Problem solving and search: Chapter 3, Sections 1–5

Outline

◇ Problem-solving agents
◇ Problem types
◇ Problem formulation
◇ Example problems
◇ Basic search algorithms
Problem-solving agents

Restricted form of general agent:

```plaintext
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action

    static: seq, an action sequence, initially empty
             state, some description of the current world state
             goal, a goal, initially null
             problem, a problem formulation

    state ← UPDATE-STATE(state, percept)
    if seq is empty then
        goal ← FORMULATE-GOAL(state)
        problem ← FORMULATE-PROBLEM(state, goal)
        seq ← SEARCH(problem)
        action ← RECOMMENDATION(seq, state)
        seq ← REMAINDER(seq, state)
    return action
```

Note: this is *offline* problem solving; solution executed “eyes closed.”

Online problem solving involves acting without complete knowledge.
Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
be in Bucharest

Formulate problem:
- states: various cities
- actions: drive between cities

Find solution:
sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Problem types

Deterministic, fully observable \Rightarrow single-state problem
Agent knows exactly which state it will be in; solution is a sequence

Non-observable \Rightarrow conformant problem
Agent may have no idea where it is; solution (if any) is a sequence

Nondeterministic and/or partially observable \Rightarrow contingency problem
percepts provide new information about current state
solution is a tree or policy
often interleave search, execution

Unknown state space \Rightarrow exploration problem (“online”)

Example: vacuum world

Single-state, start in #5. Solution??
Example: vacuum world

Single-state, start in #5. \textbf{Solution}?
\textit{[Right, Suck]}

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\}
e.g., \textit{Right} goes to \{2, 4, 6, 8\}. \textbf{Solution}?

\textit{Example: vacuum world}

Single-state, start in #5. \textbf{Solution}?
\textit{[Right, Suck]}

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\}
e.g., \textit{Right} goes to \{2, 4, 6, 8\}. \textbf{Solution}?
\textit{[Right, Suck, Left, Suck]}

\textbf{Contingency}, start in #5
Murphy’s Law: \textit{Suck} can dirty a clean carpet
Local sensing: dirt, location only.
\textbf{Solution}??
Example: vacuum world

Single-state, start in #5. Solution??
[Right, Suck]

Conformant, start in \{1, 2, 3, 4, 5, 6, 7, 8\}
e.g., Right goes to \{2, 4, 6, 8\}. Solution??
[Right, Suck, Left, Suck]

Contingency, start in #5
Murphy’s Law: Suck can dirty a clean carpet
Local sensing: dirt, location only.
Solution??
[Right, if dirt then Suck]

Single-state problem formulation

A problem is defined by four items:

initial state e.g., “at Arad”

successor function \(S(x) = \) set of action–state pairs
 e.g., \(S(Arad) = \{ < Arad \rightarrow Zerind, Zerind >, \ldots \} \)

goal test, can be
 explicit, e.g., \(x = \) “at Bucharest”
 implicit, e.g., NoDirt\((x) \)

path cost (additive)
 e.g., sum of distances, number of actions executed, etc.
\(c(x, a, y) \) is the step cost, assumed to be \(\geq 0 \)

A solution is a sequence of actions
leading from the initial state to a goal state
Selecting a state space

Real world is absurdly complex
 ⇒ state space must be abstracted for problem solving

(Assert) state = set of real states

(Assert) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set
 of possible routes, detours, rest stops, etc.

For guaranteed realizability, any real state “in Arad”
 must get to some real state “in Zerind”

(Assert) solution =
 set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!

Example: vacuum world state space graph

states??
actions??
goal test??
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts)
actions??: Left, Right, Suck, NoOp
goal test??: no dirt
path cost??: 1 per action (0 for NoOp)

Example: The 8-puzzle

states??
actions??
goal test??
path cost??
Example: The 8-puzzle

<table>
<thead>
<tr>
<th>Start State</th>
<th>Goal State</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 4</td>
<td>1 2 3</td>
</tr>
<tr>
<td>6 1 8</td>
<td>8 4</td>
</tr>
<tr>
<td>7 3 2</td>
<td>7 6 5</td>
</tr>
</tbody>
</table>

states: integer locations of tiles (ignore intermediate positions)
actions: move blank left, right, up, down (ignore unjamming etc.)
goal test: = goal state (given)
path cost: 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Example: robotic assembly

states: real-valued coordinates of robot joint angles
parts of the object to be assembled

actions: continuous motions of robot joints

goal test: complete assembly with no robot included!

path cost: time to execute
Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem
loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
end

Tree search example

[Diagram showing a tree search example with cities such as Arad, Sibiu, Timisoara, and Zerind]
Tree search example

Arad

Sibiu

Lugoj

Zerind

Arad

Fagaras

Oradea

Rimnicu Vilcea

Arad

Timisoara

Oradea

Fagaras

Oradea

Rimnicu Vilcea

Arad

Lugoj

Oradea

Arad

Sibiu

Timisoara

Zerind

Arad
Implementation: states vs. nodes

A *state* is a (representation of) a physical configuration.

A *node* is a data structure constituting part of a search tree, including *parent, children, depth, path cost* \(g(x) \).

States do not have parents, children, depth, or path cost!

The *EXPAND* function creates new nodes, filling in the various fields and using the *SUCCESSORFn* of the problem to create the corresponding states.

Implementation: general tree search

```plaintext
function TREE-SEARCH( problem, fringe ) returns a solution, or failure

fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
    if fringe is empty then return failure
    node ← REMOVE-FRONT(fringe)
    if GOAL-TEST[problem] applied to STATE(node) succeeds return node
    fringe ← INSERTALL(EXPAND(node, problem), fringe)

function EXPAND( node, problem ) returns a set of nodes

successors ← the empty set

for each action, result in SUCCESSOR-FN(problem)(STATE[node]) do
    s ← a new NODE
    PARENT-NODE[s] ← node; ACTION[s] ← action; STATE[s] ← result
    PATH-COST[s] ← PATH-COST[node] + STEP-COST(node, action, s)
    DEPTH[s] ← DEPTH[node] + 1
    add s to successors

return successors
```

23

24
Search strategies

A strategy is defined by picking the *order of node expansion*

Strategies are evaluated along the following dimensions:
- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of
- b—maximum branching factor of the search tree
- d—depth of the least-cost solution
- m—maximum depth of the state space (may be ∞)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end

27

28
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete?? Yes (if b is finite)

Time??
Properties of breadth-first search

Complete? Yes (if b is finite)

Time? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space? $O(b^{d+1})$ (keeps every node in memory)

Optimal? ??
Properties of breadth-first search

Complete?? Yes (if b is finite)

Time?? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?? $O(b^{d+1})$ (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

$Space$ is the big problem; can easily generate nodes at 10MB/sec so 24hrs = 860GB.

Uniform-cost search

Expand least-cost unexpanded node

Implementation:

$fringe = \text{queue ordered by path cost}$

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost $\geq \epsilon$

Time?? # of nodes with $g \leq \text{cost of optimal solution}, O(b^{[C^*/\epsilon]})$

where C^* is the cost of the optimal solution

Space?? # of nodes with $g \leq \text{cost of optimal solution}, O(b^{[C^*/\epsilon]})$

Optimal?? Yes—nodes expanded in increasing order of $g(n)$
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

\[\text{fringe} = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

45

Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

46
Depth-first search

Expand deepest unexpanded node

Implementation:

\[fringe = \text{LIFO queue, i.e., put successors at front} \]
Properties of depth-first search

Complete??

No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than
breadth-first

Space??

Optimal??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time?? \(O(b^m)\): terrible if \(m\) is much larger than \(d\)
but if solutions are dense, may be much faster than
breadth-first

Space?? \(O(bm)\), i.e., linear space!

Optimal?? No

Depth-limited search
= depth-first search with depth limit \(l\),
i.e., nodes at depth \(l\) have no successors

Recursive implementation:

```plaintext
function {DEPTH-LIMITED-SEARCH} problem, limit) returns soln/fail/cutoff
  RECURSIVE-DLS(MAKE-NODE(INITIAL-STATE[problem]), problem, limit)

function {RECURSIVE-DLS} node, problem, limit) returns soln/fail/cutoff
cutoff-occurred? = false
if GOAL-TEST[problem](STATE[node]) then return node
else if DEPTH[node] = limit then return cutoff
else for each successor in EXPAND(node, problem) do
  result ← {RECURSIVE-DLS}successor, problem, limit)
  if result = cutoff then cutoff-occurred? = true
  else if result \neq failure then return result
  if cutoff-occurred? then return cutoff else return failure
```
Iterative deepening search

function ITERATIVE-DEEPENING-SEARCH(problem) returns a solution sequence
inputs: problem, a problem
for depth ← 0 to ∞ do
 result ← DEPTH-LIMITED-SEARCH(problem, depth)
 if result ≠ cutoff then return result
end
Iterative deepening search $l = 1$

Limit = 1

Iterative deepening search $l = 2$

Limit = 2
Iterative deepening search $l = 3$

Properties of iterative deepening search

Complete??
Properties of iterative deepening search

Complete?? Yes

Time?? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space??
Properties of iterative deepening search

Complete?? Yes
Time?? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)
Space?? \(O(bd)\)
Optimal?? Yes, if step cost = 1
Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right:

\[N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450\]
\[N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100\]
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if (l \geq d)</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>(b^{d+1})</td>
<td>(b^{C^*/\epsilon})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Space</td>
<td>(b^{d+1})</td>
<td>(b^{C^*/\epsilon})</td>
<td>(b^m)</td>
<td>(b^l)</td>
<td>(b^d)</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
Graph search

function GRAPH-SEARCH(problem, fringe) returns a solution, or failure

closed ← an empty set
fringe ← INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do
 if fringe is empty then return failure
 node ← REMOVE-FRONT(fringe)
 if GOAL-TEST(problem)(STATE[node]) then return node
 if STATE[node] is not in closed then
 add STATE[node] to closed
 fringe ← INSERTALL(EXPAND(node, problem), fringe)
 end
end

Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms