BELIEF NETWORKS

Chapter 15.1-2

Outline

\diamond Conditional independence
\diamond Bayesian networks: syntax and semantics
Exact inference
\diamond Approximate inference

Independence

Two random variables $A B$ are (absolutely) independent iff

$$
\begin{aligned}
P(A \mid B) & =P(A) \\
\text { or } P(A, B) & =P(A \mid B) P(B)=P(A) P(B)
\end{aligned}
$$

e.g., A and B are two coin tosses

If n Boolean variables are independent, the full joint is

$$
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i} \mathbf{P}\left(X_{i}\right)
$$

hence can be specified by just n numbers
Absolute independence is a very strong requirement, seldom met

Conditional independence

Consider the dentist problem with three random variables:
Toothache, Cavity, Catch (steel probe catches in my tooth)
The full joint distribution has $2^{3}-1=7$ independent entries
If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
(1) $P($ Catch \mid Toothache, Cavity $)=P($ Catch \mid Cavity $)$
i.e., Catch is conditionally independent of Toothache given Cavity

The same independence holds if I haven't got a cavity:
(2) $P($ Catch \mid Toothache,\neg Cavity $)=P($ Catch $\mid \neg$ Cavity $)$

Conditional independence contd.

Equivalent statements to (1)
(1a) $P($ Toothache \mid Catch, Cavity $)=P($ Toothache \mid Cavity $) \underline{\underline{\text { Why?? }} ? ~}$
(1b) $P($ Toothache, Catch \mid Cavity $)=$ $P($ Toothache \mid Cavity $) P($ Catch \mid Cavity $)$ Why??

Full joint distribution can now be written as
$\mathbf{P}($ Toothache, Catch, Cavity $)=$
$\mathbf{P}($ Toothache, Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
$=\mathbf{P}($ Toothache \mid Cavity $) \mathbf{P}($ Catch \mid Cavity $) \mathbf{P}($ Cavity $)$
i.e., $2+2+1=5$ independent numbers (equations 1 and 2 remove 2)

Conditional independence contd.

Equivalent statements to (1)
(1a) $P($ Toothache \mid Catch, Cavity $)=P($ Toothache \mid Cavity $)$ Why??
$P($ Toothache \mid Catch, Cavity $)$
$=P($ Catch \mid Toothache, Cavity $) P($ Toothache \mid Cavity $) / P($ Catch \mid Cavity $)$
$=P($ Catch \mid Cavity $) P($ Toothache \mid Cavity $) / P($ Catch \mid Cavity $)$
(from 1)
$=P($ Toothache \mid Cavity $)$
(1b) $P($ Toothache, Catch \mid Cavity $)=$
$P($ Toothache \mid Cavity $) P($ Catch \mid Cavity $)$ Why??
$P($ Toothache, Catch \mid Cavity $)$
$=P($ Toothache \mid Catch, Cavity $) P($ Catch \mid Cavity $)$ (product rule)
$=P($ Toothache \mid Cavity $) P($ Catch \mid Cavity $)($ from 1a $)$

Belief networks

A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link \approx "directly influences")
a conditional distribution for each node given its parents: $\mathbf{P}\left(X_{i} \mid\right.$ Parents $\left.\left(X_{i}\right)\right)$

In the simplest case, conditional distribution represented as
a conditional probability table (CPT)

Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls Network topology reflects "causal" knowledge:

Note: $\leq k$ parents $\Rightarrow O\left(d^{k} n\right)$ numbers vs. $O\left(d^{n}\right)$

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

e.g., $P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$ is given by??

Semantics

"Global" semantics defines the full joint distribution as the product of the local conditional distributions:

$$
\mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)
$$

e.g., $P(J \wedge M \wedge A \wedge \neg B \wedge \neg E)$ is given by??

$$
=P(\neg B) P(\neg E) P(A \mid \neg B \wedge \neg \overline{E) P(J \mid A)} P(M \mid A)
$$

"Local" semantics: each node is conditionally independent of its nondescendants given its parents

Theorem: Local semantics \Leftrightarrow global semantics

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Constructing belief networks

Need a method such that a series of locally testable assertions of conditional independence guarantees the required global semantics

1. Choose an ordering of variables X_{1}, \ldots, X_{n}
2. For $i=1$ to n
add X_{i} to the network
select parents from X_{1}, \ldots, X_{i-1} such that

$$
\mathbf{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right)
$$

This choice of parents guarantees the global semantics:

$$
\begin{aligned}
& \mathbf{P}\left(X_{1}, \ldots, X_{n}\right)=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \text { (chain rule) } \\
& \quad=\prod_{i=1}^{n} \mathbf{P}\left(X_{i} \mid \text { Parents }\left(X_{i}\right)\right) \text { by construction }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

JohnCalls

$$
P(J \mid M)=P(J) ?
$$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) ?
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

Burglary

$$
\begin{aligned}
& P(J \mid M)=P(J) \text { ? No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? } \\
& P(B \mid A, J, M)=P(B) \text { ? }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

Earthquake

$$
\begin{aligned}
& P(J \mid M)=P(J) ? \quad \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) ? \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? }
\end{aligned}
$$

Example

Suppose we choose the ordering M, J, A, B, E

$$
\begin{aligned}
& P(J \mid M)=P(J) ? \quad \text { No } \\
& P(A \mid J, M)=P(A \mid J) ? P(A \mid J, M)=P(A) \text { ? No } \\
& P(B \mid A, J, M)=P(B \mid A) \text { ? Yes } \\
& P(B \mid A, J, M)=P(B) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A) \text { ? No } \\
& P(E \mid B, A, J, M)=P(E \mid A, B) \text { ? Yes }
\end{aligned}
$$

Example: Car diagnosis

Initial evidence: engine won't start
Testable variables (thin ovals), diagnosis variables (thick ovals) Hidden variables (shaded) ensure sparse structure, reduce parameters

Example: Car insurance

Predict claim costs (medical, liability, property) given data on application form (other unshaded nodes)

Compact conditional distributions

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child
Solution: canonical distributions that are defined compactly
Deterministic nodes are the simplest case:
$X=f(\operatorname{Parents}(X))$ for some function f
E.g., Boolean functions

NorthAmerican \Leftrightarrow Canadian $\vee U S \vee$ Mexican
E.g., numerical relationships among continuous variables

$$
\frac{\partial L e v e l}{\partial t}=\text { inflow }+ \text { precipation - outflow - evaporation }
$$

Compact conditional distributions contd.

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	$\mathbf{0 . 0}$	1.0
F	F	T	0.9	$\mathbf{0 . 1}$
F	T	F	0.8	$\mathbf{0 . 2}$
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	$\mathbf{0 . 6}$
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Hybrid (discrete+continuous) networks

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Option 1: discretization-possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete+continuous parents (e.g., Cost)
2) Discrete variable, continuous parents (e.g., Buys?)

Continuous child variables

Need one conditional density function for child variable given continuous parents, for each possible assignment to discrete parents Most common is the linear Gaussian model, e.g.,:

$$
\begin{aligned}
& P(\text { Cost }=c \mid \text { Harvest }=h, \text { Subsidy } ?=\text { true }) \\
& \quad=N\left(a_{t} h+b_{t}, \sigma_{t}\right)(c) \\
& \quad=\frac{1}{\sigma_{t} \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{c-\left(a_{t} h+b_{t}\right)}{\sigma_{t}}\right)^{2}\right)
\end{aligned}
$$

Mean Cost varies linearly with Harvest, variance is fixed Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow

Continuous child variables

All-continuous network with LG distributions
\Rightarrow full joint is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a multivariate Gaussian over all continuous variables for each combination of discrete variable values

Discrete variable w/ continuous parents

Probability of Buys? given Cost should be a "soft" threshold:

Probit distribution uses integral of Gaussian:

$$
\begin{aligned}
& \Phi(x)=\int_{-\infty}{ }^{x} N(0,1)(x) d x \\
& P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\Phi((-c+\mu) / \sigma)
\end{aligned}
$$

Can view as hard threshold whose location is subject to noise

Discrete variable contd.

Sigmoid (or logit) distribution also used in neural networks:

$$
P(\text { Buys } ?=\text { true } \mid \text { Cost }=c)=\frac{1}{1+\exp \left(-2 \frac{-c+\mu}{\sigma}\right)}
$$

Sigmoid has similar shape to probit but much longer tails:

