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Abstract

In this paper, we look into a new aree of func-
tion recognition: determining the function of an ob-
ject from its motion. Given a sequence of images of
a known object performing some function, we attempt
to determine what that function 1s. We show that the
motion of an object, when combined with information
about the object and its normal uses, provides us with
strong constraints on possible functions that the object
might be performing.

1 Introduction

In the field of robotics, researchers have long pur-
sued the goal of enabling a robot to act autonomously
in its environment. For robots, as for humans, rec-
ognizing the functions of objects is a prerequisite to
autonomous interaction with them. Functionality can
be defined as the usability of an object for a particular
purpose [1].

Recent research has focused on the problem of rec-
ognizing object functionality [1]. The goal of this re-
search has been to determine functional capabilities
of an object based on characteristics such as shape,
physics and causation I[?J Little attention has been
given to the problem of determining the functionality
of an object from its motion. We believe that motion
provides a strong indication of function. In particu-
lar, velocity, acceleration, and force of impact resulting
from motion strongly constrain possible function. As
in other approaches to functional recognition, the ob-
ject (and in our case, its motion) should not be evalu-
ated in isolation, but in context. The context includes
the nature of the agent and the frame of reference it
uses.

In this paper, we address the following problem:
given a model of an object, how can we use the mo-
tion of the object, while it is being used to perform
a task, to determine its function? Our method of
answering this question takes into consideration the
angular relationships between three vectors obtained
from image sequence analysis. These vectors are com-
pared with angular relationships that arise in known
motion-to-function mappings. If the analyzed motion
is consistent with one of the known motion-to-function
mappings, we identify object functionality.

In Section 2 we review related work. In Section 3

0-8186-7190-4/95 $4.00 © 1995 IEEE

247

J. Fayman, E. Rivlin

Department of Computer Science
Israel Institute of Technology — Technion
Haifa, Israel

we cover some preliminaries related to the problem.
Section 4 considers the problem of determining the
functionality of a known object by analyzing an image
sequence showing that object performing the function.
The motion estimation machinery needed for this task
is developed in Section 5. In Section 6 we present ex-
perimental results demonstrating that motion analysis
can indeed be used in determining functionality. We
conclude with section 7.

2 Related Work

Our research is concerned with the problem of de-
termining the function of an object by analyzing its
motion. Motion and functionality have appeared in
the literature in several contexts. Early work on func-
tional recognition can be found in [3, 4, 5]. More re-
cently, Stark and Bowyer [6, 7, 2, 8] used these ideas
to solve some of the problems presented by more tra-
ditional model-based methods of object recognition.

By analyzing the trajectories followed by points on
an object, Gould and Shah [9] attempt to identify the
object. This is accomplished by recognizing “signifi-
cant” events in the trajectory such as changes in di-
rection, speed and acceleration.

Motion analysis for recognition of activities was de-
scribed by Polana and Nelson [10]. They use Fourier
analysis to detect and localize perlodic activities such
as walking or flying in a sequence of images. This
work is similar in nature to our work in that both use
motion as a basis for identifying activities. However,
Polana and Nelson are concerned only with detecting
the activities, without concern for the source of the
motion.

3 Preliminaries

3.1 Rigid Body Motion

To facilitate the derivation of the motion equations
of a rigid body B we use two rectangular coordinate
frames, one (Ozyz) fixed in space, the other (Cz1y)21)
fixed in the body and moving with it. The coordinates
X1, Y1, Z, of any point P of the body with respect
to the moving frame are constant with respect to time
t, while the coordinates X, Y, Z of the same point P
with respect to the fixed frame are functions of ¢. It
is assumed that these functions are differentiable with
respect to t. The position of the moving frame at any



instant is given by the position (Zc = (X. Y. ZC)T
of the origin C, and by the nine direction cosines of
the axes of the moving frame with respect to the fixed

frame. Let 7, 7, and F be the unit vectors in the direc-
tions of the Oz, Oy, and Oz axes, respectively; and

let 73, 71, and k; be the unit vectors in the directions
of the é’:cl, Cy1, and Cz; axes, respectively. For a
given position g of P in Cz;y;2; we have the position

7 of P in Oxyz
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where R is the matrix of the direction cosines (the
frames are taken as right-handed so that det B = 1).
The velocity of 7, is then given by

=@ x (% —do)+T
where & = (A B C)7 is the rotational velocity of the

moving frame; d, = (X, Y. Z)T = (U V W) =T
is the translational velocity of the point C. This can
be written as

X 0 -C B X - X, U
vy |=( ¢ 0o -4 Y-v. |+ v ).
7 -B A 0 7 -z, w

2
Let the rotational velocity in the moving frame g)t)a
@1 = (A1 By C1)T; we can write & = R&; and
@ = RTS.
3.2 The Motion and Optical Flow Fields
The instantaneous velocity of the image point (z, y)
under weak perspective projection can be obtained by
taking derivatives of (3) with respect to time and us-
ing (2):

X Y
= —f =—=F 3
Zcf Y Zcf (3)
. XZ.-XZ, [-C(Y =Y )+ B(Z - 2.)+ UlZ, - XW
z = f Z;‘) =f Z?:
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. YZ.-YZ. [C(X =X)—A(Z~-2)4+V]Z. -~ YW
y = f 72 =f 72
Vfi-yW

z
A +C(a:—:c.:)-—fA(Z—c—1>

where (z.,y.) = (fX:/Z:, fYe/Z.) is the image of the
point C. Let 7 and jbe the unit vectors in the 2 and

y directions, respectively; 7 = 74 37 is the projected
motion field at the point ¥ = 27+ yJ.
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If we choose a unit direction vector 71, in the im-
age point 7 and call it the normal direction, then the
normal motion field at 7is ¥, = (7 7, )7,. fi, can be
chosen in various ways; the usual choice (as we shall
now see) is the direction of the image intensity gradi-
ent.

Let I(z,y,t) be the image intensity function. The
time derivative of I can be written as

dI 98Idz oIdy oI . .

Z S ettt = (L . I =

dt Oz dt Odydt + ot L7+ 1y ) - (874 97) + I
VI""_"-I- I

where VI is the image gradient and the subscripts
denote partial derivatives.

If we assume dI/dt = 0, i.e. that the image intensity
does not vary with time [13], then we have VI-d+1I; =
0. The vector field @ in this expression is called the
optical flow. If we choose the normal direction 7, to
be the image gradient direction, i.e. 7, = VI/||VI||,
we then have

- -I;VI

fip = =

v

@y = (i #5,)

(6)

where 4, is called the normal flow.

It was shown in [14] that the magnitude of the dif-
ference between 4, and the normal motion field 7, is
inversely proportional to the magnitude of the image

gradient. Hence 7, & i, when ||VI]| is large. Equa-
tlon (6) thus provides an approximate relationship be-
tween the 3-D motion and the image derivatives. We
will use this approximation later in this paper.

4 Function from Motion

Following [11, 12] we regard objects as composed of
primitive parts. On the most coarse level we consider
four types of primitive parts: sticks, strips, plates,
and blobs, which differ in the values of their relative
dimensions. Basic or primitive motions (which can be
rotational or translational) are motions relative to the
main axes of a primitive object.

In this work, we are interested in the mapping
f M — F from motion to function. Given a moving
object as seen by an observer we would like to infer the
function being performed by the acting agent. We are
interested in the object’s motion over time in the ob-
ject’s coordinate system and its relation to the object
it acts on (the actee). Both of these measurements
are necessary for the mapping. The object’s motion
over time in the object coordinate system gives us the
relationship between the main axis of the object and
its direction of motion. Given an object, these rela-
tionships help to determine the intended function. For
example, we would expect the motion of a knife that
a person is using to “cut” to be parallel to the main
axis of the knife, whereas if the person is “chopping”
with the knife we would expect motion perpendicular
to the main axis.

When determining function from motion, attention
must be paid to the intended recipient. The relation
to the actee is essential for establishing the mapping



and creating a frame of reference. Once this frame is
established, motion of a knife in one direction could
signify murder while motion in the opposite direction
could signify suicide. Humans usually employ refer-
ence frames in which one axis represents the gravity
vector, but this is not necessary. We can slice bread
on a wall as well as on a table; what matters is the
motion of the knife relative to the actee.

In the next section, we develop the motion estima-
tion machinery needed for this class of examples and
we formalize our procedure for obtaining f : M — F.
In the following section, we present experimental re-
sults.

5 Motion of Sticks and Strips

Consider a moving object B. There is an ellipsoid
of inertia associated with B. The center of the ellip-
soid is at the center of mass C of B; the axes of the
ellipsoid are called the principal azes. We associate
the coordinate system Cz1y;2; with the ellipsoid and
choose the axes of Cz1y; 21 to be parallel to the prin-
cipal axes. Let 7] be the unit vector in the direction of
the longest axis I, (this axis corresponds to the small-

est principal moment of inertia); let k; be the unit
" vector in the direction of the shortest principal axis
(this axis corresponds to the largest moment of iner-
tia); and let 7 be the unit vector in the direction of
the remaining principal axis with the direction cho-

sen so that the vectors (71, ), El) form a right-handed
coordinate system.

In this paper we consider only planar and approx-
imately straight strips and sticks. For a planar strip
the axis of the maximal moment of inertia is orthog-
onal to the plane of the strip; if the strip is approx-
imately straight, the axis of the minimal moment of

_inertia is approximately parallel to the medial axis I,
of the strip. In the case of a straight stick we have the
center of mass C at the middle of its medial axis I.: in
this case I, corresponds to the longest principal axis
of the ellipsoid of inertia; the other two principal axes
are orthogonal to I, and can be chosen arbitrarily. We
assume that there is no rotational velocity around /..

We choose the center of mass C of a stick or a
strip B as the origin of the object coordinate system
Cz1y121; the coordinates of C expressed in the fixed
frame are (X.,Y., Z;). We choose the unit vector 7
along I, with the orientation chosen to be in the di-
rection of the acting part of the tool. Let II;, be the
plane orthogonal to the plane Z = Z, in which the line
I, lies (we can obtain II;, by sliding the line parallel

to the k along l.). We chose 1-51 to lie in the plane II;,

with the orientation of k; chosen so that &k - k; > 0;
the unit vector 7; is then normal to the II;, plane. We
assume that strips are orthogonal to the II;, plane.
The orthographic image of I. in the plane Z = Z,
is the line !, which is the intersection of the planes
Z = 7, and TI;_; let the unit vector in the direction
of I’ be 7, and let it be oriented so that 7. - 73 > 0;
and let the angle between I, and I be . The rotation
Ry, () through the angle ¢ around the normal j; of

MI;, transforms 77 into 7, and Igl into k. The rotation
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RZ(OQ through the angle a (this is the angle between
7. and 7) around the Oz axis transforms 7. into 7. The
rotation matrix R = Rz(a)Ry,(¢) in (2) is then given

(F D)

By our assumption about the rotational velocity
and the choice of the object coordinate system we have

&1 = B + Cik,. The expression for the rotational
velocity in the fixed frame is given by

Similarly, since the translational velocity of the object
is Ty = (Uy Vi Wi)T and T = Rz(a)Ry, ()T we
Vv

have
- (b)-ro ),
(8)

We.now consider the term (Z—2.)/Z, for the points
on the object B. The equations we derive are valid for
points in the plane in which I; lies and is orthogo-

nal to II;_; the unit vector k1 is normal to this plane.
The expression for ki in the fixed frame is Rk; =
(cosasing —sinasing cos ©)T. The equation of

the plane orthogonal to R, and in which the point
(X, Ye, Z;) lies 1s given by

sina 0
cosa 0

0 1

cos o
—sina

0

sin ¢
0

cos

cosp 0
0 1
—sing 0

A - Cising
W= B = R(Blj'l+C'1 kl) = Rz(a) Bl
C 1 COS @

U Uy coscp;Wl sin ¢

1
~Uysinp + Wi cosp

(X-X.)cosasinp—(Y —Y,)sinasin p+(Z—Z.)cos p = 0.

Multiplying by f(Z. cos ¢)~! and using (3) we obtain

Z -7,
f—Zc

—(z —z.) cosa tan ¢+ (y — yc) sin  tan .

)
This is an exact formula for thin planar strips; in the
case of sticks this formula is exact for an occluding

contour. .

From (4-5), (7), and (9) we obtain the equations of
projected motion for points on B under weak perspec-
tive:

i=gi—;f—w~0(y—yc)

—Btang[(z — z.)cosa — (y — y.)sinal.

(10)

._Vi-yW
y= Z.
+Atanp{(z — z;) cosa — (y — ¥ ) sina].

+C(z — z.) (11)



Equations (10-11) relate the projected motion field,
a, and (z.,y.) to the scaled translational velocity

Z7\T = Z;Y U V W)T and the three parameters
of rotation and slant (A tan ¢, Btan g, C).
Now, from (8) we have

Ujcosp+ Wysingp
z:! Vi = (12)
U, sinp + Wj cosp
U/Zc (5]
RL(a)| V/Z. | = ¢
W/Zc C3
and by rearrangement we obtain
i Ur/Z. \ _ [ cosp —singp c1
Z., 2 Wi/Z. ) = \ sing cosp 3
(13)

When Z71T = Z;3(U V W)T and a are known
¢1, ¢2, and c3 are computable. From (13) we then
can compute V1 /Z.. However, ¢ and (U1/Z., W1 /Z,)
cannot be estimated without some additional assump-
tions. If we assume a fronto-parallel surface, i.e.,
¢ = 0, we obtain U1/Z; = ¢; and W1 /Z, = c3; simi-
larly, a bound on ¢ (e.g. ¢ < 7/6) gives bounds on
the motion parameters too. Finally, if we assume
that W1 = 0 we obtain ¢ = —arctan(cs/e;) and
then from (13) we have U} /Z,; similarly, if we assume
that U; = 0 we obtain ¢ = arctan(c;/c3) and then
from (13) we have W1/Z,.

From (7) we have

C tan psin ¢
By tan g
Cicosyp

Rz(a) ( (14)

Cising Atangp
I,Rz () By = | Btanyp
Cicosp C

where I, is a diagonal matrix with the first two diag-
onal elements tan ¢ and the third diagonal element 1;
we have used the fact that I, and Rz(«) are commu-
tative matrices. From (14) we have

Cy tan psin ¢ Atang C4
Bj tangp =RZ(a)| Btanp |={ ¢ |.
Cicosgp C Cs

(15)

When (Atang Btany C)T and o are known cy,

cs, and cg are computable. Since ¢ € [0, 7/2) both ¢4

and c¢ should have the same sign, otherwise we can
assume that ¢ = 0. If sgn cq = sgn cs we have

C1 = sgn(cs)y/cacs + 2, (16)
¢ = =arctan+/c4/cs,
B] = =+ s

v 64/66 ‘

250

where sgn is the sign function. Note that if sgn s =
1 the signs of By and ¢ must be equal, otherwise they
must be different.

If translation is non-zero we can combine (13) and
(16) to estimate ¢ and the motion parameters. When
Uy = 0 we have tan ¢ = ¢;/e3; when W) = 0 we have
tang = —cs/c1. In both of these cases B; can be
determined directly, as well as ¢ and Cy. If ¢ = 0
(or ¢ < 0.1) then C; = cg, and |es| = |By|tanp =~
{Bilg < 0.1|By| and thus |By} > 10jes]. If (16)
1s used to compute ¢ we have two solutions for the

(U:/Z.,W1/Z,) pair.

6 Experiments

In this section we illustrate how our methods can
be applied to real images. Due to space limitations,
only two experiments can be shown.

In our experiments we assumed a table-top sce-
nario, with a stationary observer on one side of the
table. Based on this assumption we used a coordinate
system that was fixed to the center of the image, with
the X axis horizontal and pointing toward the right
side of the image, the Y axis pointing upward, and
the Z axis chosen to yield a right-handed coordinate
frame (pointing toward the scene). All measurements
were made relative to this coordinate system.

Estimation of the medial axis of the object was done
by taking the median of all edge orientations at those
points for which the normal flow was computed. We
estimated (z.,y.)—the image position of C (the ref-
erence point and the center of mass of the object)—as
the average of the coordinates of all edge points for
which the normal flow was computed.

In the following subsections we describe our method
of motion estimation for sticks and strips. This mo-
tion estimation is then used to discriminate between
two different functionalities of a knife (chopping and
stabbing).

6.1 Motion Estimation from Normal Flow
In what follows we show how the different mo-
tion parameters defined in Section 5 can be estimated
based on normal flow data computed from an image
sequence.
Let gi(z,y) = (¢ — zc)cosa — (y — y.)sina. We

-

can then define the vectors & and d:

fng U/Zc
fny V//Zc
- _ —ITTNgy — Yy . W/z
a= ny 91(,y) , d= Atancgo
—nNg g1($,y8 Btang
—nz(y—yc)+"y T —z.) C

For a given 7, = nz7+ nyJ we then have from (10-11)

(17

If we use the spatial image gradient as the normal
direction 77, = VI/||VI|| = n, 7+ n, Jand 7, =~ @, we
can obtain an approximate equation by replacing the
left hand side of (17) by the normal flow —I,/”VI%. In
this way we obtain one approximate equation in the

Eng +yn, =a-d.



six unknown elements of d. For each point (i, y:),
i =1,...,N of the image at which ||VI(z;, y;, )| 1s
large we can write one equation. If we have more
than six poirg.s we have an over-determined system of
equations Ad = b; the rows of the N x 6 matrix A
are the vectors a;. and the elements of the N-vector
b are —(8I(z;,yi,t)/0t)/||VI(z;, Y%, t)”._‘
We seek the solution for which ”b—~Ad]{[
This solution is the same as the solution o

ATAd=ATb=é.
We solve the system ATAd =8 using the Cholesky
decomposition. Since the matrix ATA is a positive
definite 6 x 6 matrix there exists a lower triangular

matrix L such that L LT = AT A, We solve two tri-
angular systems Lf = d and L7d = f to obtain the

-

parameter vector d.

In the case when ¢ = 0 (fronto-parallel case) and
the rotation B; around the C'y; axis is small the equa-
tions (10-11) become

Uf —zW
Ze
Vf-yW
Ze
In this case we need to estimate only four parameters
U/Z,,V/Z,, W[Z,., and C in the parameter vector d;

thus, AT A is a 4 x4 matrix. We then have from(14-16)
that Cy = C and from (12-13) we have

is minimal.
the system

&

-Cy—9.),

~

] + C(z — z.).

Ui1/Z. \ . [ cosa —sinea U/Z,
Vi/Z. |~ \ sina cos a Viz, |’
W, W

For the following experiments we use these approx-
imations to compute the object motion from images.

Let B be the angle between the vector (U; V; 0)T
the projection of Ty onto the plane Z = Z;) and 7,
the unit vector along the projection of the medial axis
. onto the plane Z = Z,;). We have

(19)

Let 6 be the total rotation angle as a function of time.
For a fronto-parallel surface the total rotation angle is
approximately equal to the change in « and we have

B = arctan %

t
0:/ Cidi =~ a — ap. (20)
0
We use the triples (o, 3, 8) to recognize the function-
alities of simple objects.
6.2 Action recognition for a class of ma-
nipulation tasks: Cutting

Our example shows how our techniques can be used
to differentiate between two examples of simple func-
tions performed by knifes: chopping and stabbing.

251

6.2.1 Chopping

Chopping is defined as the cutting motion of a knife in
which a (the angle between the projection of I, onto
the plane Z = Z, and the Oz axis) is close to either
0 or m, B is close to /2 (o =~ =) or —m/2 (when
a =~ 0), and @ is small and approximately constant.

=~

(@)

(b)
Figure 1: (a) Flow vectors for Chopping. (b) Chop-

ping motion.

Figure 2: Angles a, 3, and 8 for Chopping. «a is given
by a dashed line, 8 is given by a solid line, and 6 is
given by a dash-dot line.

Figure 1(a) shows the flow vectors taken from the 6th
sample and (b), a composite image of the knife taken
from the 1st, 6th and 11th samples of the chopping
experiment. Figure 2 shows a plot of the triple (o, 8, )
with respect to time (frame numbers). We can see that
the values of a are very close to 0, as was expected, 8
is close to —7/2 and @ is around 0.

6.2.2 Stabbing

Stabbing is defined as the cutting motion of a knife in
which a (the angle between the projection of I, onto
the plane Z = Z, and the Oz axis) is close to either
—x/2 or /2, B is approximately 0, and @ is small
and approximately constant. The difference between
jabbing and stabbing is in a.

Figure 3(a), shows the flow vectors taken from the
6th sample and (b), a composite image of the knife
taken from the 1st, 6th and 11th samples of the stab-
bing experiment. Figure 4 shows a plot of the triple
(a, B, 0) with respect to time (frame numbers). We
can see that the values of « are very close to —m/2, as
was expected, 3 is close to 0 and 6 is around 0.



(2)

(b)
Figure 3: (a) Flow vectors for Stabbing. (b) Stabbing

motion.

Figure 4: Angles o, 8, and # for Stabbing. « is given
by a dashed line, g is given by a solid line, and 6 is
given by a dash-dot line.

7 Conclusions

Perceiving function from motion provides an un-
derstanding of the way an object is being used by an
agent. To accomplish this we combined information
on the shape of the object, its motion, and its relation
to the actee (the object it is acting on). Assuming a
decomposition of the object into primitive parts, we
analyzed a part’s motion relative to its principal axes.
Primitive motions (translation and rotation relative
to the principal axes of the object) were dominating
factors in the analysis. We used a frame of reference
relative to the actee. Once such a frame is established,
it can have major implications for the functionality of
an action; for example, motion of a knife in one direc-
tion can signify murder while motion in the opposite
direction can signify suicide.
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