Inference in Bayesian networks

Outline

- Exact inference by enumeration
- Exact inference by variable elimination
- Approximate inference by stochastic simulation
- Approximate inference by Markov chain Monte Carlo
Inference tasks

Simple queries: compute posterior marginal $P(X_i|E=e)$
e.g., $P(\text{NoGas}| \text{Gauge}=\text{empty}, \text{Lights}=\text{on}, \text{Starts}=\text{false})$

Conjunctive queries: $P(X_i, X_j|E=e) = P(X_i|E=e)P(X_j|X_i, E=e)$

Optimal decisions: decision networks include utility information;
probabilistic inference required for $P(\text{outcome}|\text{action}, \text{evidence})$

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

Inference by enumeration

Slightly intelligent way to sum out variables from the joint without
actually constructing its explicit representation

Simple query on the burglary network:
$P(B|j, m)$
$= P(B, j, m)/P(j, m)$
$= \alpha P(B, j, m)$
$= \alpha \sum_e \sum_a P(B, e, a, j, m)$

Rewrite full joint entries using product of CPT entries:
$P(B|j, m)$
$= \alpha \sum_e \sum_a P(B)P(e)P(a|B, e)P(j|a)P(m|a)$
$= \alpha P(B)\sum_e P(e)\sum_a P(a|B, e)P(j|a)P(m|a)$

Recursive depth-first enumeration: $O(n)$ space, $O(d^n)$ time
Enumeration algorithm

function `ENUMERATION-ASK(X, e, bn)` returns a distribution over `X`
inputs: `X`, the query variable
`e`, observed values for variables `E`
`bn`, a Bayesian network with variables `{X} ∪ E ∪ Y`

`Q(X) ←` a distribution over `X`, initially empty
for each value `x_i` of `X`
do
extend `e` with value `x_i` for `X`
`Q(x_i) ← ENUMERATE-ALL(VARS[bn], e)`
return `NORMALIZE(Q(X))`

function `ENUMERATE-ALL(vars, e)` returns a real number
if `EMPTY?(vars)` then return `1.0`
`Y ← FIRST(vars)`
if `Y` has value `y` in `e`
then return `P(y | Pa(Y)) × ENUMERATE-ALL(REST(vars), e)`
else return `∑_y P(y | Pa(Y)) × ENUMERATE-ALL(REST(vars), e_y)`
where `e_y` is `e` extended with `Y = y`

Evaluation tree

Enumeration is inefficient: repeated computation
e.g., computes `P(j|a)P(m|a)` for each value of `e`

![Evaluation Tree Diagram]
Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

\[
P(B|j, m) = \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) P(j|a) P(m|a)
\]

\[
= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) P(j|a) f_{M}(a)
\]

\[
= \alpha P(B) \sum_{e} P(e) \sum_{a} P(a|B, e) f_{J}(a) f_{M}(a)
\]

\[
= \alpha P(B) \sum_{e} P(e) f_{A, J M}(a, b, e) (\text{sum out } A)
\]

\[
= \alpha P(B) f_{E A, J M}(b) (\text{sum out } E)
\]

\[
= \alpha f_{B}(b) \times f_{E A, J M}(b)
\]

Variable elimination: Basic operations

Summing out a variable from a product of factors:

move any constant factors outside the summation

add up submatrices in pointwise product of remaining factors

\[
\sum_{x} f_1 \times \cdots \times f_k = f_1 \times \cdots \times f_i \sum_{x} f_{i+1} \times \cdots \times f_k = f_1 \times \cdots \times f_i \times f_X
\]

assuming \(f_1, \ldots, f_i \) do not depend on \(X \)

Pointwise product of factors \(f_1 \) and \(f_2 \):

\[
f_1(x_1, \ldots, x_j, y_1, \ldots, y_k) \times f_2(y_1, \ldots, y_k, z_1, \ldots, z_l) = f(x_1, \ldots, x_j, y_1, \ldots, y_k, z_1, \ldots, z_l)
\]

E.g., \(f_1(a, b) \times f_2(b, c) = f(a, b, c) \)
Variable elimination algorithm

function ELIMINATION-ASK(X, e, bn) **returns** a distribution over X

inputs: X, the query variable

e, evidence specified as an event

bn, a belief network specifying joint distribution $P(X_1, \ldots, X_n)$

```plaintext
factors ← []; vars ← REVERSE(VARS[bn])
for each var in vars do
    factors ← [MAKE-FACTOR(var, e)] | factors
    if var is a hidden variable then factors ← SUM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
```

Irrelevant variables

Consider the query $P(\text{JohnCalls}|\text{Burglary}=true)$

$$P(J|b) = \alpha P(b) \sum_e P(e) \sum_a P(a|b, e) P(J|a) \sum_m P(m|a)$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless $Y \in \text{Ancestors}([X] \cup E)$

Here, $X = \text{JohnCalls}$, $E = \{\text{Burglary}\}$, and

$\text{Ancestors}([X] \cup E) = \{\text{Alarm, Earthquake}\}$

so M is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows
Defn: A is m-separated from B by C iff separated by C in the moral graph
Thm 2: Y is irrelevant if m-separated from X by E

For $P(JohnCalls|Alarm = true)$, both Burglary and Earthquake are irrelevant

Complexity of exact inference

Singly connected networks (or polytrees):
– any two nodes are connected by at most one (undirected) path
– time and space cost of variable elimination are $O(d^kn)$

Multiply connected networks:
– can reduce 3SAT to exact inference ⇒ NP-hard
– equivalent to counting 3SAT models ⇒ #P-complete

1. $A \lor B \lor C$
2. $C \lor D \lor \neg A$
3. $B \lor C \lor \neg D$
Inference by stochastic simulation

Basic idea:
1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability \hat{P}
3) Show this converges to the true probability P

Outline:
– Sampling from an empty network
– Rejection sampling: reject samples disagreeing with evidence
– Likelihood weighting: use evidence to weight samples
– Markov chain Monte Carlo (MCMC): sample from a stochastic process whose stationary distribution is the true posterior

Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn
inputs: bn, a belief network specifying joint distribution $P(X_1, \ldots, X_n)$

$x \gets$ an event with n elements
for $i = 1$ to n do
 $x_i \gets$ a random sample from $P(X_i \mid \text{Parents}(X_i))$
return x
Example

Cloudy

- **P(C)**
 - T: .50
 - F: .50

Sprinkler

| C | P(S|C) |
|---|------|
| T | .10 |
| F | .50 |

Rain

| C | P(R|C) |
|---|------|
| T | .80 |
| F | .20 |

Wet Grass

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

Example

Cloudy

- **P(C)**
 - T: .50
 - F: .50

Sprinkler

| C | P(S|C) |
|---|------|
| T | .10 |
| F | .50 |

Rain

| C | P(R|C) |
|---|------|
| T | .80 |
| F | .20 |

Wet Grass

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |
Example

P(C) = 0.50

| C | P(S|C) |
|---|-------|
| T | 0.10 |
| F | 0.50 |

P(R|C) = 0.80

| C | P(R|C) |
|---|-------|
| T | |
| F | |

P(S|C) = 0.90

| C | P(S|C) |
|---|-------|
| T | |
| F | |

P(W|S,R) = 0.99

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | 0.99 |
| T | F | 0.90 |
| F | T | 0.90 |
| F | F | 0.01 |

Example

P(C) = 0.50

| C | P(S|C) |
|---|-------|
| T | 0.10 |
| F | 0.50 |

P(R|C) = 0.80

| C | P(R|C) |
|---|-------|
| T | |
| F | |

P(S|C) = 0.90

| C | P(S|C) |
|---|-------|
| T | |
| F | |

P(W|S,R) = 0.99

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | 0.99 |
| T | F | 0.90 |
| F | T | 0.90 |
| F | F | 0.01 |
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

\[
P(C) = 0.50
\]

| C | P(R|C) |
|---|-------|
| T | .80 |
| F | .20 |

\[
P(S|C) = \begin{bmatrix}
0.90 & 0.90 \\
0.99 & 0.01 \\
\end{bmatrix}
\]

\[
P(W|S,R) = \begin{bmatrix}
0.99 & 0.90 \\
0.90 & 0.01 \\
\end{bmatrix}
\]
Example

| C | P(S|C) |
|---|-------|
| T | .10 |
| F | .50 |

| S | R | P(W|S,R) |
|---|---|---------|
| T | T | .99 |
| T | F | .90 |
| F | T | .90 |
| F | F | .01 |

Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event

\[S_{PS}(x_1 \ldots x_n) = \prod_{i=1}^{n} P(x_i|Parents(X_i)) = P(x_1 \ldots x_n) \]

i.e., the true prior probability

E.g., \[S_{PS}(t, f, t, t) = 0.5 \times 0.9 \times 0.8 \times 0.9 = 0.324 = P(t, f, t, t) \]

Let \(N_{PS}(x_1 \ldots x_n) \) be the number of samples generated for event \(x_1, \ldots, x_n \)

Then we have

\[
\lim_{N \to \infty} \hat{P}(x_1, \ldots, x_n) = \lim_{N \to \infty} N_{PS}(x_1, \ldots, x_n)/N = S_{PS}(x_1, \ldots, x_n) = P(x_1 \ldots x_n)
\]

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: \(\hat{P}(x_1, \ldots, x_n) \approx P(x_1 \ldots x_n) \)
Rejection sampling

\(\hat{P}(X|e) \) estimated from samples agreeing with \(e \)

```plaintext
function REJECTION-SAMPLING(X, e, bn, N) returns an estimate of \( P(X|e) \)

local variables: \( N \), a vector of counts over \( X \), initially zero

for \( j = 1 \) to \( N \) do
  \( x \leftarrow \text{PRIOR-SAMPLE}(bn) \)
  if \( x \) is consistent with \( e \) then
    \( N[x] \leftarrow N[x]+1 \) where \( x \) is the value of \( X \) in \( x \)
  return \( \text{NORMALIZE}(N[X]) \)
```

E.g., estimate \(P(\text{Rain}|\text{Sprinkler} = \text{true}) \) using 100 samples

27 samples have \(\text{Sprinkler} = \text{true} \)

Of these, 8 have \(\text{Rain} = \text{true} \) and 19 have \(\text{Rain} = \text{false} \).

\(\hat{P}(\text{Rain}|\text{Sprinkler} = \text{true}) = \text{NORMALIZE}(<8,19>) = <0.296,0.704> \)

Similar to a basic real-world empirical estimation procedure

Analysis of rejection sampling

\(\hat{P}(X|e) = \alpha N_{PS}(X,e) \) (algorithm defn.)

\(= \frac{N_{PS}(X,e)}{N_{PS}(e)} \) (normalized by \(N_{PS}(e) \))

\(\approx P(X,e)/P(e) \) (property of PRIORSAMPLE)

\(= P(X|e) \) (defn. of conditional probability)

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if \(P(e) \) is small

\(P(e) \) drops off exponentially with number of evidence variables!
Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence.

```python
function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
    local variables: W, a vector of weighted counts over X, initially zero
    for j = 1 to N do
        x, w ← WEIGHTED-SAMPLE(bn)
        W[x] ← W[x] + w where x is the value of X in x
    return NORMALIZE(W[X])

function WEIGHTED-SAMPLE(bn, e) returns an event and a weight
    x ← an event with n elements; w ← 1
    for i = 1 to n do
        if X_i has a value x_i in e
            then w ← w × P(X_i = x_i | Parents(X_i))
        else x_i ← a random sample from P(X_i | Parents(X_i))
    return x, w
```

Likelihood weighting example

| | P(C) | P(S|C) |
|---|------|--------|
| T | .50 | .10 |
| F | .50 | |

| | P(R|C) |
|---|--------|
| T | .80 |
| F | .20 |

| | P(W|S,R) |
|---|----------|
| T T | .99 |
| T F | .90 |
| F T | .90 |
| F F | .01 |

w = 1.0
Likelihood weighting example

\begin{align*}
P(C) & = 0.50 \\
\begin{array}{c|c}
C & P(S|C) \\
\hline
T & 0.10 \\
F & 0.50 \\
\end{array} \\
\begin{array}{c|c}
C & P(R|C) \\
\hline
T & 0.80 \\
F & 0.20 \\
\end{array} \\
\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array}
\end{align*}

\[w = 1.0\]
Likelihood weighting example

\[P(C) \]

\[\begin{array}{c|c}
C & P(S|C) \\
\hline
T & .10 \\
F & .50 \\
\end{array} \]

\[P(R|C) \]

\[\begin{array}{c|c}
C & P(R|C) \\
\hline
T & .80 \\
F & .20 \\
\end{array} \]

\[P(W|S,R) \]

\[\begin{array}{c|c|c}
S & R & P(W|S,R) \\
\hline
T & T & .99 \\
T & F & .90 \\
F & T & .90 \\
F & F & .01 \\
\end{array} \]

\[w = 1.0 \times 0.1 \]
Likelihood weighting example

\begin{align*}
P(C) & = 0.50 \\
C & \quad \begin{array}{c|c}
T & 0.10 \\
F & 0.50 \\
\end{array} \\
S & \quad \begin{array}{c|c|c}
R & P(W|S,R) \\
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array} \\
& \quad \begin{array}{c|c}
C & P(R|C) \\
T & 0.80 \\
F & 0.20 \\
\end{array} \\
& w = 1.0 \times 0.1
\end{align*}

Likelihood weighting example

\begin{align*}
P(C) & = 0.50 \\
C & \quad \begin{array}{c|c}
T & 0.10 \\
F & 0.50 \\
\end{array} \\
S & \quad \begin{array}{c|c|c}
R & P(W|S,R) \\
T & T & 0.99 \\
T & F & 0.90 \\
F & T & 0.90 \\
F & F & 0.01 \\
\end{array} \\
& \quad \begin{array}{c|c}
C & P(R|C) \\
T & 0.80 \\
F & 0.20 \\
\end{array} \\
& w = 1.0 \times 0.1 \times 0.99 = 0.099
Likelihood weighting analysis

Sampling probability for `WEIGHTEDSAMPLE` is

\[S_{WS}(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(Z_i)) \]

Note: pays attention to evidence in ancestors only

\[\Rightarrow \text{ somewhere “in between” prior and posterior distribution} \]

Weight for a given sample \(z, e \) is

\[w(z, e) = \prod_{i=1}^{m} P(e_i | \text{Parents}(E_i)) \]

Weighted sampling probability is

\[S_{WS}(z, e)w(z, e) = \prod_{i=1}^{l} P(z_i | \text{Parents}(Z_i)) \prod_{i=1}^{m} P(e_i | \text{Parents}(E_i)) = P(z, e) \text{ (by standard global semantics of network)} \]

Hence likelihood weighting returns consistent estimates but performance still degrades with many evidence variables because a few samples have nearly all the total weight.

Approximate inference using MCMC

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket

Sample each variable in turn, keeping evidence fixed

```plaintext
function MCMC-ASK(X, e, bn, N) returns an estimate of \( P(X | e) \)

local variables: N[X], a vector of counts over X, initially zero
Z, the nonevidence variables in \( bn \)
x, the current state of the network, initially copied from \( e \)

initialize x with random values for the variables in Y
for \( j = 1 \) to \( N \) do
N[x] ← N[x] + 1 where \( x \) is the value of \( X \) in \( x \)
for each \( Z_i \) in \( Z \) do
    sample the value of \( Z_i \) in \( x \) from \( P(Z_i | MB(Z_i)) \) given the values of \( MB(Z_i) \) in \( x \)
return NORMALIZE(N[X])
```

Can also choose a variable to sample at random each time.
The Markov chain

With $Sprinkler = true$, $WetGrass = true$, there are four states:

Wander about for a while, average what you see

MCMC example contd.

Estimate $P(Rain|Sprinkler = true, WetGrass = true)$

Sample $Cloudy$ or $Rain$ given its Markov blanket, repeat.
Count number of times $Rain$ is true and false in the samples.

E.g., visit 100 states
31 have $Rain = true$, 69 have $Rain = false$

$P(Rain|Sprinkler = true, WetGrass = true) = \text{NORMALIZE}(<31, 69>) = <0.31, 0.69>$

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly proportional to its posterior probability
Markov blanket sampling

Markov blanket of *Cloudy* is

Sprinkler and *Rain*

Markov blanket of *Rain* is

Cloudy, Sprinkler, and *WetGrass*

Probability given the Markov blanket is calculated as follows:

\[
P(x_i \mid MB(X_i)) = \frac{P(x_i \mid Parents(X_i)) \prod_{z_j \in Children(X_i)} P(z_j \mid Parents(Z_j))}{Q(Z)}
\]

Easily implemented in message-passing parallel systems, brains

Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:

\[P(X_i \mid MB(X_i)) \text{ won’t change much (law of large numbers)}\]

Summary

Exact inference by variable elimination:

– polytime on polytrees, NP-hard on general graphs
– space = time, very sensitive to topology

Approximate inference by LW, MCMC:

– LW does poorly when there is lots of (downstream) evidence
– LW, MCMC generally insensitive to topology
– Convergence can be very slow with probabilities close to 1 or 0
– Can handle arbitrary combinations of discrete and continuous variables