Problem solving and search: Chapter 3, Sections 1–5

Outline

♦ Problem-solving agents
♦ Problem types
♦ Problem formulation
♦ Example problems
♦ Basic search algorithms
Problem-solving agents

Restricted form of general agent:

```plaintext
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
    static: seq, an action sequence, initially empty
        state, some description of the current world state
        goal, a goal, initially null
        problem, a problem formulation
    state ← UPDATE-STATE(state, percept)
    if seq is empty then
        goal ← FORMULATE-GOAL(state)
        problem ← FORMULATE-PROBLEM(state, goal)
        seq ← SEARCH(problem)
        action ← RECOMMENDATION(seq, state)
        seq ← REMAINDER(seq, state)
    return action
```

Note: this is **offline** problem solving; solution executed “eyes closed.”

Online problem solving involves acting without complete knowledge.
Example: Romania

On holiday in Romania; currently in Arad. Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
states: various cities
actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem types

Deterministic, fully observable \(\implies\) single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable \(\implies\) conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \(\implies\) contingency problem
Percepts provide new information about current state
Solution is a tree or policy
Often interleave search, execution

Unknown state space \(\implies\) exploration problem (“online”)

Example: vacuum world

Single-state, start in #5. Solution??
Example: vacuum world

Single-state, start in #5. Solution??

[Right, Suck]

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\}
e.g., Right goes to \{2, 4, 6, 8\}. Solution??

Contingency, start in #5

Murphy’s Law: Suck can dirty a clean carpet

Local sensing: dirt, location only.

Solution??
Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

successor function $S(x) =$ set of action–state pairs
e.g., $S(Arad) = \{ < Arad \rightarrow Zerind, Zerind >, \ldots \}$

goal test, can be
 explicit, e.g., $x =$ “at Bucharest”
 implicit, e.g., $NoDirt(x)$

path cost (additive)
e.g., sum of distances, number of actions executed, etc.
$c(x, a, y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions
leading from the initial state to a goal state
Selecting a state space

Real world is absurdly complex
⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
 must get to some real state “in Zerind”

(Abstract) solution =
 set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Example: vacuum world state space graph

states??
actions??
goal test??
path cost??
Example: vacuum world state space graph

Example: The 8-puzzle

states??: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)
Example: The 8-puzzle

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 4</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>8 4</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 6 5</td>
</tr>
</tbody>
</table>

- **states**: integer locations of tiles (ignore intermediate positions)
- **actions**: move blank left, right, up, down (ignore unjamming etc.)
- **goal test**: = goal state (given)
- **path cost**: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

- **states**: real-valued coordinates of robot joint angles and parts of the object to be assembled
- **actions**: continuous motions of robot joints
- **goal test**: complete assembly *with no robot included!*
- **path cost**: time to execute
Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. *expanding* states)

function TREE-SEARCH(*problem, strategy*) **returns** a solution, or failure
initialize the search tree using the initial state of *problem*

loop do
if there are no candidates for expansion **then return** failure
choose a leaf node for expansion according to *strategy*
if the node contains a goal state **then return** the corresponding solution
else **expand the node and add the resulting nodes to the search tree**
end
Tree search example

- Arad
 - Sibiu
 - Arad
 - Fagaras
 - Timisoara
 - Arad
 - Lugoj
 - Zerind
- Oradea
- Rimnicu Vilcea
- Sibiu
 - Arad
 - Fagaras
 - Oradea
 - Timisoara
- Timisoara
 - Arad
 - Lugoj
 - Oradea
- Zerind

Z. Duric
GMU

CS 480
22
Implementation: states vs. nodes

A **state** is a (representation of) a physical configuration.
A **node** is a data structure constituting part of a search tree.
 includes *parent, children, depth, path cost* \(g(x) \)

States do not have parents, children, depth, or path cost!

The `EXPAND` function creates new nodes, filling in the various fields and using the `SUCCESSORFn` of the problem to create the corresponding states.

Implementation: general tree search

```plaintext
function `TREE-SEARCH` (`problem`, `fringe`) returns a solution, or failure
  `fringe` ← `INSERT`(MAKE-NODE(INITIAL-STATE[`problem`]), `fringe`)  
loop do
  if `fringe` is empty then return failure  
  `node` ← `REMOVE-FRONT`(`fringe`)  
  if `GOAL-TEST`[`problem`] applied to STATE(`node`) succeeds return `node`  
  `fringe` ← `INSERT-ALL`(EXPAND(`node`, `problem`), `fringe`) 
end loop

function `EXPAND`(`node`, `problem`) returns a set of nodes
  `successors` ← the empty set
  for each `action, result` in `SUCCESSOR-Fn`(`problem`)(STATE(`node`)) do
    `s` ← a new NODE  
    PARENT-NODE[`s`] ← `node`; ACTION[`s`] ← `action`; STATE[`s`] ← `result`  
    PATH-COST[`s`] ← PATH-COST[`node`] + STEP-COST(`node`, `action`, `s`)  
    DEPTH[`s`] ← DEPTH[`node`] + 1  
    add `s` to `successors`
  end for
  return `successors`
```

Z. Duric
GMU
Search strategies

A strategy is defined by picking the *order of node expansion*

Strategies are evaluated along the following dimensions:

- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of

- b—maximum branching factor of the search tree
- d—depth of the least-cost solution
- m—maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

Z. Duric GMU

CS 480 28
Breadth-first search

Expand shallowest unexpanded node

Implementation:
fringe is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete? Yes (if b is finite)

Time?
Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal??
Properties of breadth-first search

Complete?? Yes (if \(b \) is finite)

Time?? \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}), \) i.e., exp. in \(d \)

Space?? \(O(b^{d+1}) \) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 10MB/sec so 24hrs = 860GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

\[\text{fringe} = \text{queue ordered by path cost} \]

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost \(\geq \epsilon \)

Time?? \# of nodes with \(g \leq \text{cost of optimal solution}, O(b^{\lceil C^*/\epsilon \rceil}) \)

where \(C^* \) is the cost of the optimal solution

Space?? \# of nodes with \(g \leq \text{cost of optimal solution}, O(b^{\lceil C^*/\epsilon \rceil}) \)

Optimal?? Yes—nodes expanded in increasing order of \(g(n) \)
Depth-first search

Expand deepest unexpanded node

Implementation:

$fringe = \text{LIFO queue, i.e., put successors at front}$
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \text{LIFO queue, i.e., put successors at front} \)
Depth-first search

Expand deepest unexpanded node

Implementation:

$fringe =$ LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete?

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than
breadth-first

Space?? $O(bm)$, i.e., linear space!

Optimal??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space?? $O(bm)$, i.e., linear space!

Optimal?? No

Depth-limited search

= depth-first search with depth limit l,
i.e., nodes at depth l have no successors

Recursive implementation:

```plaintext
function DEPTH-LIMITED-SEARCH(problem, limit) returns soln/fail/cutoff
  RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function RECURSIVE-DLS(node, problem, limit) returns soln/fail/cutoff
  cutoff-occurred? ← false
  if GOAL-TEST[problem][STATE[node]] then return node
  else if DEPTH[node] = limit then return cutoff
  else for each successor in EXPAND(node, problem) do
    result ← RECURSIVE-DLS(successor, problem, limit)
    if result = cutoff then cutoff-occurred? ← true
    else if result ≠ failure then return result
  if cutoff-occurred? then return cutoff else return failure
```

Z. Duric
GMU
Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED-SEARCH(problem, depth)
 if result ≠ cutoff then return result
end

Z. Duric GMU
Iterative deepening search $l = 1$

Limit = 1

Iterative deepening search $l = 2$

Limit = 2
Properties of iterative deepening search

Complete??
Properties of iterative deepening search

Complete?? Yes
Time??

\[(d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\]

Space??

Z. Duric
GMU
Properties of iterative deepening search

- **Complete**: Yes
- **Time**: \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)
- **Space**: \(O(bd)\)
- **Optimal**: Yes, if step cost = 1
 Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right:

\[
\begin{align*}
N(\text{IDS}) &= 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \\
N(\text{BFS}) &= 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100
\end{align*}
\]
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^{[C^*/\epsilon]})</td>
<td>(bm)</td>
<td>(bl)</td>
<td>(bd)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

function Graph-Search(\(\text{problem}, \text{fringe}\)) **returns** a solution, or failure

closed — an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[\(\text{problem}\)]), \text{fringe})
loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST[\(\text{problem}\)](STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERTALL(EXPAND(node, \(\text{problem}\)), \text{fringe})
end

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms