Floating Point Representation

Last Time: Integers

- Representation: unsigned and signed
- Conversion, casting
 - Bit representation maintained but reinterpreted
- Expanding, truncating
 - Truncating = mod
- Addition, negation, multiplication, shifting
 - Operations are mod 2^w
- “Ring” properties hold
 - Associative, commutative, distributive, additive 0 and inverse
- Ordering properties do not hold
 - $u > 0$ does not mean $u + v > v$
 - $u, v > 0$ does not mean $u \cdot v > 0$
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Fractional binary numbers

- What is 1011.101?
Fractional Binary Numbers

- **Representation**
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \(\sum_{k=-j}^{i} b_k \cdot 2^k \)

Fractional Binary Numbers: Examples

- **Value** | **Representation**
 - 5-\(\frac{3}{4}\) | 101.11\(_2\)
 - 2-\(\frac{7}{8}\) | 10.111\(_2\)
 - 63/64 | 0.111111\(_2\)

- **Observations**
 - Divide by 2 by shifting right
 - Multiply by 2 by shifting left
 - Numbers of form 0.111111...\(_2\) are just below 1.0
 - \(1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0\)
 - Use notation 1.0 - \(\varepsilon\)
Representable Numbers

- Limitation
 - Can only exactly represent numbers of the form $x/2^k$
 - Other rational numbers have repeating bit representations

- Value | Representation
---|---
1/3 | 0.0101010101[01]$_2$
1/5 | 0.001100110011[0011]$_2$
1/10 | 0.0001100110011[0011]$_2$

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
IEEE Floating Point

- **IEEE Standard 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
 - Supported by all major CPUs

- **Driven by numerical concerns**
 - Nice standards for rounding, overflow, underflow
 - Hard to make fast in hardware
 - Numerical analysts predominated over hardware designers in defining standard

Floating Point Representation

- **Numerical Form:**
 \[(-1)^s \cdot M \cdot 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand \(M \) normally a fractional value in range \([1.0, 2.0)\).
 - Exponent \(E \) weights value by power of two

- **Encoding**
 - MSB \(s \) is sign bit \(s \)
 - \texttt{exp} field encodes \(E \) (but is not equal to \(E \))
 - \texttt{frac} field encodes \(M \) (but is not equal to \(M \))
Precisions

- **Single precision:** 32 bits

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>23</td>
</tr>
</tbody>
</table>

- **Double precision:** 64 bits

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11</td>
<td>52</td>
</tr>
</tbody>
</table>

- **Extended precision:** 80 bits (Intel only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>63 or 64</td>
</tr>
</tbody>
</table>

Normalized Values

- **Condition:** exp ≠ 000...0 and exp ≠ 111...1

- **Exponent coded as biased value:** \(E = \text{Exp} - \text{Bias} \)
 - \(\text{Exp} \): unsigned value exp
 - \(\text{Bias} = 2^{e-1} - 1 \), where \(e \) is number of exponent bits
 - Single precision: 127 (\(\text{Exp}: 1...254 \), \(E: -126...127 \))
 - Double precision: 1023 (\(\text{Exp}: 1...2046 \), \(E: -1022...1023 \))

- **Significand coded with implied leading 1:** \(M = 1 . \text{xxx}...x_2 \)
 - \(\text{xxx}...x \): bits of frac
 - Minimum when 000...0 \((M = 1.0) \)
 - Maximum when 111...1 \((M = 2.0 - \epsilon) \)
 - Get extra leading bit for “free”
Normalized Encoding Example

- **Value:** Float F = 15213.0;
 - 15213_{10} = 11101101101101_{2}
 = 1.1101101101101_{2} \times 2^{13}

- **Significand**
 - \(M = 1.1101101101101 \)
 - \(\text{frac} = 1101101101000000000_{2} \)

- **Exponent**
 - \(E = 13 \)
 - \(\text{Bias} = 127 \)
 - \(\text{Exp} = 140 = 10001100_{2} \)

- **Result:**
 - 0 10001100 110110110111010000000000

Denormalized Values

- **Condition:** exp = 000...0

- **Exponent value:** \(E = -\text{Bias} + 1 \) (instead of \(E = 0 - \text{Bias} \))

- **Significand coded with implied leading 0:** \(M = 0 . \text{xxx}...x_{2} \)
 - \(\text{xxx}...x: \text{bits of frac} \)

- **Cases**
 - exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and −0 (why?)
 - exp = 000...0, frac ≠ 000...0
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced
Special Values

- **Condition**: \(\exp = 111...1 \)

- **Case**: \(\exp = 111...1, \frac{}{\text{frac}} = 000...0 \)
 - Represents value \(\infty \) (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., \(1.0/0.0 = -1.0/-0.0 = +\infty, \ 1.0/-0.0 = -\infty \)

- **Case**: \(\exp = 111...1, \frac{}{\text{frac}} \neq 000...0 \)
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., \(\sqrt{-1}, \infty - \infty, \infty \times 0 \)

Visualization: Floating Point Encodings

```
nan
\(--\infty\)   -Normalized   Denorm   +Denorm   +Normalized   +\infty
\------\--------\------\-------\--------\------\---\------\---
   NaN   -\infty   0      +0      +\infty   NaN
```


Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Tiny Floating Point Example

8-bit Floating Point Representation
- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format
- normalized, denormalized
- representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s</th>
<th>exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00000000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>00000001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>00000010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>00001110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>00000111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td>largest denorm</td>
</tr>
<tr>
<td>0</td>
<td>00001000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>01101110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01110111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0</td>
<td>01111000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>01110001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0</td>
<td>01110100</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>0</td>
<td>11110000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>

Distribution of Values

- **6-bit IEEE-like format**
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1-1} = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - \(e = 3 \) exponent bits
 - \(f = 2 \) fraction bits
 - Bias is 3

![Distribution of Values Diagram](image)

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
</tr>
</tbody>
</table>

Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>(\text{exp})</th>
<th>(\text{frac})</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>(2^{-23,52} \times 2^{-126,1022})</td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>((1.0 - \epsilon) \times 2^{126,1022})</td>
</tr>
<tr>
<td>Smallest Pos. Normalized</td>
<td>00...01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Just larger than largest denormalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>((2.0 - \epsilon) \times 2^{127,1023})</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- **FP Zero Same as Integer Zero**
 - All bits = 0

- **Can (Almost) Use Unsigned Integer Comparison**
 - Must first compare sign bits
 - Must consider -0 = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- **Rounding, addition, multiplication**
- Floating point in C
- Summary
Floating Point Operations: Basic Idea

- \(x + \varepsilon \ y = \text{Round}(x + y) \)
- \(x \times \varepsilon \ y = \text{Round}(x \times y) \)

- Basic idea
 - First compute exact result
 - Make it fit into desired precision
 - Possibly overflow if exponent too large
 - Possibly round to fit into \(\frac{\text{frac}}{\text{frac}} \)

Rounding

- Rounding Modes (illustrate with $ rounding)

<table>
<thead>
<tr>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Towards zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
</tr>
<tr>
<td>Round down ((-\infty))</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
</tr>
<tr>
<td>Round up ((+\infty))</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
</tr>
<tr>
<td>Nearest Even (default)</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
</tr>
</tbody>
</table>

- What are the advantages of the modes?
Closer Look at Round-To-Even

- **Default Rounding Mode**
 - Hard to get any other kind without dropping into assembly
 - All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under-estimated

- **Applying to Other Decimal Places / Bit Positions**
 - When exactly halfway between two possible values
 - Round so that least significant digit is even
 - E.g., round to nearest hundredth
 1.2349999 1.23 (Less than half way)
 1.2350001 1.24 (Greater than half way)
 1.2350000 1.24 (Half way—round up)
 1.2450000 1.24 (Half way—round down)

Rounding Binary Numbers

- **Binary Fractional Numbers**
 - “Even” when least significant bit is 0
 - “Half way” when bits to right of rounding position = 100...

- **Examples**
 - Round to nearest 1/4 (2 bits right of binary point)

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary</th>
<th>Rounded</th>
<th>Action</th>
<th>Rounded Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3/32</td>
<td>10.00011₂</td>
<td>10.00₂</td>
<td><1/2—down</td>
<td>2</td>
</tr>
<tr>
<td>2 3/16</td>
<td>10.00110₂</td>
<td>10.01₂</td>
<td>>1/2—up</td>
<td>2 1/4</td>
</tr>
<tr>
<td>2 7/8</td>
<td>10.11100₂</td>
<td>11.00₂</td>
<td>1/2—up</td>
<td>3</td>
</tr>
<tr>
<td>2 5/8</td>
<td>10.10100₂</td>
<td>10.10₂</td>
<td>1/2—down</td>
<td>2 1/2</td>
</tr>
</tbody>
</table>
FP Multiplication

\((-1)^{s_1} M_1 \ 2^{E_1} \times (-1)^{s_2} M_2 \ 2^{E_2}\)

- **Exact Result:** \((-1)^s M \ 2^E\)
 - Sign: \(s_1 \land s_2\)
 - Significand: \(M_1 \times M_2\)
 - Exponent: \(E_1 + E_2\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - If \(E\) out of range, overflow
 - Round \(M\) to fit \(\text{frac}\) precision

- **Implementation**
 - Biggest chore is multiplying significands

Floating Point Addition

\((-1)^{s_1} M_1 \ 2^{E_1} + (-1)^{s_2} M_2 \ 2^{E_2}\)

Assume \(E_1 > E_2\)

- **Exact Result:** \((-1)^s M \ 2^E\)
 - Sign, significand \(M\):
 - Result of signed align & add
 - Exponent \(E\): \(E_1\)

- **Fixing**
 - If \(M \geq 2\), shift \(M\) right, increment \(E\)
 - if \(M < 1\), shift \(M\) left \(k\) positions, decrement \(E\) by \(k\)
 - Overflow if \(E\) out of range
 - Round \(M\) to fit \(\text{frac}\) precision
Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary

Floating Point in C

- **C Guarantees Two Levels**
 - `float` single precision
 - `double` double precision

- **Conversions/Casting**
 - Casting between `int, float, and double` changes bit representation
 - `Double/float \rightarrow int`
 - Truncates fractional part
 - Like rounding toward zero
 - Not defined when out of range or NaN: Generally sets to Tmin
 - `int \rightarrow double`
 - Exact conversion, as long as int has ≤ 53 bit word size
 - `int \rightarrow float`
 - Will round according to rounding mode
Floating Point Puzzles

For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

- \(x == (\text{int})(\text{float}) \ x \)
- \(x == (\text{int})(\text{double}) \ x \)
- \(f == (\text{float})(\text{double}) \ f \)
- \(d == (\text{float}) \ d \)
- \(f == -(\text{f}) \)
- \(2/3 == 2/3.0 \)
- \(d < 0.0 \Rightarrow ((d*2) < 0.0) \)
- \(d > f \Rightarrow -f > -d \)
- \(d \times d >= 0.0 \)
- \((d+f) - d == f \)

Assume neither \(d \) nor \(f \) is \(\text{NaN} \)

Today: Floating Point

- Background: Fractional binary numbers
- IEEE floating point standard: Definition
- Example and properties
- Rounding, addition, multiplication
- Floating point in C
- Summary
Summary

- IEEE Floating Point has clear mathematical properties
- Represents numbers of form $M \times 2^E$
- One can reason about operations independent of implementation
 - As if computed with perfect precision and then rounded
- Not the same as real arithmetic
 - Violates associativity/distributivity
 - Makes life difficult for compilers & serious numerical applications programmers