
Micro	 Perceptual	 Human	 Computa2on	
for	 Visual	 Tasks
ACM	 Transac+ons	 on	 Graphics

Yotam	 Gingold
Columbia/Rutgers

Ariel	 Shamir
Herzliya	 IDC

Daniel	 Cohen-‐Or
Tel-‐Aviv	 University

This is joint work with Ariel Shamir and Daniel Cohen-Or when I was in Israel.

I’m going to talk about a model of computation that’s very relevant to graphics.
We call it “Micro Perceptual Human Computation” and I will show how it can be used for visual tasks.

The first part of my talk will discuss the nature of human computation and our particular computational model.
The second part will describe three specific algorithms for computing depth layers, normal maps, and symmetry
maps.

Before I begin, I would like to offer a historical digression to loosen up our minds a bit.

Historical	 Digression

2

1700’s

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

Historical	 Digression

2

1700’s

Clairaut

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

Historical	 Digression

2

1700’s

Clairaut Halley’s Comet

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

Historical	 Digression

3

1800’s

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

Historical	 Digression

3

1800’s

Babbage

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

Historical	 Digression

3

1800’s

Babbage Difference Engine

[C
ar
st
en

	 U
llr
ic
h]

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

Historical	 Digression

4

1900’s

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

WPA/war effort/NACA

Historical	 Digression

4

1900’s

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

WPA/war effort/NACA

Historical	 Digression

4

1900’s

Trinity

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

ENIAC

Historical	 Digression

4

1900’s

[David	 Alan	 Grier	 2005]

Historical note:
 The term “computer” used to refer to humans who did computation [Grier 2005 “When Computers Were Human”].
 1700's: <click> Alexis Claude de Clairaut and friends divide the calculations <click> for the return of Halley's
Comet.
 1800's: <click> Charles Babbage's "Law of Errors" (two humans performing the same computation are likely to
make the same error); <click> the Difference Engine was invented because Babbage was frustrated by limitations of
(human) computers.
 1900's: <click> WPA (Works Progress Administration) Mathematical Tables Project provided work during the
depression, and other groups aided the <click> war effort (navigation, radar, bombs, Manhattan Project).
 <click> In the 1940's, the ENIAC was developed, the first electronic computer.

 Since then, computer has come to mean an electronic computer.

• Slow

• Inconsistent	 &	 noisy
• ???

Electronic

• Fast

• Determinis2c

• Arithme2c

5

[C
ar
st
en

	 U
llr
ic
h]

Human

Electronic computers versus human computers. (This is a historic photograph from NACA/NASA.)

electronic: fast, deterministic (at arithmetic)
human: slow, inconsistent, yet still better at some things (which?)

The	 Human	 Advantage

• Percep2on

• Preference

• Crea2vity

6

I’m going to suggest a taxonomy... (every time I revisit this slide I change the taxonomy)

Humans better at:
 perception/comprehension: reconstructing information that wasn't captured at capture-time (as in a photo or
surface scan) or constructing/inferring information that was never recorded (as in a sketch/recognizing emotions/
labeling images) using knowledge humans naturally possess?
 preference/aesthetic judgements: evaluate goodness ("beauty") for sorting or optimization (see Sims, Electric
Sheep, Interactive Genetic Algorithm/Human-Based Genetic Algorithms, [Little 2009]/[Bernstein 2011])?
 creativity
 - search: finding images that go well together
 - art projects like The Sheep Market [Koblin 2006]
 - [Little 2009/10] for expanding text/jokes/shirt design
 - [Yu and Nickerson 2011] for sketching chair designs (“Cooks or Cobblers”)
 - [Bernstein 2011] for posing humans
 - [Kittur 2011] for wikipedia... or wikipedia

Preference vs Creativity has a parallel to P vs NP (recognize versus generate)

Human	 Computa2on

• Luis	 von	 Ahn’s	 2005	 PhD	 thesis:
– “We	 treat	 human	 brains	 as	 processors	 in	 a	 distributed	
system,	 each	 performing	 a	 small	 part	 of	 a	 massive	
computa9on.”

– “We	 argue	 that	 humans	 provide	 a	 viable,	 under-‐tapped	
resource	 that	 can	 aid	 in	 the	 solu9on	 of	 several	
important	 problems	 in	 prac9ce.”

7

This brings us to the modern use of Human Computation...

(This is independent of the earlier historical digression; that forgotten history was published simultaneously.)

Example	 1:

8

[von Ahn and Dabbish 2004]

[von Ahn and Dabbish 2004] http://www.gwap.com/gwap/gamesPreview/espgame/

Collecting data. Inspired by the Open Mind Initiative (1999+), a project for generating supervised machine learning datasets by
crowdsourcing (a term which hadn’t been invented yet (it was invented by Jeff Howe in a 2006 Wired article)).

Motivation: Fun!
Quality control for labels: matching words with another human
Main use: tagging images (good for google!)
Very successful; became Google Image Labeler (though recently shut down, in 2011).

Example	 2:

9

[Russel et al. 2005/2008]

[Russel et al. 2005/2008] http://labelme.csail.mit.edu/

Collecting data.

Click out polygons around the boundary of individual objects and type a name.

Motivation: ?? researchers using the data please click out some objects. paid some people to do it (using Amazon’s Mechanical
Turk)
Quality control for labels: users can revise other users
Main use: dataset for supervised learning

Example	 3:

10

[Bernstein et al. 2010]

[Bernstein et al. 2010] http://projects.csail.mit.edu/soylent/

The HC is now online. (This isn’t for use offline to generate supervised learning datasets.)

A Word plug-in that uses crowd contributions to perform document shortening, proofreading, and human-language macros.

Motivation: Payment
Quality control: Soylent introduced a human computation design pattern called Find-Fix-Verify that splits tasks into three HC stages:
identifying the region of interest; performing the action; verifying the action.

user application

electronic
processors

code
def get_normals_for_locations(image_path, locations):
 '''
 Given an 'image_path' and an iterable collection of integer (row,col)
 locations at which we want to know the normal 'locations',
 returns a list of (x,y,z) unit normals corresponding to each element
 in 'locations'.
 '''

 import oracle_normals.knowledge
 K = oracle_normals.knowledge.KnowledgePairChecking()
 K.want_to_know(image_path, locations)
 normals = K.get_answer_at_rows_cols(image_path, locations)
 assert len(normals) == len(locations)
 return normals

def generate_surface_from_normals(rows, cols, locations2normals):
 '''
 Returns a 2D array with shape('rows', 'cols') whose values are created
 by interpolating the normals given by 'locations2normals', a dictionary
 mapping integer (row, col) to (x,y,z) values.v

human processors

Computa2on

11

Let’s compare the traditional and this new model of computation.
Here we have a model of (interactive) computation we are familiar with.
The user sits at a computer and uses an application.
The application is written in code, which runs on electronic processors.

user application

electronic
processors

code
def get_normals_for_locations(image_path, locations):
 '''
 Given an 'image_path' and an iterable collection of integer (row,col)
 locations at which we want to know the normal 'locations',
 returns a list of (x,y,z) unit normals corresponding to each element
 in 'locations'.
 '''

 import oracle_normals.knowledge
 K = oracle_normals.knowledge.KnowledgePairChecking()
 K.want_to_know(image_path, locations)
 normals = K.get_answer_at_rows_cols(image_path, locations)
 assert len(normals) == len(locations)
 return normals

def generate_surface_from_normals(rows, cols, locations2normals):
 '''
 Returns a 2D array with shape('rows', 'cols') whose values are created
 by interpolating the normals given by 'locations2normals', a dictionary
 mapping integer (row, col) to (x,y,z) values.v

human processors

Human	 Computa2on

12

And here is a model of human computation for interactive algorithms.

In this model, human processors are unskilled and isolated and there is high communication latency.
% Such a pool has been available (with an API) since 2005 via Amazon’s Mechanical Turk platform, though there are others
(SamaSource, txteagle).

We believe this model is especially relevant to computer graphics, because of humans’ capabilities at visual perception.
In particular, I/we want to see human processors used for online, interactive applications.

Why?

13

user application

electronic
processors

code
def get_normals_for_locations(image_path, locations):
 '''
 Given an 'image_path' and an iterable collection of integer (row,col)
 locations at which we want to know the normal 'locations',
 returns a list of (x,y,z) unit normals corresponding to each element
 in 'locations'.
 '''

 import oracle_normals.knowledge
 K = oracle_normals.knowledge.KnowledgePairChecking()
 K.want_to_know(image_path, locations)
 normals = K.get_answer_at_rows_cols(image_path, locations)
 assert len(normals) == len(locations)
 return normals

def generate_surface_from_normals(rows, cols, locations2normals):
 '''
 Returns a 2D array with shape('rows', 'cols') whose values are created
 by interpolating the normals given by 'locations2normals', a dictionary
 mapping integer (row, col) to (x,y,z) values.v

human processors

1. Magic: make the impossible possible. For many problems we have no/there are no (low-dimensional) models, so machine
learning cannot really help. We are many, many years from being able to solve such problems with computers.
2. Speed or Scalability. Via parallelization, jobs complete faster than “giving them to a human to solve.” You also gain access to a
giant pool of workers.
3. Cheaper (or free). Human Processors are unskilled, so their time costs less. We advocate tasks that require no training. If you
can make a game out of it, it could even be free, though this is an issue of incentives, and I won’t be talking about it much today.

Why?

13

user application

electronic
processors

code
def get_normals_for_locations(image_path, locations):
 '''
 Given an 'image_path' and an iterable collection of integer (row,col)
 locations at which we want to know the normal 'locations',
 returns a list of (x,y,z) unit normals corresponding to each element
 in 'locations'.
 '''

 import oracle_normals.knowledge
 K = oracle_normals.knowledge.KnowledgePairChecking()
 K.want_to_know(image_path, locations)
 normals = K.get_answer_at_rows_cols(image_path, locations)
 assert len(normals) == len(locations)
 return normals

def generate_surface_from_normals(rows, cols, locations2normals):
 '''
 Returns a 2D array with shape('rows', 'cols') whose values are created
 by interpolating the normals given by 'locations2normals', a dictionary
 mapping integer (row, col) to (x,y,z) values.v

human processors

• Make	 the	 impossible	 possible

1. Magic: make the impossible possible. For many problems we have no/there are no (low-dimensional) models, so machine
learning cannot really help. We are many, many years from being able to solve such problems with computers.
2. Speed or Scalability. Via parallelization, jobs complete faster than “giving them to a human to solve.” You also gain access to a
giant pool of workers.
3. Cheaper (or free). Human Processors are unskilled, so their time costs less. We advocate tasks that require no training. If you
can make a game out of it, it could even be free, though this is an issue of incentives, and I won’t be talking about it much today.

Why?

13

user application

electronic
processors

code
def get_normals_for_locations(image_path, locations):
 '''
 Given an 'image_path' and an iterable collection of integer (row,col)
 locations at which we want to know the normal 'locations',
 returns a list of (x,y,z) unit normals corresponding to each element
 in 'locations'.
 '''

 import oracle_normals.knowledge
 K = oracle_normals.knowledge.KnowledgePairChecking()
 K.want_to_know(image_path, locations)
 normals = K.get_answer_at_rows_cols(image_path, locations)
 assert len(normals) == len(locations)
 return normals

def generate_surface_from_normals(rows, cols, locations2normals):
 '''
 Returns a 2D array with shape('rows', 'cols') whose values are created
 by interpolating the normals given by 'locations2normals', a dictionary
 mapping integer (row, col) to (x,y,z) values.v

human processors

• Make	 the	 impossible	 possible

• Speed	 and	 cost

1. Magic: make the impossible possible. For many problems we have no/there are no (low-dimensional) models, so machine
learning cannot really help. We are many, many years from being able to solve such problems with computers.
2. Speed or Scalability. Via parallelization, jobs complete faster than “giving them to a human to solve.” You also gain access to a
giant pool of workers.
3. Cheaper (or free). Human Processors are unskilled, so their time costs less. We advocate tasks that require no training. If you
can make a game out of it, it could even be free, though this is an issue of incentives, and I won’t be talking about it much today.

Humans	 using	 Computers

14

user application

There is always a tradeoff between how much work the human does and how much work the computer does.

Range	 of	 Solu2ons

• How	 much	 human	 and	 how	 much	 computer	 is	
involved?

More
Human
“cycles”

More
Computer
“cycles”

Fully	
Automa2c
(no	 human)

Interac2ve
Applica2on

Let	 a	 human
do	 it

Human	
Computa2on

15

There are a range of solutions, which you can think of as a slider in terms of How much human and how much computer is involved.

<describe axis>

Type	 of	 Human	 Cycles

• You	 can	 also	 think	 of	 the	 type	 of	 ac2vity	 the	
human	 does.

16

Low	 level
Fine	 grain

High	 level
Complex

Interac2ve
Applica2on

ESP	 Game Our	 modelLabelMe

You can also think of the type of activity the human does.
<describe axis>

When dealing with graphics problems the key characteristic that still provides an advantage to humans is visual perception.
In our model, HC tasks are based on visual perceptual queries
" - No training or skill needed—any human has good visual perception. Simple tasks help keep cost low, since we don't have to
pay for training (up front or amortized).
" - No dependency (between tasks)—compared to typical distributed processing, HPs execute few operations per second and
have high latency.
" - Highly parallel—in theory, with perfect parallelism, our algorithms would take 3 minutes to complete.

So, our model can be summarized as massive parallelism with extremely simple (training-free/instantaneous) visual queries.

Algorithm	 Design	 Pacern

17

This is the design pattern we use for our algorithms.

<describe diagram>

%We use Amazon's Mechanical Turk, online since 2005, which lets you advertise a job (brief description, amount of payment, time
estimate) and has a large pool of workers (tens or hundreds of thousands).
%Has an API, so you can program it; there are others (SamaSource, txteagle, Farmville?).

The	 Ques2on	 We	 Ask

• What	 is	 the	 minimum	 amount	 of	 informa2on	 a	
human	 could	 provide	 in	 order	 to	 solve	 the	 original	
problem?

• Rephrase	 the	 algorithm	 in	 terms	 of	 the	 smallest	
piece	 of	 informa2on	 that	 without	 it	 the	 problem	
could	 not	 be	 solved.

18

When designing an algorithm with HC inside, the question we ask is...

Three	 Example	 Algorithms

• Given	 an	 image,	 create
– depth	 layers

– a	 normal	 map

– a	 bilateral	 symmetry	 map

19

I will show three micro perceptual human computation algorithms:
 - recovering depth layers from a photograph (useful for object insertion/removal, dehazing, depth of field, retargeting)
 - normals (useful for relighting or surface reconstruction)
 - bilateral symmetry (useful for edit propagation, retargeting)

These algorithms are intended for use in, say, Photoshop. The HC must be online—inside the algorithm—because input images
are too high-dimensional.

Issues

• Mo2va2on:
– Money:	 Amazon’s	 Mechanical	 Turk
– Fun:	 Games	 with	 a	 Purpose	 (GWAP)

• Efficiency

• Quality	 Control:
– Duplica9on
– Sen9nel	 Opera9ons
– Self-‐Refereeing

20

Here is a summary of the issues that arise in HC algorithms.

Incentives (money or fun)
" “money, love, or glory” taxonomy due to Thomas W. Malone, Robert Laubacher, and Chrysanthos Dellarocas (MIT Center for
Collective Intelligence); motivations for network collaboration

" - You can pay human processors with an online labor market such as Amazon’s Mechanical Turk. Mechanical Turk has been
online since 2005, and lets you advertise a job (brief description, amount of payment, time estimate) and has a large pool of workers
(tens or hundreds of thousands). Has an API, so you can program it; there are others (SamaSource, txteagle, Farmville?).

" - If you can make a game out of your human computation, it could become free, though this is an issue of incentives, and I
won’t be talking about it much today. You can think of it as the “Inverse Karate Kid” problem. If you tackle a worthwhile cause, such
as protein folding in FoldIt, you can also get people to participate for free. (You could also find a way to force people to do your
work, like (re)Captchas.)

Efficiency means using as little HC as possible. HC is slow (compared to electronic, in terms of carrying out operation and in terms
of latency), so this is typically the bottleneck. For example, at what granularity do we partition the problem?

Quality control is important!
" humans are: noisy/inconsistent/non-deterministic. depending on their motivations, they may cheat.
" humans have internal biases (perceptual biases as in depth scaling or bas-relief [Koenderink et al. 1992; Belheumer et al.
1997; Koenderink et al. 2001]).

 It’s not an algorithm if there’s a researcher in the loop! We are only interested in human computation that runs on a pool of
unskilled, isolated, and oblivious human processors. This means no expert user inside the algorithm accepting and rejecting human
computation.
 - duplication (multiple HPs or same HP multiple times—used in perceptual experiments and, for example, [Cole et al. 2009])
 - sentinel operations (using known answers or “gold data”)
 - self-refereeing [Little et al. 2010b; Bernstein et al. 2010] --- increases amount of HC and adds data dependency.
 - [Quinn and Bederson 2011] describe more variations

- We use Amazon's Mechanical Turk.
- We opt for massive parallelism with extremely simple visual queries in our examples.
- For our quality control, we use both kinds of duplication and sentinel operations.

Algorithm	 1:	 Depth	 Layers

21

Depth (distance from the camera) is an important cue that can assist image manipulations (insertion and removal of objects,
retargeting, adding depth-of-field effects, de-hazing, etc.)

Today, you could use a depth camera, but you may not have one, you may already have your image, or your scene may not be
applicable due to depth camera limitations.

Calculate	 Depth	 of	 a	 Given	 Image?

22

We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.

Calculate	 Depth	 of	 a	 Given	 Image?

• Automa2c	 methods:
– Depth	 increases	 in	 the	 up	
direc9on	

– Color	 similarity	 implies	 depth	
similarity

22

We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.

Calculate	 Depth	 of	 a	 Given	 Image?

• Automa2c	 methods:
– Depth	 increases	 in	 the	 up	
direc9on	

– Color	 similarity	 implies	 depth	
similarity

• Not	 always	 correct

22

We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.

Calculate	 Depth	 of	 a	 Given	 Image?

• Automa2c	 methods:
– Depth	 increases	 in	 the	 up	
direc9on	

– Color	 similarity	 implies	 depth	
similarity

• Not	 always	 correct

22

We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.

Calculate	 Depth	 of	 a	 Given	 Image?

• Automa2c	 methods:
– Depth	 increases	 in	 the	 up	
direc9on	

– Color	 similarity	 implies	 depth	
similarity

• Not	 always	 correct

• Some	 images	 are	 very	
challenging	 (art)

23

[H
iro

sh
ig
e]

We aim to be more robust than automatic techniques [Hoiem et al. 2005; Assa and Wolf 2007; Saxena et al. 2009].
For example, Make3D [Saxena et al. 2009] seems to assume that...
This is not always correct.
<click>
And some images are very, very challenging, such as artwork.

There are some manual techniques one could use, but they require a trained user: [Oh et al. (including Durand) 2001; Ventura et al.
2009; Sykora et al. 2010]

Micro	 Task?

24

So what should our micro-task be?

<click>
<click>
<click>
We can compute image patches using a superpixel-type algorithm which divides the image into small pieces.

I will show the result of using this third one later.

Micro	 Task?

• Ask	 “what	 is	 the	 depth	 of	 the	 pixel?”
– Too	 fine,	 can	 be	 ambiguous

24

So what should our micro-task be?

<click>
<click>
<click>
We can compute image patches using a superpixel-type algorithm which divides the image into small pieces.

I will show the result of using this third one later.

Micro	 Task?

• Ask	 “what	 is	 the	 depth	 of	 the	 pixel?”
– Too	 fine,	 can	 be	 ambiguous

• Ask	 “what	 is	 the	 depth	 of	 an	 object?”
– Segmenta9on	 is	 too	 complex

24

So what should our micro-task be?

<click>
<click>
<click>
We can compute image patches using a superpixel-type algorithm which divides the image into small pieces.

I will show the result of using this third one later.

Micro	 Task?

• Ask	 “what	 is	 the	 depth	 of	 the	 pixel?”
– Too	 fine,	 can	 be	 ambiguous

• Ask	 “what	 is	 the	 depth	 of	 an	 object?”
– Segmenta9on	 is	 too	 complex

• Ask	 “what	 is	 the	 depth	 of	 a	 patch	 in	 the	 image?”
– GeQng	 beRer...	 but	 humans	 are	 not	 good	 at	 assessing	
absolute	 depth

24

So what should our micro-task be?

<click>
<click>
<click>
We can compute image patches using a superpixel-type algorithm which divides the image into small pieces.

I will show the result of using this third one later.

Rela2ve	 Ordering

• Ask	 “which	 is	 closer”	 on	 neighboring	 patches?

25

This is reliable ([Koenderink 2001]).

However, it’s still ambiguous:
1 depth jump between A and B
2 non-smooth depth change between A and B
3 smooth depth change between A and B

Our depth layer task matches 1.
I will also show a comparison to a continuous version of this question.

Rela2ve	 Ordering

• Ask	 “which	 is	 closer”	 on	 neighboring	 patches?
– Reliable,	 but	 not	 well-‐defined.	 	 A	 is	 closer	 than	 B:

25

This is reliable ([Koenderink 2001]).

However, it’s still ambiguous:
1 depth jump between A and B
2 non-smooth depth change between A and B
3 smooth depth change between A and B

Our depth layer task matches 1.
I will also show a comparison to a continuous version of this question.

Our	 Micro	 Task

26

Note the static example in the corner. That’s it, there is no other training.

Guidelines	 for	 Choosing	 Tasks

• Task	 must	 be	 simple	 (instantaneous)

• Task	 must	 be	 specific	 (well-‐defined)

• Task	 must	 be	 reliable	 (humans	 can	 do	 it)

27

- Near-instantaneous.
- Well-defined so we can program with it. A metaphor is sampling the real-world with a temperature sensor; we get a number back,
which we can program with.
- We also want this task to be something humans can actually do, not just something humans think they can do (like absolute
depth).

Of course, it must also be something computers can’t do.

Combining

28

The relative depth ordering provides offsets of -1, 0, or 1 between adjacent regions in the image.

To reconstruct a continuous depth map we solve a <click> Laplace equation with derivative constraints of -1, 0, or 1 across region boundaries.

Combining

• Laplace	 equa2on	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 with	 constraints

28

�f = 0

The relative depth ordering provides offsets of -1, 0, or 1 between adjacent regions in the image.

To reconstruct a continuous depth map we solve a <click> Laplace equation with derivative constraints of -1, 0, or 1 across region boundaries.

Algorithm

29

This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know. All queries appear
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the
crowd. This is to prevent detection of the sentinel tasks. If many instances of the algorithm were run at once, the queries could be
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.

Algorithm

Par$$on

29

This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know. All queries appear
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the
crowd. This is to prevent detection of the sentinel tasks. If many instances of the algorithm were run at once, the queries could be
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.

Algorithm

Par$$on

Quality	 Control	 Setup

29

This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know. All queries appear
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the
crowd. This is to prevent detection of the sentinel tasks. If many instances of the algorithm were run at once, the queries could be
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.

Algorithm

Par$$on

Quality	 Control	 Setup

Dispatch

29

This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know. All queries appear
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the
crowd. This is to prevent detection of the sentinel tasks. If many instances of the algorithm were run at once, the queries could be
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.

Algorithm

Par$$on

Quality	 Control	 Setup

Dispatch

Verify

29

This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know. All queries appear
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the
crowd. This is to prevent detection of the sentinel tasks. If many instances of the algorithm were run at once, the queries could be
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.

Algorithm

Par$$on

Quality	 Control	 Setup

Dispatch

Verify

Combine

29

This is what an HC algorithm looks like in pseudocode.

<click>
We partition the task into superpixels
<click>
In our quality control setup, we dispatch batches of 20 micro-tasks at a time to human processors.
Each batch is composed of 6 queries whose results we need plus 4 sentinel queries whose results we know. All queries appear
twice in each batch in random order, so we can check an HP’s output for internal consistency as well as for agreement on the
sentinel tasks.

Note that we use sentinel queries from the same image, so the user must answer ~10–20 queries himself to get the results of the
crowd. This is to prevent detection of the sentinel tasks. If many instances of the algorithm were run at once, the queries could be
intermingled and then sentinel answers wouldn’t have to come from the same image.
<click>
We send each batch to 3 different HPs for a median vote.
<click>
We verify whether the HC passes the quality control tests; if not, we re-dispatch it.
<click>
Finally, we combine the input by solving a laplace equation.

30

Here are our results
<click>
versus Make3D [Saxena et al. 2009].
We get a pretty good depth map, especially compared to a state-of-the-art automatic technique.
<click>
Here is a depth-of-field effect applied.

Automa2c	 (Make3D)
30

Here are our results
<click>
versus Make3D [Saxena et al. 2009].
We get a pretty good depth map, especially compared to a state-of-the-art automatic technique.
<click>
Here is a depth-of-field effect applied.

30

Here are our results
<click>
versus Make3D [Saxena et al. 2009].
We get a pretty good depth map, especially compared to a state-of-the-art automatic technique.
<click>
Here is a depth-of-field effect applied.

absolute	 depthdiscrete	 depth
31

This is the comparison to the “absolute depth” version of the micro-task I promised. While it looks correct overall, it is extremely
noisy.
This is what we would expect from the psychology literature; there is no good rectification to correct for humans’ differing internal
biases that can be done.
Thresholds for quality control (is it consistent? does it match the sentinel?) are very difficult.

rela2ve	 depthdiscrete	 depth
32

Asking HPs to choose a continuous, relative depth between neighboring patches with a slider leads to pretty good results—
essentially a noisier version of the discrete question.

33

Automa2c	 (Make3D)[Hiroshige]

33

[Hiroshige]

Algorithm	 2:	 Normal	 Map

34

In our second algorithm, we create a normal map for a given image. This can be used for relighting or for surface reconstruction.

We use a “gauge figure” micro-task that comes from the perception literature [Koenderink et al. 1992];
it was also used by [Cole et al. 2009] for gathering normals using the Mechanical Turk.
I should mention that [Cole et al. 2009] was the inspiration for this research.
HPs orient the gauge figure so that it appears to lie flush against the surface in the image.

We implemented this algorithm in an adaptive manner, so large variations in normals led to more queries in that area.

We also experimented with sliders for the xy direction and z-slant of the gauge figures, but did not find a difference in performance.

35

Here we add two new lights to an old photograph of a face and create a 3D reconstruction.
<click>

Our normal map algorithm has a similar quality control setup to our depth layers algorithm, though thresholds are needed when
comparing normals as well as a rectification step accounting for humans differing internal biases.
Since we have sentinel queries, we solve for the depth scaling of the normals (not the full bas-relief ambiguity; the difference was
found to be minor with gauge figures) to align each HP with the sentinel queries.

For composition, we solve a bilaplace equation (bilaplacian = 0) with the user-given normals as least-squares constraints. This
removes noise and ensures the consistency of the normals.

The shape-from-shading approach shown is “Tsai and Shah”, which gave the best output from among the Shape-from-Shading
approaches surveyed in [Durou et al. 2008].

35

Here we add two new lights to an old photograph of a face and create a 3D reconstruction.
<click>

Our normal map algorithm has a similar quality control setup to our depth layers algorithm, though thresholds are needed when
comparing normals as well as a rectification step accounting for humans differing internal biases.
Since we have sentinel queries, we solve for the depth scaling of the normals (not the full bas-relief ambiguity; the difference was
found to be minor with gauge figures) to align each HP with the sentinel queries.

For composition, we solve a bilaplace equation (bilaplacian = 0) with the user-given normals as least-squares constraints. This
removes noise and ensures the consistency of the normals.

The shape-from-shading approach shown is “Tsai and Shah”, which gave the best output from among the Shape-from-Shading
approaches surveyed in [Durou et al. 2008].

35Shape-from-Shading

Here we add two new lights to an old photograph of a face and create a 3D reconstruction.
<click>

Our normal map algorithm has a similar quality control setup to our depth layers algorithm, though thresholds are needed when
comparing normals as well as a rectification step accounting for humans differing internal biases.
Since we have sentinel queries, we solve for the depth scaling of the normals (not the full bas-relief ambiguity; the difference was
found to be minor with gauge figures) to align each HP with the sentinel queries.

For composition, we solve a bilaplace equation (bilaplacian = 0) with the user-given normals as least-squares constraints. This
removes noise and ensures the consistency of the normals.

The shape-from-shading approach shown is “Tsai and Shah”, which gave the best output from among the Shape-from-Shading
approaches surveyed in [Durou et al. 2008].

36

[Warren	 Apel]

[Pedro	 Ribeiro	 Simões]

Here are a couple more examples of 3D reconstructions.

Algorithm	 3:	 Bilateral	 Symmetry	 Map

37

In our third algorithm, we create a bilateral symmetry map for an object in an image. This can be used for edit propagation or
retargeting.

We sample points in the region of interest and ask HPs to identify the symmetrically opposed point.

This algorithm also has a similar quality control setup to our other algorithms.

38

[fl
ic
kr
	 u
se
r	
da
lb
er
a]

Here are bilateral symmetry maps created with our algorithms.

Some	 Sta2s2cs

39

- We use a lot of micro-tasks. Depth layers is most expensive, because it’s per neighboring patches, not per patch.
" - We know from the literature ([Mason and Watts 2010]) that payment is not correlated with accuracy, only with how likely an
HP is to do the task.
- Normal Map task is most difficult, judging by completely unreliable HPs. Can we make a better task?
- These micro-tasks per HP numbers are low; a median of 1–3 batches per HP. That implies people were able to do it right away and
we could scale.

Timing

40

- Micro-tasks take little time!
- The total algorithm took a while, though delay is entirely due to waiting for HPs to choose to perform the tasks.
" - It’s known from the literature ([Ipeirotis 2010; Chilton et al. 2010; Faridani et al. 2011; Mason and Suri 2011; Mason and
Watts 2010]) that this is correlated with the amount one is willing to pay, as well as the amount of same-type jobs there are to do
and with newness. Latter two would be helped if this were a popular algorithm, though it’s anyone’s guess how the market of HC
will change in the future.

- Note that we could complete in ~3 minutes if we had enough people.

Paul Sajda (pronounced “shayda”) can categorize images at 10 hz by using brain wave scanning (“Is there a ballerina in the
image”).

Accuracy

41

[fl
ic
kr
	 u
se
r	
fic
tu
re
s]

To test accuracy as a function of quality control parameters, we used this billiards image.
We ran many variations; the data you will see in the following graphs was generated from 4 calibrated runs.

We varied the percent of queries in each batch that had to be internally consistent before throwing the entire batch out.
We varied the percent of sentinel queries in each batch that had to be accurate before throwing the entire batch out.

We also varied the number of reliable queries to use when computing each answer (the voting/median/average in the composition
step).
%We also varied the number of different HPs to send each batch to (and receive reliable answers from). When we throw a batch
out, we send it to a new HC (until we have N).

NOTE: We varied granularity, using smaller patches, but didn’t find an interesting correlation using 30,60,90,120 patches. 120
patches is still far from per-pixel, which would be prohibitively expensive to run.

Accuracy

42

We ran the billiards example 4 times.

On the line graph, the dark blue lines show how many batches pass either the consistency or the sentinel test (one or the other).
The heat map on the right is a 2D version of this.
" - The vast majority (94%) of HC batches are 80% consistent (or more), though only 65% are 100% consistent.
" - Batches are more stratified in agreeing with sentinel operations. Only 74% were correct for 75% or more of the sentinel
ops; only 50% were correct for 100%.

The salmon-colored lines depict the average accuracy of all HC batches above either the consistency or the sentinel test (one or the
other).
" - Average accuracy is only marginally affected by increasing the consistency threshold: from 0% to 80% to 100% only
increases the accuracy from 87% to 88% to 90%.
" - Increasing the sentinel threshold has a greater effect on average accuracy: from 87% to 94% to 96% as the threshold
increases from 0% to 75% to 100% (at the cost of discarding 50% of HC batches!).

On the right, this is a two-dimensional plot of consistency and sentinel thresholds; at each location, both tests are applied.
If we only want 100% consistent and agreeing-with-sentinel, we throw out 57% of all HC batches, but we get 97% accuracy (as we’ll
see on the next slide).

Accuracy

43

Here we vary the number of reliable queries to use when computing each answer (the voting/median/average in the composition
step). (When we throw a batch out, we send it to a new HC, until we have N.)

The overall trend to see is that the heat map “whitens” as N goes up.

Increasing the number of HPs used in voting reduces the likelihood that the final output is affected by inaccurate HC that
nonetheless passes the sentinel and consistency tests.
% Each location in these heat maps depicts the probability that reliable queries from N different HPs produces the correct answer
for the depth order between a pair of neighboring patches; the depicted value is the average over all pairs of neighboring patches.

There is no obvious “sweet spot.”
Interesting to note that you can have an expected 97% accuracy with only one reliable HC answer for each micro-task by setting the
sentinel and consistency thresholds to 100%.
These thresholds are too strict to use when deciding whether to pay HPs—they get upset—so you must pay for substantially more
HC than you’ll use.
Still, it’s cheaper to obtain 97% accuracy by requiring 100% consistency and sentinel accuracy *while paying HPs at 75%
thresholds*
than to get reliable HC from N = 3 HPs with 75% consistency and sentinel thresholds and pay for 3x the number of accurate micro-
tasks actually needed.

1 HP @ 100% c/s: pay for 100 · 72% = 167% of the number of accurate micro-tasks actually needed instead of 3x.
Need N > 1 HPs for achieve higher than 97% accuracy.

Take-away: you may be able to make-do with a single answer if it comes from a batch of high-quality HC.

Conclusions

• For	 hard	 problems,	 HC	 algorithms	 can	 beat	
automa2c	 algorithms.

• Rephrase	 your	 problem	 in	 terms	 of	 reliable	 human	
percep2on.

• How	 can	 we	 improve	 efficiency?

• If	 this	 were	 a	 Photoshop	 plug-‐in,	 how	 much	 would	
people	 pay	 to	 use	 it?

44

efficiency: timing, cost: quality control overhead, different micro-task designs (optimizing perceptual experiment design)

Thank you. Questions?

End

45

Related	 Work	 (1/6)

• Many	 kinds	 of	 collec2ve	 intelligence
– open-‐source	 soTware,	 Wikipedia,	 PageRank,	
supervised	 learning,	 elec9ons?

• Modern	 assembly	 line	 (Ford	 Motor	 Company	
1908–1915)

• Interchangeable	 parts:
– Adam	 Smith	 on	 division	 of	 labor	 (1776)

– TerracoRa	 army	 (3rd	 century	 BC)

– Vene9an	 Arsenal	 (ship	 building)

46

 Many kinds of collective intelligence (open-source software, wikipedia, pagerank, supervised learning in general, elections?)
" - Collaborative filtering: [Goldberg et al. 1992; Adomavicius and Tuzhilin 2005]
" - Open Mind Initiative
 Modern assembly line (Ford Motor Company 1908--1915)
 Wikipedia:
 In his autobiography Henry Ford (1922) mentions several benefits of the assembly line including:
 Workers do no heavy lifting
 No stooping or bending over
 No special training required
 There are jobs that almost anyone can do
 Provided employment to immigrants
 The gains in productivity allowed Ford to increase worker pay from $2.50 per day to $5.00 per day and to reduce the hourly
work week while continuously lowering the Model T price. These goals appear altruistic; however, it has been argued that they were
implemented by Ford in order to reduce high employee turnover.
 Interchangeable parts:
 Adam Smith on division of labor (1776)
 Terracotta army (3rd century BC)
 Venetian Arsenal (ship building)

Related	 Work	 (2/6)

• Online:
– [von	 Ahn	 2008]

– [Li2le	 et	 al.	 2010a,b]	 and	 [Bernstein	 2010]

– [Bigham	 et	 al.	 2010]	 and	 [Bernstein	 2011]

– [Davis	 et	 al.	 2010]

– [Sorokin	 et	 al.	 2010]

– many	 more	 recent/contemporary	 applicaFons

• Recast	 exisFng	 experiments
– [Koenderink	 et	 al.	 1992],	 [Cole	 et	 al.	 2009]

– [Chen	 et	 al.	 2009]

47

Online algorithms
 [von Ahn 2005]: CAPTCHA (not useful computation; in [reCAPTCHA 2008] it became useful), ESP game (labeling)
 [Little et al. 10a,b] and [Bernstein 2010] for text processing and sorting. Their Soylent system makes a similar argument as we
do for incorporating human computation into a word processor. VizWiz [Bigham et al. 2010] and [Bernstein 2011] focus on
decreasing latency (applied to image labeling for the blind (VizWiz) and applied to choosing an image from a short video, a creative
task posing a figure, and perceptual sorting (Bernstein)).
 [Davis et al. 2010] makes a similar argument about using human computation in online algorithms and evaluated many
characteristics of what they call “Human Processing Units”.
 [Sorokin et al. 2010] introduced a workflow for 3D object reconstruction to assist robots.
 Many more recent works databases (CrowdDB), calorie counting, ...

 Can recast existing experiments as human computation operations: [Koenderink et al. 1992]/[Cole et al. 2009] or [Chen et al.
2009]. In those works, primary goal is gathering data on humans, not on the efficiency of the data gathering per se.

Related	 Work	 (3/6)

• Training	 data:
– ESP	 Game	 [von	 Ahn	 and	 Dabbish	 2004],	 …

– LabelMe	 [Russel	 et	 al.	 2008;	 Yuen	 et	 al.	 2009]

– Hands	 by	 Hand	 [Spiro	 et	 al.	 2010]

• Using	 HC	 data	 gathered	 offline:
– [Talton	 et	 al.	 2009]

– [Kalogerakis	 et	 al.	 2010]	 using	 [Chen	 et	 al.	 2009]

48

 Gathering training data, but don't have tight algorithmic coupling. ESP Game [von Ahn and Dabbish 2004], LabelMe [Russel et al.
2008; Yuen et al. 2009], motion tracking [Spiro et al. 2010].

 HC for learning: [Talton et al. 2009] for tree modeling by sampling human good models. [Kalogerakis et al. 2010] for segmentation
from [Chen et al. 2009] data.

Related	 Work	 (4/6)

• Depth	 Layer	 Algorithm
– automa9c:	 [Hoiem	 et	 al.	 2005;	 Assa	 and	 Wolf	 2007;	
Saxena	 et	 al.	 2009]

– manual:	 [Oh	 et	 al.	 2001;	 Ventura	 et	 al.	 2009;	 Sykora	 et	
al.	 2010]

• Normal	 Map	 Algorithm
– manual:	 [Wu	 et	 al.	 2008]

• Symmetry	 Map	 Algorithm
– automa9c:	 [Chen	 et	 al.	 2007]

49

Related	 Work	 (5/6)

• History
– “When	 Computers	 Were	 Human”	 [Grier	 2005]

– GeneFc	 Algorithms
• [Sims	 1991]

• InteracFve	 GeneFc	 Algorithm	 [Takagi	 2001]

• Human-‐Based	 GeneFc	 Algorithms	 [Kosorukoff	 2001]

• Electric	 Sheep

– Open	 Mind	 IniFaFve

– collaboraFve	 filtering:	 [Goldberg	 et	 al.	 1992;	 Adomavicius	 and	
Tuzhilin	 2005]

• “Human	 ComputaFon”	 [von	 Ahn	 2005]

50

Related	 Work	 (6/6)

• Recent	 survey:	 [Quinn	 and	 Bederson	 2011]

• Market	 properFes:
– [IpeiroFs	 2010;	 Chilton	 et	 al.	 2010;	 Faridani	 et	 al.	 2011;	
Mason	 and	 Suri	 2011;	 Mason	 and	 Wa2s	 2010]

• Surface	 percepFon:
– [Koenderink	 et	 al.	 1992;	 Belheumer	 et	 al.	 1997;	
Koenderink	 et	 al.	 2001]

• Shape-‐from-‐Shading:
– [Durou	 et	 al.	 2008]

51

Theore2cal	 Limits

• 125–180	 seconds	 (median)	 /	 20	 ques2ons	 =	 6.25–
9	 seconds	 per	 percep2on	 for	 our	 tasks

• 7	 billion	 humans	 (does	 not	 include	 other	 animals	
capable	 of	 similar	 tasks)

• (number	 of	 humans)	 /	 (seconds	 per	 percep2on)	
~=	 1	 billion	 percep2ons	 per	 second

52

+ HC: Theoretical limits.
 - 20 ms (.02 s) from brain to hand.
 - ?? ms (. ?? s) for perception
 - between 125 and 180 seconds (median) / 20 questions = 6.25--9 seconds per perception for our tasks.
 - 7 billion humans (does not include other animals capable of similar tasks)
 - (number of humans) / (seconds per perception) ~= 1 billion perceptions per second

There is an upper limit to human computation, which we can get by
dividing the number of humans (~7 billion) by the time to record one
perception (6.25 to 9 seconds in our examples), for a total of ~1
billion perceptions per second. That's 500 images per second if we
want, say, per-pixel depth comparisons in a megapixel image and assume
perfect humans: 1 billion perceptions per second / (1M pixels per
image * 2 perceptions per pixel (4 neighboring pixels per pixel / 2
because the relationship is symmetric)) = 500 images per second.

Of course, this does not take into account better input (recording a
perception may take as little as 1 second instead of 7) or, more
importantly, Dog or Cat Computation.

