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Abstract

Many types of common objects, such as tools and vehicles, usually move in simple ways when they are wielded or driven: the natural axes of
the object tend to remain aligned with the local trihedron defined by the object’s trajectory. Based on this observation we use a model called
Frenet-Serret motion which corresponds to the motion of a moving trihedron along a space curve. Knowing how the Frenet-Serret frame is
changing relative to the observer gives us essential information for understanding the object’s motion. This is illustrated here for four examples,
involving tools (a wrench and a saw) and vehicles (an accelerating van, a turning taxi). © 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

An object moves because it is self-propelled (e.g. a
vehicle) or because it is wielded (or thrown') by an agent
(e.g. a tool). Motion that efficiently performs a locomotional
or mechanical function requires efficient energy transfer
from the vehicle’s engine or the agent’s arm to the object,
in order to efficiently overcome the constraints imposed by
the environment in which the motion takes place (air resis-
tance, friction, etc.). Assuming that an object has natural
axes (e.g. the long axis of a stick), efficient force transfer
requires simple relationships between the natural axes of the
object and the motion trajectory. These relationships ensure
that the object can perform its function efficiently.

The most general model of object motion is unrestricted
rigid motion. This type of motion is not common in every-
day life. Usually objects are supported, and motion takes
place when an object is in contact with a surface, another
object, or an agent. In these cases (tool acting on a recipient
object; ground vehicle) the motion becomes interestingly
constrained.

In our work we consider the relationship between this
constrained motion and the object’s geometry. To analyze
this relationship we use two frames: the object frame and the

" We assume in this paper that the propulsive force is applied to the object
continuously, unlike the case of a projectile where it is applied only
initially. We will not discuss projectiles further here.
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frame of the motion trajectory. ‘‘Efficient’’ motion calls for
a simple relationship between the object frame and the
motion frame, and this relationship remains constant during
the motion. Based on this observation we use a model called
Frenet-Serret motion which corresponds to the motion of a
moving trihedron along a space curve [1]. The parameters of
the motion are given by the curvature and torsion of the
space curve along which the object moves.

In practice the simple nature of the environment in which
the object moves provides further constraints. A ground
vehicle is moving on relatively flat terrain, and a tool is
often acting on a planar surface. The motion is mostly planar
(though the plane may rotate slightly during the motion).
Over a long time period the motion is Frenet-Serret; over a
short time period it is approximately planar and often
approximately translational.

We use the relationship between the object frame and the
motion frame to analyze image sequences. Given a
sequence of images of the moving object, our analysis
enables us to output the motion and trajectory parameters
of the object. Knowing how the Frenet-Serret frame is
changing relative to the observer gives us essential informa-
tion for understanding the object’s motion. Our analysis can
also handle constraints on the motion. For example, the
parameters of the object’s trajectory depend on its speed,
mass, size, and on the medium through which it moves.
These factors impose bounds on the curvature and torsion
of the trajectory.
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In this paper we approach object motion understanding
through analysis of long image sequences. A key question in
this context is how to relate short-sequence motion estima-
tion to long-sequence motion estimation. Using the Frenet-
Serret frame provides us with an ability to understand
motion over a long time period. We can derive the motion
parameters from the parameters of the trajectory and obtain
motion descriptions suitable for long sequence analysis.
Using these tools we can show, for example, that rotation
becomes significant only in long sequences, and that in a
short sequence translation is usually dominant. We show
that using simplified scene and imaging models we can
get adequate local estimates (short sequence, 2--4 frames)
by analyzing the images, and by observing these estimates
over a long sequence we can accumulate them to describe
the object’s trajectory. Analysis of the trajectory parameters
provides us with tools for understanding long-term object
motion.

2. Related work

Understanding object motion is based on extracting the
object’s motion parameters from an image sequence. Broida
and Chellappa [2] proposed a framework or motion estima-
tion of a vehicle using Kalman filtering. Weng et al. [3]
assumed an object that possesses an axis of symmetry,
and a constant angular momentum model which constrained
the motion over a local frame subsequence to be a super-
position of precession and translation. The trajectory of the
center of rotation can be approximated by a vector poly-
nomial. Changing the parameters of the model with time
allows adaptation to long-term changes in the motion char-
acteristics. Their work was based on correspondence; at
least eight pairs of corresponding points were needed.

Accumulating the information obtained from the motion
analysis of the sequence to achieve an estimate of the
moving object’s trajectory is another step toward under-
standing object motion. (A good survey of motion-based
recognition was compiled by Cedras and Shah [4].) Bruck-
stein et al. [5,6] assumed a known object model (a rigid rod
or disk) and tried to recover the object’s trajectory and
rotation. They showed that five images are enough to
recover the motion of a rod or a disk in accordance with
physical laws. Techniques from algebraic geometry were
used to establish the existence of solutions to the resulting
polynomial equations.

Engel and Rubin [7] (and similarly Gould and Shah [8])
used motion characteristics obtained by tracking represen-
tative points on an object to identify important events cor-
responding to changes in direction, speed and acceleration
in the object’s motion.

Work has also been done on higher-level descriptions of
object trajectories in terms of such concepts as stopping/
starting, object interactions, and motion verbs [9-11].
This level of object motion description will not be treated

in this paper, nor will other work on understanding functions
of tools [12-15].

In [16] Duric et al. tried to determine the function of a tool
from its motion. Given a sequence of images of a known
tool performing some function, they attempted to determine
what that function was. They showed that the motion of a
tool, when combined with information about the tool and its
uses, provides strong constraints on the possible function
being performed. Their flow-based analysis treated rela-
tively short sequences.

Understanding object motion from images requires a
mathematical formulation of the relationships between the
object’s trajectory and the image motion field. In this paper
a model for object trajectory analysis is used; a constant
relationship between the object frame and the motion
frame is assumed. The use of the Frenet-Serret frame pro-
vides a vocabulary appropriate for describing longer motion
sequences.

3. Motion models
3.1. Rigid body motion

To facilitate the derivation of the motion equations of a
rigid body B we use two rectangular coordinate frames, one
(Oxyz) fixed in space, the other (Cx,y,z,) fixed in the body
and moving with it. The coordinates, X, Y}, Z, of any point
P of the body with respect to the moving frame are constant
with respect to time ¢, while the coordinates X, Y, Z of the
same point P with respect to the fixed frame are functions of

t. It is assumed that these functions are differentiable with
respect to t. The position of the movmg frame at any instant
is given by the position d= (X.Y.Z )" of the origin C, and
by the nine direction cosines of the axes _of the moving
frame with respect to the fixed frame. Let i j and k be the
unit vectors in the directions of the Ox, Oy, and Oz axes,
respectively; and let i(,j, and k; be the unit vectors in the
directions of the Cx, Cy,, and Cz, axes, respectively. For a
given position p of P in Cxy,z, we have the position 7, of P
in Oxyz:

X i i ik X, X,

RElY | =|ih Jh ik i+ ¥

z ki kj, &k ) \Z Z
=Rp+d, (1)

where R is the matrix of the direction cosines (the frames are
taken as right-handed so that det R = 1). If we differentiate
Eq (1) with respect to time and use the fact that
p= RT(r —d ), we obtain:

F,=Rp+d, =RR'(F,—d) +d, = QF, —d)+d.. ()
The skew matrix @ = RRT = — RR" is the rotational velocity
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Fig. 1. The Frenet-Serret coordinate frame moves along the path I'.

matrix and 36 is the translational velocity vector. Multiply-
ing a vector (7, — d..) by the skew matrix Q can be replaced
by taking the cross product « X (r,—d.) where
o= (wxwywz)r is the rotational velocity vector.

3.2. Motion along a smooth curve

Consider a moving frame Cx,y,z; (fixed in a rigid body
‘B), which moves with C along a space curve I' while rotat-
ing so that the Cx, and Cy, axes coincide with, respectively,
the tangent and principal normal of I'. This means that as C
moves along I the Cx,y,z, frame coincides with the Frenet-
Serret trihedron at C:Cmb. This trihedron consists of the
tangent t, the principal normal n, and the binormal b,
which are mutually orthogonal (see Fig. 1). The geometry
of this motion is completely defined by T'.

Let d,(s) denote the position of C, in the fixed coordinate
frame Oxyz, when it has moved along I' through a total arc
length of 5. For any position p of a point P on B in Ctnb, the
position 7, in Oxyz is given by Eq. (1) with the matrix of
direction cosines R suitably defined (see Fig. 1). If
t=(1,1,13)7, 8= (n,nyn3)" and b=(b,b,b;)" are the unit
vectors along Ct, Cn and Cb, differential geometry gives us

-

=d.,’

Y

-]

n=«x"'d’", b=t X, 3)

where « is the curvature of I'. Then we have

o om bl
R= t np bz . (4)
ty n3 by

We have the Frenet-Serret formulas [17]
t'=xh, i'= —kt+7b, b'= — 70 (5)

where 7 is the torsion of I'. Using Eq. (4) and Eq. (5), Eq. (2)
can be written as

-

Py =8y X (Fp —d)) +t (6)

where the Darboux vector w,; = 7+ «b is the rotational
velocity vector and the unit tangentf of I" is the translational
velocity vector; the motion parameter is the arc length s. If,
instead of using arc length as a motion parameter, time ¢ is
used, the rotational velocity w, and translational velocity t
are scaled by the speed v = ds/dt of the point C. In that case

Fig. 2. The plane perspective projection image of P is F = f{X/Z,Y/Z,1); the
weak perspective projection image of P is obtained through the plane
perspective projection of the intermediate point P; = (X.Y,Z,) and is
given by G = AX/Z.Y/Z 1).

the equation of motion becomes
Tp=vy X (r, —d,) +vt. @)

In the special case where T' is a plane curve we have 7 =0
(T is torsionless), and thus &, = «b. Eq. (7) then becomes

F=vkb X (7, — d,) + VL. (8)

3.3. Simple motions of objects

Objects move in reaction to forces which are being
applied to them. When the forces acting on an object are
added, the resultant force F determines the direction of
motion and the moments of the forces (or the torques) deter-
mine the rotation of the object. If the force E‘ is applied to
the object B at the point P, the moment M is given by
M=%, X F where 7, is the position of P relative to a
point C. M has the same direction as the axis of the rotation
of B that results from applying F.

The engine of a vehicle needs to apply force to the vehicle
in order to move it from one position to another. If the path
is prespecified (as in the case of a ground vehicle on a road),
efficient application of the force requires that the angle
between the instantaneous directions of the force and the
directions of the path elements be small. The force differ-
ential generates torques which help turn the vehicle around
the axis of rotation normal to the (osculating) plane of the
path. During a turn, the wheels rotate with different speeds;
the greater the distance between the wheels the larger their
difference in speed. In order to minimize this difference the
distance between the wheels needs to be small. Also, when
forces are applied to the wheels the resulting torques are
larger when the vehicle is moving along a short axis; but
these torques need to be as small as possible to improve the
handling of and minimize stresses on the vehicle. Because
of all these factors the principal axis of inertia of the vehicle
should be tangent to the path of the vehicle. It should be
pointed out that [18] the translational velocity at any point
on a ground vehicle is typically orders of magnitude larger
than its rotational velocity (around the vehicle’s center of
mass). The rotational velocity becomes significant only
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when the vehicle is observed over a significant period of
time (typically several frames).

In the case of a moving tool the force is used not only to
move the tool, but to act on a recipient object. Therefore, the
required force depends on the task. For example, sawing
involves continuously exerting a force perpendicular to
the path of the saw; tightening with a wrench involves con-
tinuously exerting torque around the axis of rotation. (Note
that the force may not be applied to the recipient object
continuously; for example, when we swing a hammer, the
force is applied only when the head of the hammer hits the
object.) Developing a general theory of tool motion is a
subject of our continuing research.

4. Computing motion from image sequences

For the purpose of estimating object motion from images
we rewrite Eq. (2) in the following way:

f=@X (F—d)+d=a X7+ T )

where T = c}c) + 36 - X ch = (UVW) is the translational
velocity expressed in the fixed (camera) coordinate frame
Oxyz. We will later show how the translational velocity d.
can be recovered from 7.

4.1. The imaging models

Let (X,Y,Z) denote the Cartesian coordinates of a scene
point with respect to the fixed camera frame (see Fig. 2), and
let (x,y) denote the corresponding coordinates in the image
plane. The equation of the image plane is Z = f, where fis
the focal length of the camera. The perspective projection
onto this plane is given by

X Y

=TT

For weak perspective projection we need a reference point
(X.YZ.). A scene point (X,Y,Z) is first projected onto the
point (X,Y,Z,); then, through plane perspective projection,
the point (X,Y,Z,) is projected onto the image point (x,y).
The projection equations are then given by

X Y
X=Z—cf,y=2f- (11)

(10)

4.2. The image motion field and the optical flow field

The instantaneous velocity of the image point (x,y) under
perspective projection is obtained by taking the derivatives
of Eq. (10) and using Eq. (9):

2
wxj,—y+wy<)}—+f) - w,y,
(12)

_XZ-XZ_Uf-xW _
-z z

_YZ-YZ Vf—yWw
4

2
y Xy
- —+f) +wy—+w,x.
(F+) o5
(13)
The instantaneous velocity of the image point (x,y) under

weak perspective projection can be obtained by taking deri-
vatives of Eq. (11) with respect to time and using Eq. (9):

. XZ.—-XZ. Uf—xW Z
i=f CZCZ c Z +fwyZ—wa, (14)
YZ —-YZ Vf —yW
=f (3 5 C= f y —fwx +wx (15)
Z; Z

Let i and} be the unit vectors in the x and y directions,
respectively; F-in + 3j is the projected motion field at the
point 7= xi + yj. If we choose a unit direction vector 7, at
the image point 7 and call it the normal direction, then the
normal motion field at 7 is 7, = (r n)n,. n, can be chosen in
various ways; the usual choice (as we shall now see) is the
direction of the image intensity gradient.

Let I(x,y,t) be the image intensity function. The time
derivative of / can be written as

di_alds M@+M
aroxar ' dy dt

=g+ L) G+ 3) + L, =VIF+1,
where VI is the image gradient and the subscripts denote
partial derivatives.

If we assume d//dt = 0, i.e. that the image intensity does
not vary with time, then we have VI-i+ 1, =0. The vector
field u in this expression is called the optical flow. If we
choose the normal direction 7, to be the image gradient
direction, i.e. #, = VIIVII, we then have

—IVI
v

ﬁn = (Z”—ir);ir = (16)
where u, is called the normal flow.

It was shown in [19] that the magnitude of the difference
between u, and the normal motion field 7, is inversely pro-
portional to the magnitude of the image gradient. Hence
7. =~ u, when VIl is large. Eq. (16) thus provides an
approximate relationship between the 3-D motion and the
image derivatives. We will use this approximation later in
this paper.

5. Tool motion

As indicated in Section 1, we can assume that the tool’s
motion is (approximately) planar and that its velocity is
composed of a translational velocity in the plane of the
tool and a rotational velocity around an axis orthogonal to
the plane of the tool.



Z. Duric et al./Image and Vision Computing 16 (1998) 785-797 789

5.1. The image motion field of a wielded tool

Let the normal to the plane be N= (NxNyNz)T; the equa-
tion of the plane orthogonal to N which passes through the
point (0,0,Zy) on the z-axis of the Oxyz coordinate frame is
given by

XNy + YN, +(Z — Zy)N, =0. (17)

If we assume a nondegenerate view (i.e., N, > Q) for points
on the plane we obtain from Eq. (17) and Eq. (10)

f

1 1
7 on< ZN‘ )=f—z—o(f+px+qy) (18)

where p=N,N,” ! and q=NyNZ‘1. From our assumption
about rotational velocity it follows that we have
& = (pw,qu,w,) for some w,. Also, since we have assumed
that the translation is in the plane of the tool we have
N-T =0, or equivalently

(pg) (UVW)T =Up+ Vg+ W =0.
It follows that we have
W= —Up—Vg. (19)

From Egs. (12), (13) and (18) and Eq. (19) we obtain the
equations of projected motion for points on the plane:

_ Uf+xUp+xVq

Xy
Z (f +px+qy) — pw, =

f
x2
+qwz< 7+f) — Wy, (20)

_Vi+yUp+yVg
1z
Y
+qw; T+ wx. (21)
f
Egs. (20) and (21) relate the image (projected) motion field
to the scaled components of the translational velocity
Zy 'U = U, and ZO_IV =V, the rotational parameter w_,
and the normal to the plane (pgl)T
Given the point r=xi+y and the normal direction
n, t+ny] from Egs. (20) and (21) the normal motion field
Pl =n,X 4+ n,y is given by

2
(f +px+ qy) — pw, ( y?+f>

i = Up(f + px + qy)lne + (ong + yn,)pf ']
+ Volf + px + qy)ln, + (e + yny)af ~']
+an(—y+af —pof ' +a’f )
+ny(x—pf +qxyf ' = py’f ]
= Upe1(p, ¢: T, 1) + Vo2 (p, ¢ 7. 1) + w,03(p, ¢; 7, 1)(22)

where the ¢s are nonlinear functions of p, g, 7, and 1 is given
by

0P, @ 7o) = (f +px+ qy)lng + e +yn)pf ~'1, (23)

0P, ;7 ) = (f +px + gy)ln, + (ene +ynaf 7'l (24)

s, ;i) =n(—y+qf —pxyf "' +ax’f )
+n,(x—pf +axyf ' =py’f Y. (25)

In Eq. (22) ¥ and 7 are observable from images, while the 5-
tuple (p.q,U,Vp,w,) is not directly observable. To estimate
this 5-tuple we need estimates of 77 at five or more image
points.

5.2. Estimating tool motion from normal flow

If we use the spatial image gradlent as the normal direc-
tion nn = VI/IVIl=n,i+n,j and ¥, =~ u, we can obtain an
approximate equation corresponding to Eq. (22) by
replacing the left hand side of Eq. (22) by the normal
flow -I/IVI. This equation involves the eight unknown
elements of ¢. For each point (x;y),0 = 1,...m of the
image at which IIVI(x,y 0!l is large we can write one such
equation. If we have m such points, where m > 5, we have
an over-determined system of equations

®(p,q)(UoVow,)" ~b (26)
where the m X 3 matrix function @ is given by

q>(p, Q) = [¢| (p’ Q); o1 (p, q); ‘P3(pv Q)]

(i.e., its columns are m-vectors that correspond to values of
¢ at points (x,,y;)), and the elements of the m-vector b are
—3I(x;, y;, DNV I(x,y D).

We seek the solution of the system Eq. (26) for which
6 — ®(p, g)(UoVow,) Nl is minimal — i.e., we are seeking the
solution of Eq. (26) in the least squares sense. This is a
separable nonlinear least squares problem; a good stable
solution and an algorithm were given by Golub and Pereyra
in [20]. It was shown that the problem is equivalent to
minimizing

where &7 is the generalized inverse of ®. r(p,q) is first
minimized to obtain optimal values p and g of p and ¢
respectively; these values are then used to obtain ®(3,g).
The linear least squares method is then used to minimize
Ib — ®(p, §)-(UyVow,)"ll and obtain optimal values of the
motion parameters Uy, V,, and w, After estimating
7.9, Uy Vy, and w, we use Eq. (19) to obtain W, Finally,
we obtain

N=@g) (1 +p*+¢") 2

and
lal = /w? + p2ef + g?wl.

We have estimated the translational velocity T and the
rotational velocity @ in the camera coordinate system Oxyz.
We are interested in the translational and the rotational
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velocity expressed in the Frenet-Serret frame Otnb. By com-
paring Eq. (2), Eq. (8) and Eq. (9) we obtain

@=vkb, b= &Sgnwz, vi =&l (28)
where sgn stands for the ‘sign of” function. Also, from Egs.
(2) and (8) and Eq. (9) we have

(UoVoWo) =25 'T =25 '(d. — & % d,)

=7y 'i-3xd,)

and thus

vt axd

Z)=(U0V0W0)T + X, 29)
0

Note that in Eq. (29) the quantities Z; and Zi (the position of
the point C, the origin of the Otnb frame) are not known.
However, let d =X.Y.Z ) be the position of C and let
(x.,y.) be the image of C (either the tip or the center of
mass of the tool). From Eq. (18) we obtain

7
Z—O =f +px. +qy,
C

so that Eq. (29) can be written as

-.

Z . X.Y.Z
’Z';—(UOVOWO) +f70 [(—'—2—

Z
@ X (x T
= (UpVoW)” + 22U (30)
f+pxc+qy.
From Eq. (30) we obtain the unit vector in the tangent direc-
tion t by normalizing vt/Zo Finally, we obtain the unit
vector in the normal direction using

=b %t 31

Eq. (28), Eq. (30) and Eq. (31) define the Frenet-Serret
frame Otnb expressed in the camera coordinate system.
Eq. (28) gives us the curvature x up to an unknown factor
v (linear velocity). We conclude that the Frenet-Serret
motion can be recovered up to the speed v; note that the
translational velocity vf/Zo does not help here because of the
unknown depth of Zj,.

Finally, we need to recover the orientation of the tool
coordinate frame (its long and short axes) in the Otnb
frame. We find the long and the short axes of the tool as
the principal axes of the set of tool points. The long axis / of
the tool and the origin O of the fixed (camera) coordinate
frame Oxyz define a plane II;. Since the image [’ of / lies in
this plane we can find Pi, using /' in place of /. Because we
have assumed a nondegenerate view we have two cases: (i)
if the tangent vector t lies in I, the motion is along /; (ii) if
the normal vector n lies in II; the motion is orthogonal to /.

We check if the vector lies in the plane II; using the
following simple algorithm. Let = yf)’ and
ﬁzz(xzyzf)T be the positions of two endpoints on the

image !’ of I. The normal I_VH of the plane II, is given by
Np=p\ X py.

If the vector t lies in the plane II, we have I-VH X t=0.Soto
find out the relative orientation of the tool frame and the
Otnb frame we only need to find which one of the inner
products |Nyp-t| and INg-il is smaller. (Note that while

one of the vectors € and A lies in the plane II; the other
vector is not always orthogonal to II,.)

6. Vehicle motion

We assume that the motion of the vehicle is planar and
that it has a small rotational velocity around the axis ortho-
gonal to the plane of motion. The translational velocity is
dominant and at any time ¢ the motion can be approximated
by pure translational motion.

6.1. The image motion field of a moving vehicle

From Eg. (14) and Eq. (15) we obtain the (approximate)
equations of projected motion for points on a vehicle under
weak perspective:

Uf —xW

Z (32)

Vf —yW

Z (33)

).7=
Eq. (32) and Eq. (33) relate the image (projected) motxon
field to the scaled translational velocity Z. 'T=
z”(wvwy".
leen the point F=xi +y] and the normal direction of
nxz + n, from Eq. (32) and Eg. (33) the normal motion field
Fo-i=n,x+ny is given by

Fi=nfUZ" +nfVZT! = (nx +ny)WZ,! (34)
Let
a nf ¢ vz;!
a=]|a, | = nf ,e=| ¢ | = VZC‘1
as — X — Ry c3 WZ.~ !
(35)

Using Eq. (35) we can write Eq. (34) as r,, n=a’c. The
column vector a is formed of observable quantities only,
while each element of the column vector ¢ contains quan-
tities which are not directly observable from the images. To
estimate ¢ we need estimates of 7,-7i at three or more image
points.

6.2. Estimating vehicle motion from normal flow

As in Section 5.2 we use linear least squares to estimate
parameter vector ¢ from the normal flow.
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© 0

(g) (h)

Fig. 3. An experiment using a wrench: (a—h) frames 30, 40, ..., 100. Top images: the input images. Bottom images: results of flow computation.

In the case of a moving vehicle the parameters of interest
are the vehicle’s trajectory and its rate of approach. The rate
of approach

w
o= —

Z
(measured in s ') is equivalent to the inverse of the time to
collision and corresponds to the rate with which an object is
approaching the camera (or receding from it). The rate o =
0.1/s means that every second the object travels 0.1 of the
distance between the observer and its current position. A
negative rate of approach means that the object is going
away from the camera. .

The direction of motion ¢ = T/Z, gives us the tangent
vector t = c/llcll of the Frenet-Serret frame. If the direction
of motion changes over time we can use the Frenet-Serret
formulae Eq. (5) to recover the (scaled) curvature v of the
trajectory. Given the tangent direction ty at time ¢ and the
tangent direction 1, at time 7 + At we have
- = t] - tﬁ
Ny = vk =~ A 36)

The unit vector in the direction R at time ¢ is the normal
vector of the Otnb frame and the scaled curvature is given
by vk = lingll. Finally, we obtain

b=tXn (37)

Eq. (36) and Eq. (37) give us the normal b to the plane of
motion and the rotational velocity of turning (yaw) @ = vkb.

7. Experiments

In the following section we show two examples for each
of the domains we have discussed: tools and vehicles. As was
mentioned before, tools usually operate by planar motion,
advancing along a line (drill) or moving in a plane (sawing).
In our examples, presented in Section 7.1, we show two types
of motion: rotation with negligible translation (a wrench) and
relative small rotation with dominant translation (a saw).

A ground vehicle’s motion usually takes place on terrain
that has a small slope and on a road with a limited rate of
turn. This results in small values of pitch and yaw, i.e. in
locally translational motion. Long sequences are needed to
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Fig. 4. Results of experiments on the wrench sequence: the graph shows rotational velocity in radians/s.

detect basic maneuvers such as turning or lane changing. In
Section 7.2 we analyze two examples: an accelerating van
(essentially linear motion) and a turning taxi.

7.1. Motions of tools

We tested our motion analysis algorithm under full per-
spective on two image sequences of tools in motion. We

used sequences that were sufficiently long to allow time for
significant activity to take place. The first sequence,
sampled frames of which are shown in Fig. 3, was a 220-
image sequence of the movement of a wrench tightening a
bolt. Flow results are given below each image.

The motion of the wrench was a rotation (to turn the bolt)
around an axis approximately orthogonal to the plane of the
image. The rotational velocity is shown in Fig. 4; it is given

1.5 T ,

i ;
20 50 100

150 200 250

Fig. 5. Results of experiments on the wrench sequence. The solid line corresponds to the orientation (in radians) of the instantaneous direction of translation of
the centroid of the wrench, and the dashed line corresponds to the orientation (in radians) of the principal axis of the wrench.
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Fig. 6. An experiment using a saw: (a — h) frames 30, 40, ...,

in radians/s and it corresponds to the scaled curvature vk.
Fig. 5 shows the orientation of the principal axis of the
wrench and the instantaneous translational velocity of its
centroid (obtained using Eq. (30)), both measured in
radians. As we see, the translational velocity vector remains
approximately orthogonal to the principal axis throughout
the motion sequence. The Frenet-Serret frame has its binor-
mal b in the direction of the negative of the z-axis, its
tangent tin the image plane and orthogonal to the principal
axis of the wrench, and its normal n in the image plane and
oriented from the centroid of the wrench toward the bolt.
The big spikes in Figs. 4 and 5 near the end of the sequence
correspond to the fact that the person using the wrench
cannot keep turning it in the same direction; when his
hand has rotated as far as it can, he must change his grip
on the wrench before continuing to rotate it.

We also tested our motion analysis algorithm on a 220-
image sequence of a saw doing a periodic motion. (In this
sequence the saw is not cutting anything; in [16] a shorter
sequence of a knife slicing bread was used.) Fig. 6 shows
sampled frames of the sequence, with flow results given below
each image. The motion of the saw was pure translation

(2) (h)

100. Top images: the input images. Bottom images: results of flow computation.

(loll=0). As can be seen from Figs. 7 and 8 the motion is
mostly fronto-parallel (the z component of the translational
velocity is small). The motion is periodic in the direction of
the principal axis of inertia. It is a simple case of a (periodic)
straight line motion with the Frenet-Serret frame corre-
sponding to the principal axes of the saw; t corresponds to
the longest axis, and b to the shortest axis.

These graphs confirm that the motion components have a
simple behavior; before they reach their extremal values
they can be approximated by straight lines, indicating con-
stant relative accelerations.

7.2. Motions of vehicles

In this section we also used two image sequences, and we
used the algorithms for weak perspective. In the first experi-
ment we used an image sequence of a van taken from another
vehicle following the van. The sequence consisted of 56
frames (slightly less than two seconds). Fig. 9 shows frames
5, 15, 25, and 35 as well as the corresponding normal flow on
the van. Fig. 10 shows estimated values of UZ, ', VZ !, and
WZ.'. These values correspond to the relative translation
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Fig. 7. Results of experiments on the saw sequence. U, V, W are the scaled (by an unknown distance Z; 'y components of the relative translational velocity.

of the van and the vehicle carrying the camera (observer
coordinate system). Because of our choice of the coordinate
system the rate of approach « corresponds to the negative of
Wz ' ie. a= —WZ~ !. The graph shows that there is an
impending collision (rate of approach greater than 1 s7h.
Around the 20th frame the rate of approach becomes zero

(as do all the velocity components) and after that it becomes
negative because the van starts pulling away from the
vehicle carrying the camera. A similar image sequence
was used in [21] in studies of vehicle convoy behavior.

In the second experiment we used an image sequence of a
turning taxi taken by a stationary camera. The sequence

05 T f T T T T ? T Y
o+ - .__.:,_.f.rai‘.if. ﬁ.-..-w;...‘~_‘.:.‘..a e e e }?._., e mp——
05k e fe e .
b e -
A Bk b -
2k [RUUURRRN AUURUPRUURRUTIT NTETURRCUPRIPIN DUTUPPIRIPPIY NP T .
| S e s R B I TR ERPTIE TS .
| R Lo N oS NG V\;

N S S S N A S

0 20 40 60 80 100 120 140 160 180

200

Fig. 8. Results of experiments on the saw sequence. The solid line corresponds to the orientation (in radians) of the instantaneous direction of motion of the saw,
and the dashed line corresponds to the orientation (in radians) of the principal axis of the saw.
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(a) (b)

(c) (d)

Fig. 9. Frames 5, 15, 25, and 35 of the van sequence. The normal flow results are shown below the corresponding image frames.

consisted of 21 frames. Fig. 11 shows frames 1,9, 15 and 21
as well as the corresponding normal flow on the vehicles.
Fig. 12 shows estimated values of UZ~ I vz !, and
WZ.!. These values correspond to the relative translation
of the taxi. The graph shows that there is a large W compo-
nent in the turn (the taxi is receding), and that the turn is to
the right (negative U, positive V). The graphs confirm that
the translational components change smoothly, enabling
recovery of the scaled rotational velocity (Eq. (36)) and
the ground plane.

8. Conclusions and plans for future work

Many types of common objects, such as tools and
vehicles, usually move in simple ways when they are
wielded or driven: the natural axes of the object tend to
remain aligned with the local trihedron defined by the object’s
trajectory. In this paper we have considered the relationship
between this constrained motion and the object’s geometry.
To analyze this relationship we have used two frames: the
object frame and the frame of the motion trajectory.

1.5 T T

1 i

-15 1 2
0

10 20

40 50 60

Fig. 10. Results of experiments on the van sequence. U, V, W are the scaled (by an unknown distance Z~') components of the relative translational velocity.
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Fig. 11. A taxi sequence: (a—d) frames 1, 9, 15, 21. Top images: the input images. Bottom images: results of flow computation.

Assuming a constant relationship between the object frame
and the motion frame during the motion, we have used
Frenet-Serret motion as a motion model. Using the Frenet-
Serret frame has provided us with an ability to understand
motion over a long time period.

We have derived equations for understanding the
motions of tools and vehicles under full and weak per-
spective. We have recovered descriptions of an object’s
motion and the space curve along which the object
moves, using relatively long image sequences. The motion
and trajectory parameters provide a low-level description for
understanding the motions of vehicles. For understanding

tools in motion one needs additional knowledge about
the tool and the context. This is a direction for further
research.

It is the need for efficient force transfer that imposes a
simple and constant relationship between the natural axes of
the object and the motion trajectory. We have used this
functional constraint in analyzing the motions of tools
and ground vehicles. Expanding this analysis to other
classes of objects (e.g. air vehicles), as well as expanding
the vocabulary that describes the behavior of tools and
vehicles (sharp turn, skid, etc.) [11], are other directions
for future research.

0.2 ! ! : T
0.15
0.1

0.05

05 1 1 i i
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Fig. 12. Results of experiments on the taxi sequence. U, V, W are the scaled (by an unknown distance Z, ') components of the relative translational velocity.
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