is the limitations imposed on the medium.22

With a significantly limited palette and resolution23

to work with, the task of creating pixel art becomes24

one of carefully choosing the set of colors and plac-25

ing each pixel such that the final image best depicts26

the original subject. This task is particularly dif-27

ficult as pixel art is typically viewed at a distance28

Preprint submitted to Computers and Graphics August 28, 2012

(a) original (b) naive nearest (c) naive cubic (d) superpixels (e) our result

Figure 2: Pixel art images simultaneously use very few pixels and a tiny color palette. Attempts to represent image (a) using
only 22 × 32 pixels and 8 colors using (b) nearest-neighbor or (c) cubic downsampling (both followed by median cut color
quantization), result in detail loss and blurriness. We optimize over a set of superpixels (d) and an associated color palette to
produce output (e) in the style of pixel art.

where the pixel grid is clearly visible, which has29

been shown to contribute to the perception of the30

image [2]. As seen in Figure 1, creating pixel art is31

not a simple mapping process. Features such as the32

eyes and mouth need to be abstracted and resized33

in order to be represented in the final image. The34

end product, which is no longer physically accurate,35

still gives the impression of an identifiable person.36

However, few, if any methods exist to automat-37

ically or semi-automatically create effective pixel38

art. Existing downsampling methods, two of which39

are shown in Figure 2, do not accurately capture40

the original subject. Artists often turn to mak-41

ing pieces by hand, pixel-by-pixel, which can take42

a significant amount of time and requires a certain43

degree of skill not easily acquired by novices of the44

art. Automated and semi-automated methods have45

been proposed for other popular art forms, such as46

line drawing [3, 4] and painting [5]. Methods such47

as [6] and [7] not only abstract images, but do so48

while retaining salient features.49

We introduce an entirely automated process that50

transforms high resolution images into low resolu-51

tion, small palette outputs in a pixel art style. At52

the core of our algorithm is a multi-step iterative53

process that simultaneously solves for a mapping54

of features and a reduced palette to convert an in-55

put image into a pixelated output image. In the56

first part of each iteration we use a modified version57

of an image segmentation proposed by Achanta et58

al. [8] to map regions of the input image to output59

pixels. In the second step, we utilize an adaptation60

of mass-constrained deterministic annealing [9] to61

find an optimal palette and its association to out-62

put pixels. These steps are interdependent, and the63

final solution is an optimization of both the spatial64

and palette sizes specified by the user. Through-65

out this process we utilize the perceptually uniform66

CIELAB color space [10]. The end result serves as67

an approximation to the process performed by pixel68

artists (Figure 2, right).69

This paper presents an extended edition of Pix-70

elated Image Abstraction [11]]. In addition to an71

expanded results section, we have added a set of72

user controls to bridge the gap between the man-73

ual process of an artist and the automated process74

of our algorithm. These controls allow the user to75

provide as much or as little input into the process76

as desired, to produce a result that leverages both77

the strengths of our automated algorithm and the78

knowledge and personal touch of the user.79

Aside from assisting a class of artists in this80

medium, applications for this work include auto-81

matic and semi-automatic design of low-resolution82

imagery in handheld, desktop, and online contexts83

like Facebook and Flickr, wherever iconic represen-84

tations of high-resolution imagery are used.85

2. Related Work86

One aspect of our problem is to reproduce an87

image as faithfully as possible while constrained88

to just a few output colors. Color quantization is89

a classic problem wherein a limited color palette90

is chosen based on an input image for indexed91

color displays. A variety of methods were devel-92

oped in the 1980’s and early 1990’s prior to the93

2

advent of inexpensive 24-bit displays, for exam-94

ple [12, 13, 14, 15]. A similar problem is that of95

selecting a small set of custom inks to be used in96

printing an image [16]. These methods rely only97

on the color histogram of the input image, and are98

typically coupled to an independent dithering (or99

halftoning) method for output in a relatively high100

resolution image. In our problem where the spatial101

resolution of the output is also highly constrained,102

we optimize simultaneously the selection and place-103

ment of colors in the final image.104

The problem of image segmentation has been105

extensively studied. Proposed solutions include106

graph-cut techniques, such as the method proposed107

by Shi and Malik [17], and superpixel-based meth-108

ods QuickShift [18], Turbopixels [19], and SLIC [8].109

In particular, SLIC (Simple Linear Interative Clus-110

tering) produces regular sized and spaced regions111

with low computational overhead given very few in-112

put parameters. These characteristics make SLIC113

an appropriate starting point for parts of our114

method.115

Mass-constrained deterministic annealing116

(MCDA) [9] is a method that uses a probabilistic117

assignment while clustering. Similar to k-means, it118

uses a fixed number of clusters, but unlike k-means119

it is independent of initialization. Also, unlike120

simulated annealing [20], it does not randomly121

search the solution space and will converge to the122

same result every time. We use an adapted version123

of MCDA for color palette optimization.124

Puzicha et al. [21] proposed a method that re-125

duces the palette of an image and applies half-126

toning using a model of human visual perception.127

While their method uses deterministic annealing128

and the CIELAB space to find a solution that129

optimizes both color reduction and dithering, our130

method instead emphasizes palette reduction in131

parallel with the reduction of the output resolution.132

Kopf and Lischinski [22] proposed a method that133

extracts vector art representations from pixel art.134

This problem is almost the inverse of the one pre-135

sented in this paper. However, while their solution136

focuses on interpolating unknown information, con-137

verting an image to pixel art requires compressing138

known information.139

Finally, we show that with minor modification140

our algorithm can produce “posterized” images,141

wherein large regions of constant color are sepa-142

rated by vectorized boundaries. To our knowledge,143

little research has addressed this problem, though144

it shares some aesthetic concerns with the artistic145

thresholding approach of Xu and Kaplan [23].146

3. Background147

Our method for making pixel art builds upon two148

existing techniques, which we briefly describe in this149

section.150

SLIC. Achanta et al. [8] proposed an iterative151

method to segment an image into regions termed152

“superpixels.” The algorithm is analogous to k-153

means clustering [24] in a five dimensional space154

(three color and two positional), discussed for ex-155

ample in Forsyth and Ponce [25]. Pixels in the input156

image pi are assigned to superpixels ps by minimiz-157

ing158

d(pi, ps) = dc(pi, ps) +m

√
N

M
dp(pi, ps) (1)159

where dc is the color difference, dp is the posi-160

tional difference, M is the number of pixels in the161

input image, N is the number of superpixels, and162

m is some value in the range [0, 20] that controls163

the relative weight that color similarity and pixel164

adjacency have on the solution. The color and po-165

sitional differences are measured using Euclidean166

distance (as are all distances in our paper, unless167

otherwise noted), and the colors are represented in168

LAB color space. Upon each iteration, superpixels169

are reassigned to the average color and position of170

the associated input pixels.171

Mass Constrained Deterministic Anneal-172

ing. MCDA [9] is a global optimization method173

for clustering that draws upon an analogy with the174

process of annealing a physical material. We use175

this method both for determining the colors in our176

palette, and for assigning one of these palette colors177

to each pixel—each cluster corresponds to a palette178

color.179

MCDA is a fuzzy clustering algorithm that prob-180

abilistically assigns objects to clusters based on181

their distance from each cluster. It relies on a182

temperature value T , which can be viewed as pro-183

portional to the expected variance of the clusters.184

Initially, T is set to a high value T0, which makes185

each object equally likely to belong to any cluster.186

Each time the system locally converges T is low-187

ered (and the variance of each cluster decreases).188

As this happens, objects begin to prefer favor par-189

ticular clusters, and as T approaches zero each ob-190

ject becomes effectively assigned to a single cluster,191

at which point the final set of clusters is produced.192

3

Figure 3: The pipeline of the algorithm. The superpixels (a) are initialized in a regular grid across the input image, and the
palette is set to the average color of the M input pixels. The algorithm then begins iterating (b). Each iteration has two main
steps: (c) the assignment of input pixels to superpixels, and (d) the assignment of superpixels to colors in the palette and
updating the palette. This not only updates each color, but may also add new colors to the palette. After convergence, the
palette is saturated (e) producing the final output.

In Section 4.3 we provide a formal definition of the193

conditional probability we use to assign superpixels194

to colors in the palette.195

Since at high T having multiple clusters is re-196

dundant, MCDA begins with a single cluster, rep-197

resented internally by two sub-clusters. At the be-198

ginning of each iteration these sub-clusters are set199

to slight permutations of their mean. At a high200

T these clusters converge to the same value after201

several iterations, but as the temperature is low-202

ered they begin to naturally separate. When this203

occurs, the cluster is split into two separate clus-204

ters (each represented by their own sub-clusters).205

This continues recursively until the (user specified)206

maximum number of clusters is reached.207

4. Method208

Our automated algorithm is an iterative209

procedure—an example execution is shown in Fig-210

ure 3. The process begins with an input image of211

width win and height hin and produces an output212

image of width wout and height hout which con-213

tains at most K different colors—the palette size.214

Given the target output dimensions and palette215

size, each iteration of the algorithm segments the216

pixels in the input into regions corresponding to217

pixels in the output and solves for an optimal218

palette. Upon convergence, the palette is saturated219

to produce the final output. In this section, we de-220

scribe our algorithm in terms of the following:221

Input Pixels The set of pixels in the input image,222

denoted as pi where i ∈ [1,M], and M =223

win × hin.224

Ouput Pixels The set of pixels in the output225

image, denoted as po where o ∈ [1, N], and226

N = wout × hout.227

Superpixel A region of the input image, denoted228

as ps where s ∈ [1, N]. The superpixels are a229

partition of the input image.230

Palette A set of K colors ck, k ∈ [1,K] in LAB231

space.232

Our algorithm constructs a mapping for each233

superpixel that relates a region of input pixels234

with a single pixel in the output, as in Figure 4.235

The algorithm proceeds similarly to MCDA, with236

a superpixel refinement and palette association237

step performed upon each iteration, as summarized238

in Algorithm 1. Section 5.1 describes how the239

algorithm can be expanded to allow a user to240

indicate important regions in the input image.241

4

Figure 4: Pixels in the input image (left) are associated
with superpixel regions (middle). Each superpixel region
corresponds to a single pixel in the output image (right).

Algorithm 1

. initialize superpixels, palette and temperature
T (Section 4.1)

. while (T > Tf)
. refine superpixels with 1 step of modified

SLIC (Section 4.2)
. associate superpixels to colors in the

palette (Section 4.3)
. refine colors in the palette (Section 4.3)
. if (palette converged)

. reduce temperature T = αT

. expand palette (Section 4.3)
. post-process (Section 4.4)

4.1. Initialization242

The N superpixel centers are initialized in a243

regular grid across the input image, and each input244

pixel is assigned to the nearest superpixel (in (x, y)245

space, measured to the superpixel center). The246

palette is initialized to a single color, which is247

set to the mean value of the M input pixels.248

All superpixels are assigned this mean color. See249

Figure 3, step (a).250

The temperature T is set to 1.1Tc, where Tc251

is the critical temperature of the set of M input252

pixels, defined as twice the variance along the253

major principal component axis of the set in LAB254

space [9]. The Tc of a set of objects assigned to255

a cluster is the temperature at which a cluster256

will naturally split. Therefore, this policy ensures257

that the initial temperature is easily above the258

temperature at which more than one color in the259

palette would exist.260

4.2. Superpixel refinement261

This stage of the algorithm assigns pixels in the262

input image to superpixels, which correspond to263

Figure 5: Our method uses palette colors when finding
superpixels. Using the mean color of a superpixel works
when the palette is unconstrained (left), but fails when using
a constrained palette (middle). This is because the input
pixels cluster into superpixels based on colors that do not
exist in the final image, which creates a discrepancy. Using
the palette colors to represent the superpixels (right) removes
this discrepancy.

pixels in the output image—see steps (b) and (d)264

in Figure 3.265

To accomplish this task, we use a single itera-266

tion of our modified version of SLIC. In the original267

SLIC algorithm, upon each iteration, every input268

pixel is assigned to the superpixel that minimizes269

d(pi, ps), and the color of each superpixel is set to270

the mean color value of its associated input pix-271

els, ms. However, in our implementation, the color272

of each superpixel is set to the palette color that273

is associated with the superpixel (the construction274

of this mapping is explained in Section 4.3). This275

interdependency with the palette forces the super-276

pixels to be optimized with respect to the colors in277

the palette rather than the colors in the input im-278

age. Figure 5 shows the results of using the mean279

color value instead of our optimized palette used in280

Figure 2.281

However, this also means the color error will be282

generally higher. As a result, we’ve found that283

minimizing d(pi, ps) using a value of m = 45 is more284

appropriate in this case (Achanta et al. [8] suggest285

m = 10). This increases the weight of the positional286

distance and results in a segmentation that contains287

superpixels with relatively uniform size.288

Next, we perform two steps, one modifies each289

superpixel’s (x, y) position for the next iteration,290

and one changes each superpixel’s representative291

color. Each step is an additional modification to the292

original SLIC method and significantly improves293

the final result.294

As seen in Figure 6 (left), SLIC results in su-295

perpixel regions which tend to be organized in 6-296

connected neighborhoods (i.e. a hexagonal grid).297

This is caused by how the (x, y) position of each298

5

Figure 6: Without the Laplacian smoothing step, the super-
pixels (left) tend to have 6-connected neighborhoods. This
causes small distortions in the output (center), which are
particularly noticeable on the ear, eye and mouth, when
compared to original output that uses the superpixels that
included the smoothing step (right).

superpixel is defined as the average position of the299

input pixels associated with it. This hexagonal grid300

does not match the neighborhoods of the output301

pixels, which are 8-connected (i.e. a rectangular302

grid) and will give rise to undesirable distortions303

of image features and structures in the output, as304

seen in Figure 6(center).305

We address this problem with Laplacian smooth-306

ing. Each superpixel center is moved a percentage307

of the distance from its current position to the aver-308

age position of its 4-connected neighbors (using the309

neighborhoods at the time of initialization). We310

use 40%. As seen in Figure 2 (d), this improves the311

correspondence between the superpixel and output312

pixel neighborhoods. Specifically, it helps ensure313

that superpixel regions that are adjacent in the in-314

put map are also adjacent pixels in the output. To315

be clear, it is only in the next iteration when the316

superpixels will be reassigned based on this new317

center, due to the interleaved nature of our algo-318

rithm.319

In our second additional step, the color repre-320

sentatives of the superpixels are smoothed. In the321

original SLIC algorithm, the representative color for322

each superpixel is the average color ms of the input323

pixels associated with it. However, simply using the324

mean color can become problematic for continuous325

regions in the image that contain a color gradient326

(such as a smooth shadowed surface). While this327

gradient appears natural in the input image, the328

region will not appear continuous in the pixelated329

output.330

To remedy this, our algorithm adjusts the values331

of ms using a bilateral filter. We construct an332

image of size wout × hout where each superpixel333

is assigned the same position as its corresponding334

output pixel, with value ms. The colors that results335

from bilaterally filtering this image, ms
′ are used336

while iterating the palette.337

4.3. Palette refinement338

Palette iteration is performed using MCDA [9].339

Each iteration of the palette, as seen in step (c) in340

Figure 3, can be broken down into three basic steps:341

associating superpixels to colors in the palette,342

refining the palette, and expanding the palette.343

The associate and refine steps occur every iteration344

of our algorithm. When the palette has converged345

for the current temperature T , the expand step is346

performed.347

It is important to note how we handle the sub-348

clusters mentioned in Section 3: we treat each sub-349

cluster as a separate color in the palette, and keep350

track of the pairs. The color of each ck is the351

average color of its two sub-clusters. When the352

maximum size of the palette is reached (in terms of353

the number of distinct colors ck), we eliminate the354

sub-clusters and represent each color in the palette355

as a single cluster.356

Associate. The MCDA algorithm requires a357

probability model that states how likely a particular358

superpixel will be associated with each color in the359

palette. See Figure 7. The conditional probability360

P (ck|ps) of a superpixel ps being assigned color ck361

depends on the color distance in LAB space and the362

current temperature, and is given by (after suitable363

normalization):364

P (ck|ps) ∝ P (ck) e
−||ms

′ − ck||
T (2)365

P (ck) is the probability that color ck is assigned366

to any superpixel, given the existing assignment.367

Figure 7: Each superpixel (left) is associated by some
conditional probability P (ck|ps) to each color in the palette
(middle). The color with the highest probability is assigned
to the superpixel and its associated output pixel in the final
image (right).

6

Upon initialization, there is only one color, and368

thus this value is initialized to 1. As more colors369

are introduced into the palette, the value of this370

probability is computed by marginalizing over ps:371

P (ck) =

N∑
s=1

P (ck|ps)P (ps) (3)372

For the moment, P (ps) simply has a uniform distri-373

bution. This will be revisited in Section 5.1 when374

incorporating user-specified importance. The val-375

ues of P (ck) are updated after the values of P (ck|ps)376

are computed using Equation 2. Each superpixel is377

assigned to the color in the palette that maximizes378

P (ck|ps). Intermediate results of this assignment379

can be seen in Figure 3 (bottom row). The expo-380

nential distribution in Equation 2 tends towards a381

uniform distribution for large values of T , in which382

case each superpixel will be evenly associated with383

every palette color. As T decreases, superpixels fa-384

vor colors in the palette that are less distant. At385

the final temperature, the generic situation after386

convergence has P (ck|ps) = 1 for a single color387

in the palette and P (ck|ps) = 0 for the rest. In388

this case, deterministic annealing is equivalent to389

k-means clustering.390

Refine. The next step is to refine the palette391

by reassigning each color ck to a weighted average392

of all superpixel colors, using the probability of393

association with that color:394

ck =

N∑
s=1

ms
′P (ck|ps)P (ps)

P (ck)
(4)395

This adapts the colors in the existing palette given396

the revised superpixels. Such changes in the palette397

can be seen in Figure 3, as the computation pro-398

gresses.399

Expand. Expansion only occurs during an400

iteration if the palette has converged for the current401

temperature T (convergence is measured by the402

total change in the palette since last iteration being403

less than some small value εpalette). First, the404

temperature is lowered by some factor α (we use405

0.7). Next, the palette is expanded if the number406

of colors is less than the number specified by the407

user. For each ck we check to see if the color408

needs to be split into two separate colors in the409

palette. As per MCDA, each color in the palette410

is represented by two cluster points ck1
and ck2

.411

We use ||ck1
− ck2

|| > εcluster (where εcluster is412

a sufficiently small number), to check for palette413

separation. If so, the two cluster points are added414

to the palette as separate colors, each with its own415

pair of cluster points. As seen in Figure 3, over the416

course of many iterations, the palette grows from a417

single color to a set of eight (which is the maximum418

number specified by the user in this example).419

After resolving any splits, each color is repre-420

sented by two sub-clusters with the same value421

(unless the maximum number of colors have been422

reached). In order for any color’s sub-clusters to423

separate in the following iterations, ck1
and ck2

424

must be made distinctly different. To do so, we425

perturb the sub-clusters of each color by a small426

amount along the principal component axis of the427

cluster in LAB space. Rose [9] has shown this to be428

the direction a cluster will split. This perturbation429

allows the sub-clusters of each color to merge when430

T > Tc and separate when T < Tc.431

Algorithm 1 is defined so that the superpixel and432

palette refinement steps are iterated until conver-433

gence. The system converges when the tempera-434

ture has reached the final temperature Tf and the435

palette converges. We use Tf = 1 to avoid trun-436

cation errors as the exponential component of the437

Equation 2 becomes small.438

4.4. Palette Saturation439

As a post-processing step, we provide the option440

to saturate the palette, which is a typical pixel441

artist technique, by simply multiplying the a and b442

channels of each color by a parameter β > 1. This443

value used in all our results is β = 1.1. Lastly,444

by converting to from LAB to RGB space, our445

algorithm outputs the final image.446

5. User Controls447

The algorithm described in Section 4 completely448

automates the selection of the color palette. This449

stands in marked contrast to the traditional, man-450

ual process of creating pixel art, where the artist451

carefully selects each color in the palette and its452

placement in the image. Therefore, we propose a453

set of user controls that leverage the results of our454

algorithm and bridges the gap between these two455

extremes. These controls allow the user to have in456

as much or as little control over the process as they457

want. This combines the power and speed of our au-458

tomated method with the knowledge and creativity459

of the user.460

7

The first user control, originally proposed in Pix-461

elated Image Abstraction [11], is an “importance462

map” that acts as an additional input to our algo-463

rithm and lets the user emphasize areas of the im-464

age they believe to be important. The second and465

third controls we propose, pixel and palette con-466

straints, are used after the automated algorithm467

initially converges. Using these two controls, the468

user can directly edit the palette colors and their469

assignment in the output image, giving them full470

control over the result. After each set of edits, the471

user can choose to have our automated algorithm472

continue to iterate using the current result as its473

starting point with the user’s edits as constraints474

(see Section 5.4). To demonstrate the effectiveness475

of these user controls, we developed a user interface476

that was used to generate the results in Figure 16.477

5.1. Importance Map478

As stated in Section 4 our automated method479

does not favor any image content. For instance,480

nothing is in place that can distinguish between481

foreground and background objects, or treat them482

separately in the output. However, user input (or483

the output of a computer vision system) can easily484

be incorporated into our algorithm to prioritize the485

foreground in the output. Thus, our system allows486

additional input at the beginning of our method.487

Users can supply a win × hin grayscale image of488

weights Wi ∈ [0, 1], i ∈ [1,M], used to indicate489

the importance of each input pixel pi. In our490

interface, this is done by using a simple brush to491

mark areas with the desired weight. We incorporate492

this map when iterating the palette (Section 4.3) by493

adjusting the prior P (ps).494

Given the importance map, the value P (ps) for495

each superpixel is given by the average importance496

of all input pixels contained in superpixel ps (and497

suitable normalization across all superpixels):498

P (ps) ∝
1

|ps|
∑

pixel i∈ps

Wi (5)499

P (ps) thus determines how much each superpixel500

affects the resulting palette, through Equations 3501

and 4. This results in a palette that can better502

represent colors in the regions of the input image503

marked as important.504

5.2. Pixel Constraints505

In traditional pixel art, the artist needs to manu-506

ally choose the color of each pixel in the output.507

a
u
to
m
a
ti
c

ed
it
ed

output superpixels

Figure 8: When the user provides constraints to the im-
age, future iterations of the algorithm will update the su-
perpixels in a way that seeks to decrease error under the
new constraints. In this example, the original image (top
left)), is modified by constraining several pixels of the ear to
the background color (bottom left). As a result, the super-
pixels (top right) are redistributed to match the constraints
(bottom right). The superpixels that used to be part of the
ear now form segments of the background, and neighboring
pixels in the output have changed to accommodate the new
superpixel distribution.

In contrast, our automated algorithm makes the508

choice entirely for the user. By adding a simple509

constraint in to our program, we can allow the user510

to work in the area between these two extremes. For511

each pixel in the output, we allow the user to se-512

lect a subset of colors in the palette. For each color513

not in this subset, we set the conditional probabil-514

ity of that color for this pixel, P (ck|ps), to zero.515

This restricts the color assigned to the output pixel516

to the color with the highest conditional probabil-517

ity within the subset. Note this has the convenient518

property of being equivalent to the manual process519

when the subset is a single color, and to the auto-520

matic process when the subset is the entire palette.521

As explained in Section 4.2, superpixels are rep-522

resented using the color in the palette with the523

highest conditional probability, P (ck|ps). There-524

fore, adding these constraints will affect the assign-525

ment of input pixels to superpixels in future iter-526

ations. As a result, when constraints are added527

by the user, neighboring superpixels will naturally528

8

compensate as the algorithm attempts to decrease529

error under these constraints, as seen in Figure 8.530

In our interface, we implement this tool as a paint531

brush, and allow the user to select one or more532

colors from the palette to form the subset as they533

paint onto the output image. Using the brush, they534

are able to choose the precise color of specific pixels,535

restrict the range of colors for others, and leave the536

rest entirely to our algorithm.537

5.3. Palette Constraints538

Similarly, in traditional pixel art the artist needs539

to manually choose each color of the palette. We540

again provide a set of constraints to give the user541

control over this process while using our algorithm.542

After the palette has initially converged, the user543

has the option to edit and fix colors in the palette.544

This is done in one of two ways. The first is a trivial545

method; the user directly modifies a specific color546

in the palette. The second utilizes the information547

already gathered by our algorithm. By choosing a548

color in the palette ck, and then a superpixel ps549

formed by our algorithm, we set ck to the mean550

color of that region, ms, as found in Section 4.2.551

While the first method allows the user to have direct552

control, the second provides them with a way of553

selecting a relatively uniform area of the original554

image from which to sample a color, and without555

having to specify specific values.556

In addition to changing the color, the user has the557

option to keep these colors fixed or free during any558

future iterations of the algorithm. If they are fixed,559

they will remain the same color for the rest of the560

process. If they are not fixed, they will be free to561

converge to a new value as our algorithm iterates,562

starting with the initial color provided by the user’s563

edit. This gives the users another dimension of564

palette control in addition to the ability to manually565

choose the colors.566

Note that when a color is changed in the palette,567

areas of the original image may no longer be well568

represented in the palette. Fortunately, during any569

future iterations, our algorithm will naturally seek570

to reduce this discrepancy by updating the unfixed571

colors in the palette as it attempts to minimize error572

and converge to a new local minimum.573

5.4. Reiterating574

After using any of the tools described in this sec-575

tion, the user has the option of rerunning our algo-576

rithm. However, rather than starting from scratch,577

the algorithm begins with the results of the pre-578

vious iteration, subject to the constraints specified579

by the user. When rerunning the algorithm, the580

temperature remains at the final temperature Tf581

it reached at convergence, and continues until the582

convergence condition described in Section 4.3 is583

met again. Note that while iterating, the algo-584

rithm maintains the user’s constraints. Therefore585

the user can decide what the algorithm can and586

cannot update. Also note that since the algorithm587

is not starting from scratch, it is generally close to588

the next solution, and convergence occurs rapidly589

(usually less than a second). After the algorithm590

has converged, the user can continue making edits591

and rerunning the algorithm until satisfied. In this592

way the user becomes a part of the iterative loop,593

and both user and algorithm work to create a final594

solution.595

6. Results596

We tested our algorithm on a variety of input597

images at various output resolutions and color598

palette sizes (Figures 9–16). For each example, we599

compare our method to two naive approaches:600

• nearest method : a bilateral filter followed by601

median cut color quantization, followed by602

nearest neighbor downsampling,603

• cubic method : cubic downsampling followed604

by median cut color quantization. Unless605

otherwise stated, the results are generated606

using only our automated algorithm, and no607

user input was integrated into the result.608

All of our results use the parameter settings from609

Section 4. Each result was produced in generally610

less than a minute on an Intel 2.67Ghz i7 processor611

with 4GB memory. Each naive result is saturated612

using the same method described in Section 4.4.613

Please note it is best to view the results up-close or614

zoomed-in, with each pixel being distinctly visible.615

In Figure 9, we show the effects of varying616

the number of colors in the output palette. Our617

automatic method introduces fewer isolated colors618

than the nearest method, while looking less washed619

out than the cubic method. As the palette size620

shrinks, our method is better able to preserve621

salient colors, such as the green in the turban.622

Our method’s palette assignment also improves the623

visibility of the eyes and does not color any of the624

face pink.625

9

original 32 colors 16 colors 8 colors

o
u
r
m
et
h
o
d

n
ea
re
st

m
et
h
o
d

cu
b
ic

m
et
h
o
d

Figure 9: Varying the palette size (output images are 64×58).

original input 48×36 64×48 80×60

o
u
r
m
et
h
o
d

n
ea
re
st

m
et
h
o
d

cu
b
ic

m
et
h
o
d

Figure 10: Varying the output resolution (palette has 16 colors).

10

original 22×32, 8c 11×16, 6c 4×6, 4c

o
u
r
m
et
h
o
d

n
ea
re
st

m
et
h
o
d

cu
b
ic

m
et
h
o
d

Figure 11: Examples of very low resolution and small palette
sizes.

Similar results are seen in Figure 10 when we626

vary the output resolution. Again we see that the627

cubic method produces washed-out images and the628

nearest method has a speckled appearance. At all629

resolutions, our method preserves features such as630

the goggles more faithfully, and consistently chooses631

more accurate skin tones for the faces, whereas both632

naive methods choose gray.633

Using our automated algorithm, the image of634

Barack Obama is recognizable even at extremely635

small output resolutions and palette sizes (Fig-636

ure 11). At 22×32 and 11×16, our method more637

clearly depicts features such as the eyes while col-638

oring regions such as the hair and tie more consis-639

tently. At 11×16, the nearest method produces a640

result that appears to distort facial features, while641

the cubic method produces a result that “loses” the642

eyes. At 6×4, results are very abstract, but our643

method’s output could still be identified as a per-644

son or as having originated from the input.645

In Figure 12, we compare our automated output646

to manual results created by expert pixel artists.647

While our results exhibit the same advantages seen648

in the previous figures over the naive methods, they649

do not match the results made by artists. Expert650

artists are able to heavily leverage their human651

understanding of the scene to emphasize and de-652

emphasize features and make use of techniques such653

original input pixel artist our method

nearest method cubic method

original input pixel artist our method

nearest method cubic method

Figure 12: Comparing to the work of expert pixel artists
(64×43). The results generate from our method and the
naive methods use 16 colors in the first example, 12 in the
second. The pixel artists use 8 colors in the first example,
11 in the second.

as dithering and edge highlighting. While there are654

many existing methods to automatically dither an655

image, at these resolutions the decision on when to656

apply dithering is nontrivial, and uniform dithering657

can introduce undesired textures to surfaces (such658

as skin).659

Figure 13 contains additional results computed660

using various input images. Overall, our automated661

approach is able to produce less noisy, sharper662

images with a better selection of colors than the663

naive techniques we compared against.664

To verify our analysis, we conducted a formal665

user study with 100 subjects using Amazon Me-666

chanical Turk. Subjects were shown the original667

image and the results of our automated method668

and the two naive methods. The results were scaled669

to approximately 256 pixels along their longest di-670

mension using nearest neighbor upsampling, so that671

users could clearly see the pixel grid. We asked sub-672

jects the question, “Which of the following best rep-673

resents the image above?” Subjects responded by674

choosing a result image. The stimulus sets and an-675

swer choices were randomized to remove bias. The676

study consisted of the example images and parame-677

ters shown in our paper, excluding the results gen-678

11

Figure 13: Additional results at various resolution and
palette sizes. Columns (left to right): input image, output
of our algorithm, output of the nearest method, output of
the cubic method.

erated using user input, and each stimulus was du-679

plicated four times (sixty total).680

We accounted for users answering randomly by681

eliminating the results of any subject who gave682

inconsistent responses (choosing the same answer683

for less than three of the four duplicates) on more684

than a third of the stimuli. This reduced the685

number of valid responses to forty. The final results686

show that users choose our results 41.49% of the687

time, the nearest method 34.52% of the time, and688

the cubic method 23.99% of the time. Using a one-689

way analysis of variance (ANOVA) on the results,690

we found a p value of 2.12 × 10−6, which leads691

us to reject the null hypothesis that subjects all692

chose randomly. Using Tukey’s range test we found693

that our automated method is significantly different694

from the nearest method with a 91% confidence695

interval, and from the cubic method with a 99%696

confidence interval. While we acknowledge that the697

question asked is difficult one given that it is an698

aesthetic judgment, we believe the results of this699

study still show subjects prefer the results of our700

method over the results of either naive method.701

We also received feedback from three expert pixel702

artists on our automated method; each concluded703

that the automated results are, in general, an im-704

provement over the naive approaches. Ted Martens,705

creator of the Pixel Fireplace, said that our algo-706

rithm “chooses better colors for the palette, groups707

them well, and finds shapes better.” Adam Salts-708

man, creator of Canabalt and Flixel, character-709

ized our results as “more uniform, more reason-710

able palette, better forms, more readable.” Craig711

Adams, art director of Superbrothers: Sword &712

Sworcery EP, observed that “essential features seem713

to survive a bit better [and] shapes seem to come714

through a bit more coherently. I think the snow-715

boarder’s goggles are the clearest example of an es-716

sential shape—the white rim of the goggle—being717

coherently preserved in your process, while it de-718

cays in the ‘naive’ process.”719

o
ri
g
in
a
l

v
ec
to
ri
ze
d

o
u
r
re
su
lt

n
ea
re
st

re
su
lt

cu
b
ic

re
su
lt

Figure 14: The original pixel art image (c© Nin-
tendo Co., Ltd.) is converted to a vectorized version using
Kopf and Lischinski’s method [22]. The vectorized version
is then converted back to a pixelated version using our au-
tomated method and the two naive methods.

12

In Section 2, we mentioned that the method of720

Kopf and Lischinski [22] is essentially the inverse721

process of our method; it takes a pixel art piece and722

converts it to a smooth, vectorized output. To see723

how well our method actually serves as the inverse724

process, we took the vectorized output of their725

method as the input of our automated algorithm,726

setting the size of output image and palette to the727

same as their input. The results, compared to728

those of the naive methods, are shown in Figure 14.729

Visually our method appears to outperform either730

naive method, and obtains a result that is similar731

to their original input. To quantify the effectiveness732

of our method, we took the sum of the Euclidean733

distance in LAB space of every pixel between our734

output and their input. We did the same for735

the naive methods. We found the total error for736

our method, the nearest method and the cubic737

method to be 1.63× 103, 3.05× 103 and 9.84× 103,738

respectively. In other words, our method has 47%739

less error than the nearest method, and 83.5% less740

error than the cubic method.741

In Figure 15, we present results from our method742

using an the importance map as an additional in-743

put to the algorithm. The results are closer to those744

created by expert pixel artist. Figure 15(left) allo-745

cates more colors in the palette to the face of the746

person, similar to the manual result in Figure 12.747

Figure 15(right) also shows an improvement over748

the non-weighted results in Figure 9. For both ex-749

amples, the importance map emphasizes the face750

and de-emphasizes the background; consequently,751

more colors are allocated to the face in each exam-752

ple at the expense of the background.753

In Figure 16, we demonstrate the advantage of754

allowing the user to also place pixel and palette755

constraints during our iterative process. In Fig-756

ure 16(top), the user provides minimal, but effective757

changes, such as improving the jawline, and remov-758

ing a skin color in favor of a blue in the palette for759

the tie. They also introduce a simple striped pat-760

tern into the tie, which still represents the original761

image, but no longer has a direct correspondence,762

and would not be achievable by our algorithm alone.763

These changes took less than a minute to make.764

The improved result in Figure 16(middle row) is765

achieved by interleaving multiple steps of user con-766

straints and iterations of our algorithm. The user767

is also able to incorporate the advanced techniques768

observed in Figure 12 such as dithering and edge769

highlighting, which are not natively built into our770

algorithm.771

Importance Map Result

Figure 15: Results using an importance map. (top)64×58,
16 colors (bottom) 64×43, 12 colors

The image in Figure 16(bottom) is a failure case772

for our automated algorithm, due to the lighting773

and high variation in the background. However,774

even with this initially poor output, by interleaving775

the iterative process with user constraints (such as776

restricting the background to a single color) the777

results are significantly improved.778

Finally, while not the direct goal of our work,779

we briefly mention a secondary application of our780

method, image posterization. This artistic tech-781

nique uses just a few colors (originally motivated782

by the use of custom inks in printing) and typi-783

cally seeks a vectorized output. Adobe Illustrator784

provides a feature called LiveTrace that can poster-785

ize the image in Figure 2(a), yielding Figure 17(a)786

with only 6 colors. To our knowledge, little research787

has addressed this problem, though it shares some788

aesthetic concerns with theartistic thresholding ap-789

proach of Xu and Kaplan [23]. A simple modifica-790

tion to our optimization that omits the smoothing791

step (Figure 6-left) and then colors the original im-792

age via associated superpixels gives us Figure 17(b),793

which makes a more effective starting point for vec-794

torization. The resulting Figure 17(c) offers im-795

proved spatial and color fidelity, based on a good796

faith effort to produce a similar style in Illustrator.797

7. Conclusion, Limitations and Future work798

We present a multi-step iterative process that si-799

multaneously solves for a mapping of features and a800

reduced palette to convert an input image to a pixe-801

lated output image. Our method demonstrates sev-802

13

original input automatic user-assisted

2
2
×
3
2
,
8
c
o
lo
rs

6
4
×
5
9
,
1
2
c
o
lo
rs

2
8
×
3
2
,
8
c
o
lo
rs

Figure 16: The results of the automatic method compared
to the results obtained by integrating user input into the
iterative process with our interface. Note that the user
can choose to make only a few key edits (top), or they
can leverage their understanding of the image to drastically
improve images that are otherwise difficult for the automated
algorithm (bottom).

eral advantages over the naive methods. Our results803

have a more vibrant palette, retain more features804

of the original image, and produce a cleaner output805

with fewer artifacts. While the naive methods pro-806

duce unidentifiable results at very low resolutions807

and palette sizes, our approach is still able to cre-808

ate iconic images that conjure the original image.809

Thus our method makes a significant step towards810

the quality of images produced by pixel artists.811

Nevertheless, our method has several limitations812

which we view as potential avenues for future813

research. While pixel artists view the results of our814

automated algorithm as an improvement, they also815

express the desire to have a greater control over the816

final product.817

To address these concerns, we implemented sev-818

eral controls that allow the user to give as much or819

little feedback into the automated process as they820

desire. By incorporating an importance map we821

give the user the ability to guide the palette selec-822

tion, and by giving the user the ability to provide823

pixel and palette constraints and interleave them824

(a) (b) (c)

Figure 17: (a) vectorized photo posterized with Illustrator
(6 colors). (b) Optimization without Laplacian smoothing,
coloring associated input pixels (6 colors). (c) Vectorizing
b in Illustrator yields similar style with better spatial and
color fidelity than a.

with our algorithm, we remove the gap between the825

manual and automated methods of producing pixel826

art.827

The results of combining these user constraints828

into our iterative algorithm are encouraging. For829

future work, we wish to expand on our proposed830

method and user controls to increase the interaction831

between the automated algorithm and the user.832

Our goal is to create a complete system that833

incorporates the speed and power of an automated834

method to assist artists in their entire process,835

without restricting the control of the artists over836

the final result.837

As such, the next step is to explore how the838

user’s feedback can help inform more advanced839

pixel art techniques in our algorithm, such as those840

that would produce edge highlighting and dither-841

ing. We’d also like to look into ways of automati-842

cally performing palette transfers, which would al-843

low potential applications of this work to include,844

for example, reproduction of an image in repeat-845

ing tiles like Lego, or design for architectural fa-846

cades composed of particular building materials like847

known shades of brick. Currently, our algorithm848

is limited to working with colors that are similar849

to the original image due to the nature of how we850

minimize error, and such an application is not pos-851

sible without the user applying a large number of852

constraints.853

Acknowledgments854

We thank the anonymous reviewers for their help-855

ful feedback. We also wish to thank pixel artists856

Craig Adams, Ted Martens, and Adam Saltsman857

for their advice and comments. This research is858

14

supported in part by the Sloan Foundation, the859

NSF (CAREER Award CCF-06-43268 and grants860

IIS-09-16129, IIS-10-48948, IIS-11-17257, CMMI-861

11-29917, IIS-09-16845, DGE-05-49115), and gen-862

erous gifts from Adobe, Autodesk, Intel, mental863

images, Microsoft, NVIDIA, Side Effects Software,864

and the Walt Disney Company. The following copy-865

righted images are used with permission: Figure 1866

by Alice Bartlett, Figure 9 by Louis Vest, Figure 13867

(giraffe) by Paul Adams, and Figure 13 (pagoda)868

by William Warby. The pixel art in Figure 12 is869

copyright Adam Saltsman (top) and Ted Martens870

(bottom).871

References872

[1] Vermehr K, Sauerteig S, Smital S. eboy.873

http://hello.eboy.com; 2012.874

[2] Marr D, Hildreth E. Theory of edge detection. Inter-875

national Journal of Computer Vision 1980;.876

[3] DeCarlo D, Finkelstein A, Rusinkiewicz S, Santella A.877

Suggestive contours for conveying shape. ACM Trans878

Graph 2003;22(3):848–55.879

[4] Judd T, Durand F, Adelson EH. Apparent ridges for880

line drawing. ACM Trans Graph 2007;26(3):19–.881

[5] Gooch B, Coombe G, Shirley P. Artistic vi-882

sion: painterly rendering using computer vision tech-883

niques. In: Non-Photorealistic Animation and Ren-884

dering (NPAR). ISBN 1-58113-494-0; 2002, p. 83–90.885

doi:http://doi.acm.org/10.1145/508530.508545. URL886

http://doi.acm.org/10.1145/508530.508545.887

[6] DeCarlo D, Santella A. Stylization and abstraction888

of photographs. ACM Trans Graph 2002;21:769–76.889

doi:http://doi.acm.org/10.1145/566654.566650. URL890

http://doi.acm.org/10.1145/566654.566650.891

[7] Winnemöller H, Olsen SC, Gooch B. Real-time video892

abstraction. ACM Trans Graph 2006;25:1221–6.893

[8] Achanta R, Shaji A, Smith K, Lucchi A, Fua P,894

Süsstrunk S. SLIC Superpixels. Tech. Rep.; IVRG895

CVLAB; 2010.896

[9] Rose K. Deterministic annealing for clustering,897

compression, classification, regression, and related898

optimization problems. Proceedings of the IEEE899

1998;86(11):2210–39. doi:10.1109/5.726788.900

[10] Sharma G, Trussell HJ. Digital color imaging. IEEE901

Transactions on Image Processing 1997;6:901–32.902

[11] Gerstner T, DeCarlo D, Alexa M, Finkelstein A,903

Gingold Y, Nealen A. Pixelated image abstraction.904

In: Proceedings of the International Symposium on905

Non-Photorealistic Animation and Rendering (NPAR).906

2012,.907

[12] Gervautz M, Purgathofer W. Graphics gems. chap. A908

simple method for color quantization: octree quantiza-909

tion. ISBN 0-12-286169-5; 1990, p. 287–93.910

[13] Heckbert P. Color image quantization for frame buffer911

display. SIGGRAPH Comput Graph 1982;16:297–307.912

[14] Orchard M, Bouman C. Color quantization of images.913

IEEE Trans on Signal Processing 1991;39:2677–90.914

[15] Wu X. Color quantization by dynamic programming915

and principal analysis. ACM Trans Graph 1992;11:348–916

72.917

[16] Stollnitz EJ, Ostromoukhov V, Salesin DH. Reproduc-918

ing color images using custom inks. In: Proceedings of919

SIGGRAPH. ISBN 0-89791-999-8; 1998, p. 267–74.920

[17] Shi J, Malik J. Normalized cuts and image segmenta-921

tion. IEEE Transactions on Pattern Analysis and Ma-922

chine Intelligence 1997;22:888–905.923

[18] Vedaldi A, Soatto S. Quick shift and kernel methods924

for mode seeking. In: In European Conference on925

Computer Vision, volume IV. 2008, p. 705–18.926

[19] Levinshtein A, Stere A, Kutulakos KN, Fleet DJ,927

Dickinson SJ, Siddiqi K. Turbopixels: Fast superpixels928

using geometric flows. 2009.929

[20] Kirkpatrick S, Gelatt CD, Vecchi MP. Optimization by930

simulated annealing. Science 1983;220:671–80.931

[21] Puzicha J, Held M, Ketterer J, Buhmann JM, Fellner932

DW. On spatial quantization of color images. IEEE933

Transactions on Image Processing 2000;9:666–82.934

[22] Kopf J, Lischinski D. Depixelizing pixel art. ACM Trans935

Graph 2011;30(4):99–.936

[23] Xu J, Kaplan CS, Mi X. Computer-generated paper-937

cutting. In: Proceedings of Pacific Graphics. 2007, p.938

343–50.939

[24] MacQueen JB. Some methods for classification and940

analysis of multivariate observations. In: Proceedings941

of 5th Berkeley Symposium on Mathematical Statistics942

and Probability. 1967, p. 281–97.943

[25] Forsyth DA, Ponce J. Computer Vision: A Modern944

Approach. Prentice Hall; 2002.945

15

