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Abstract. The influence of different parallel genetic algorithm (PGA) 
architectures on the GA convergence properties is analysed. Next, two 
proposed versions of these PGA architectures are compared – homogenous and 
heterogeneous. Finally the effect of re-initialisation in some partial populations 
on the PGA convergence has been analysed. The proposed PGA modifications 
are useful mainly in case of non-smooth cost function optimisation. 

1   Introduction 

Important factors, which influence the convergence properties of the genetic 
algorithm (GA) are the selective pressure and population diversity [10],[1],[6]. 
Selective pressure is a measure of preferring currently better individuals from the 
population of a particular GA for the currently worse ones. Algorithms with a high 
selective pressure are characterized by fast convergence, but generally to some local 
optimum. The population diversity is a measure of gene dissimilarity and with its 
increase it is possible to unbend the algorithm from the current local optimum and 
redirect it to better solutions, if possible to the global optimum. A too low diversity, 
but on the other hand also a too high one can slow down the convergence rate. 
Increase of the selective pressure can be influenced using such selection methods, 
which prefer highly fit individuals. Opposite to this, population diversity can be 
increased by such selection methods, which contain more randomness, regardless of 
fitness considering. Other important factor, which increases diversity, is the 
increasing effect of operators modifying the current individuals in the population (e.g 
mutation).  
    In the GA's with a simple population, the selective pressure and population 
diversity act against each another. For a good GA convergence it is important to find 
equilibrium between the selective pressure and the population diversity. Note, that the 
equilibrium depends on the solved problem. This equilibrium can change by 
introducing multiple populations in parallel genetic algorithms (PGA). By this way it 
is possible to increase the selective pressure in some populations and simultaneously 
to increase the population diversity in other populations. In the presented contribution 
the influence of using various PGA architectures, various genetic operations and 
population re-initialisation on the PGA convergence are analysed.  
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2   Parallel GA architectures 

In the literature, different PGA architecture types and also different viewpoints of 
their classification can be found [3],[5]. Some authors are using the division to fine-
grained and coarse-grained PGA’s [2].  
    For our analysis 6 representative PGA architectures have been selected, each with 9 
populations (Fig.1A-F). In all cases a periodical migration of one individual from 
each population into other populations has been considered. That means that in each 
migration period (say each n/10 or n/100 generations, n is the generation number) the 
best individual of each of the 9 populations is selected and its copy is sent to the 
specified populations according to the defined migration structure. In the architecture 
types A and B a grid PGA structure with the communication of the neighbour 
population has been used. The type C is a hierarchical structure with 8 low-level 
nodes and 1 upper-level node. In the case D the ring architecture has been used. The 
cases E and F have three level hierarchical structures with different linkage between 
the low and middle levels. Additionally, the types A and B are using a bi-directional 
migration while C, D, E and F use only a unidirectional one. 
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Fig.1  Different PGA architecture types 
 

The GA scheme, which has been used in our experiments in each population of the 
PGA with some modifications (which will be explained later) and also in the simple 
population GA (SGA), is as follows: 

 
1. Initialisation of the population (randomly) and fitness calculation. 
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2. Selection of best individuals (one or more), which are without any change copied 
into the new population – Pop1. Random selection of a group of individuals, which 
are copied without any change, into the new population – Pop2. 
3. Selection of parents, which will be modified by genetic operations crossover and 
mutation – Pop3.  
4. Mutation of the group Pop3.  
5. Crossover of the group Pop3. 
6. Completion of the new population by unification of the groups Pop1, Pop2 and 
Pop3. 
7. New population fitness calculation. Test of terminating condition, if not fulfilled, 
then jump to the step 2.  

 
In our analysis, the above scheme has been used, with following modifications. 

From the selection method in the step 3 the tournament selection [4],[7],[8] the linear 
ranking selection and the random selection (random selection of strings, without 
considering fitness) have been used. Next, two mutation versions have been used. In 
the global mutation the mutated gene is replaced by a random (real) value from the 
entire search space with uniform probability distribution. In the local mutation there 
are small random real numbers added to (or subtracted from) the original gene values. 
The used size of random changes was between 1% and 20 % of the entire search 
space, with a uniform distribution and a zero mean value. In case of crossover, a 
simple one-point crossover or an intermediate crossover known from Evolution 
strategies [9],[6] have been used. The size of each population was set to 20 strings and 
real coding of strings has been used. More details about the used operations will be 
specified in Section 2.2. 

In order to demonstrate the analysis results, let us use the following test functions. 
The first function f1 consists of three partial functions – quadratic, Schwefel function 
and 3 Gauss peaks (holes) 
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The global minimum is f1(x1,x2,x3)= - 800 ; x1=x2=x3=0. This function belongs to 

the category of  “deceptive functions”, where the search for the global optimum is not 
an easy problem, because of the “unexpected” position of the global optimum. Graph 
of f1 for the two variable case is in Fig.2.  
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The second test function is the “Egg holder function”  
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A graph for the two variable case f2(x1,x2) is in Fig.3. It is a multi-modal function. 

The global minimum for the used 10 variable case is near the value f2(x)= -8247; 
x=[440 455 470 426 441 455 471 426 442 456].  

The last used test function is the Griewangk function 
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          Fig.2 Graph of function f1         Fig.3  Graph of function f2 - "Egg holder" 

 
Let us consider four different situations, which will be analysed in more detail: 

1.The GA’s in all 9 partial populations are identical, identical GA operations and 
parameters are used – “homogenous PGA”. 
2. In different populations different GA operations and parameters are applied – 
“heterogeneous PGA”. 
3. Like in case 1, but some populations are periodically re-initialised. 
4. Like in case 2, but some populations are periodically re-initialised. 
 

2.1  Homogenous PGA 

In each of the 9 populations the identical GA with the above mentioned structure 
has been used with the following specification: selection of 1 best string into Pop1, 
tournament selection for Pop3, probability of local and global mutation of a gene is 
0.05, the step size of additive mutation is limited to 5% from the entire space, 
conventional one point crossover. In Fig.4 convergence graphs for all 6 types of PGA 
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architectures with homogenous structure are compared on the f1(x) minimization 
example. Next, the convergence of a single population GA is depicted. The size of 
this population is equal to the number of all populations of the PGA 9 x 20 = 180, the 
specification is the same as mentioned above for all partial populations in the PGA. 
Note, that the convergence graph is the dependence of the best fitness value of all 
populations of the PGA, on the generation number. Each graph (also in next 
experiments) represents the average of 25 PGA runs. The graphs are marked A1, B1, 
C1, D1, E1 and F1 according the Fig.1A-F, index 1 belongs to homogenous PGA. 
SGA is the single population GA. Due to the use of parallel structures the 
convergence rate is better than for the SGA, which is characterized by a premature 
convergence. The first advantage of PGA's is, that in more relatively independent 
populations there is a better chance to find the direction to the global optimum, 
without any influence of some currently better local optima. Note, if the migration 
structure has a "high density" (too many migration connections) or/and the migration 
period is too short, the PGA behaviour can be similar to the SGA one and it can lead 
to a premature convergence.  

2.2  Heterogeneous PGA 

   In the heterogeneous PGA, opposite to the homogenous case, the partial GA's in 
populations 1 to 9 are not identical. The aim is to introduce a diversity of search 
properties into the PGA.  Let us consider following GA modifications in particular 
populations: 
Population 1 and 5: the same GA as in the Section 2.1. 
Population 2-4: The local (additive) mutation uses different mutation ranges 
(mutation step limitation) of 1%, 5%, 10% and 20% respectively from the entire 
search space. 
Population 6: "Super elitist" algorithm, where 4 copies of the best string, 3 copies of 
the second best string, 2 copies of the third best string and one copy of the fourth best 
string are selected for the "reproduction group" (Pop3). The remaining strings are 
selected randomly. The rest is similar as in the Section 2.1. 
Population 7: The strings for the reproduction group are selected only randomly.  
Population 8: Similar to the population 1, but the mutation probability (global and 
local) is 0.2 (0.05 in population 1). 
Population 9: Similar to the population 1, but instead of a conventional crossover the 
intermediate crossover is used. 

In some populations, the heterogeneous PGA enables to increase the gene 
diversity, for instance with a high mutation probability, using random selection etc. 
and in other populations to increase the selection pressure with high elitism, without 
violating the overall PGA operation. For example, in the hierarchical PGA 
architectures E and F it is advantageous to keep a high diversity measure in 
populations in the lower hierarchical level (populations 6-9), to increase the local 
search performance using high local mutation probability in combination with high 
selective pressure in the middle level (populations 2-5) and to concentrate the best 
solutions and to finalize the evolution at the upper level (population 1). In Fig.5 
convergence of all 6 PGA architecture types has been compared using the example of 
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f1(x) minimization (the index 2 belongs to heterogeneous PGA). The difference 
between the homogenous and heterogeneous version is more transparent, when the 
GA in the homogenous version is not well adjusted (parameterised) for the particular 
solved problem. The heterogeneous PGA structures can be more robust and adaptable 
to various practical problems. 

2.3  PGA with re-initialisation 

Last two modifications will extend the PGA with a periodic re-initialisation of just 
some populations. In our case, this re-initialisation is implemented after each 
migration period, which appeared in our experiments after each 100 generations and 
represents the exchange of the current population by a completely new, randomly 
generated population. The re-initialisation has been applied in the 6 architecture types 
in following populations: 

A (Fig.1A): in population 3,5,6,8 
B (Fig.1B): in population 3,5,6,8 
C (Fig.1C): in populations 2-9 
D (Fig.1D): in all populations, but before the re-initialisation the best individual of 
the PGA is saved for the next generation 
E (Fig.1E): in populations 6-9 
F (Fig.1F): in populations 6-9 
In Fig.6 and 7 there are the results of a similar experiments as in the last two cases, 

but with the re-initialisation. Here, the index 3 denotes the homogenous PGA type and 
the index 4 the heterogeneous one. Next, the architecture types C and E for both 
homogenous and heterogeneous PGA’s, without and with re-initialisation for each test 
function have been compared (C1-homogenous, C2-heterogeneous, C3-homogenous 
with re-initialisation, C4-heterogeneous with re-initialisation and the same for the 
type E). Results of the f1(x) minimization are depicted in Fig.8, Fig.9 is for the f2(x) 
and Fig.10 for the f3(x) case (f3 is a relatively smooth cost function).  

From the analysis it is evident, that the re-initialisation has a positive influence on 
the GA convergence properties. This effect is most visible in case of such functions or 
optimisation problems, which cost functions are non-smooth, non-ordinary, with 
"unexpected" global optimum position (deceptive functions, like f1). Sometimes the 
re-initialisation is able to remove differences between homogenous and heterogeneous 
PGA’s. 

The re-initialisation is able to increase the population diversity, because it is 
producing new perspective search directions and in connection with a sufficiently 
high selective pressure (in other populations of the PGA) it is an effective way for the 
global optimum search.   

3   Re-initialisation types 

Finally, different re-initialisation mechanisms have been proposed and tested. The 
simplest way was already mentioned in Section 2.3 - the periodical use, without any 
other conditions. Additionally two other methods have been proposed. In the first, the 
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algorithm after some number of generations compares the best individuals of each 
population. If  

 
        Fig.4 Homogenous PGA's, f1(x)                         Fig.5 Heterogeneous PGA's, f1(x) 

 
                Fig.6 Homogenous PGA's                           Fig.7 Heterogeneous PGA's   
                 with re-initialisation, f1(x)  with re-initialisation, f1(x) 

 
             Fig.8 Comparison for f1(x)                               Fig.9  Comparison for f2(x) 
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there are some similar (or even identical) individuals (in terms of the Euclidian 
distance), the population which representative has the inferior fitness will be 
completely re-initialised. In the second method, n fittest strings of each population 
have been selected, where n was set to 1/4 of the population size. Let this 
subpopulation be in form of a matrix 
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where the rows s represent strings and the columns g are their genes. Let δ be a 
population diversity measure in the form 
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The expression in the brackets is the mean absolute deviation, gb  is the mean value 

of the g-th column. If δ will decrease under a small defined value δ<ε, we can 
assume, that the population is close to an optimum and it will no more change 
significantly. Such population can be re-initialised (the best individual migrates 
before the re-initialisation). 

The comparison of the re-initialisation methods is demonstrated in Fig.11 on the 
example of the function f1(x) minimization. The used PGA architecture type was C. 
The case without re-initialisation is marked 1, the periodic re-initialisation is marked 
2, the method based on re-initialisation of similar populations is marked 3 and the 
method based on the diversity measure according (1) is marked 4 (remark, that each 
graph is the average of 25 PGA runs).   

 
               Fig.10 Comparison for f3(x)                 Fig.11 Different re-initialisation methods, f1(x) 
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4   Conclusion 

Our aim was to show some proposed parallel GA architectures and their 
advantages to simple GA’s, which are working with a single population. First of all, 
the PGA’s bring about the benefit of multiple independent search directions. This 
form of parallelism is slightly different from the parallelism in a single-population 
GA. In this paper different PGA architectures with different migration structures are 
presented. The migration linkage should be numerous (with high density of links) 
and/or the migration period not very large if the optimised cost function is smooth. 
For non-smooth (or deceptive) cost functions it is recommended to use a scarce 
linkage with unidirectional bindings and larger migration periods, so as to preserve a 
higher degree of population independency. 

PGA’s with heterogeneous structure, where the partial populations are using 
different search strategies, can effect a robustness increase i.e. an increase of 
independency from the solved problems or from the objective function changes, 
which can occur during the time. When the cost function character is not well known 
it is advantageous to use heterogeneous structures. In our experiments different types 
of PGA architecture have been used. According to our experience also from other 
practical applications, the best seems to be the hierarchical (two-level, three-level) 
architecture types C, E and F (Fig.1C, 1E, 1F). 

 An additional improvement in case of optimisation problems, which have "highly 
non-smooth" cost function can be caused by the re-initialisation of some populations 
of the PGA. Another observation is, that the re-initialisation is able to remove 
differences between homogenous and heterogeneous PGA's or between different PGA 
architecture types respectively. However, all the presented PGA modifications can 
speed up the search process and prevent the search algorithm from a premature 
convergence. 
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