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Abstract

The present report details a model for implementing dif-
fusion in a discrete space. Formulated in 2004 in support
of artificial development experiments, the model is math-
ematically justified starting from the diffusion equation.
It has physical plausibility and handles well different
shaped and sized diffusion neighborhoods in the sense
that it achieves isotropic diffusion in spite of the bias in-
troduced by the discretizing grid. It provides one formu-
lation that encapsulates the diffusion neighborhood de-
tails and renders it applicable to linear, planar, spatial and
even n-dimensional constructs.

1 Introduction

In the field of artificial development, some researchers
choose to endow the environment with diffusion prop-
erties as a form of information transfer. This report ex-
plains the details of implementing such a feature in the
discrete case: the environment consists of a substrate
subdivided in a grid of locations. This is not the only
way to model an environment, specifically there is the
option of considering the space as a continuum, without
any discretizing grid. However, this continuous case is
not covered in this report.

A significant concern when implementing diffusion in
a discrete system is to do it in such way as to avoid ar-
tifacts betraying the shape of the grid or the diffusion
neighborhood employed. For example, if one considers
the space isotropic, any good diffusion algorithm operat-
ing on a rectangular discretizing grid will show a circualr
pattern of diffusion, without betraying the existing rect-
angular bias.

Back in 2003, when he introduced his Cartesian GP
system, Julian Miller [4] uses a rectangular grid and a
Moore neighborhood of size 1 (8 neighbors) to simulate
diffusion. Based on personal communication dating from
2005 his system treats all neighbors similarly. This intro-
duces an artifact that favors diffusion diagonally: in one
step, a substance diffuses a larger distance towards the
corner neighbors then towards its lateral ones.

A bit earlier, in 1998, Astor and Adami [1] encoun-
tered the same challenge of implementing diffusion in
a discrete space. They avoided the issue of variously
spaced neighbors by discretizing the space in hexagonal
grid and using a neighborhood of 6 immediate neigh-
bors, all of them the same distance away. They leave
unanswered, even unasked, the question of how to han-
dle larger neighborhoods on the hexagonal grid, or –
even more limiting – how to handle the 3 dimensional
space where a hexagonal (or hexaedral) tessellation is
non-existent. Further, the update model they used re-
quired a limitation on the diffusion coefficient in order
to avoid oscillations, thus betraying an implementation
that lacks physical plausibility.

Finally, in 2004 I derived a diffusion model for dis-
crete environments to be used in an artificial develop-
ment experiment. Said model alleviates all the draw-
backs mentioned above. Precisely, it handles various
shape and size neighborhood, is not limited to two di-
mensions or even three dimensions for that matter, it has
physical plausibility and hides the bias introduced by the
discretizing grid. In 2006 I started publishing about this
line of research. To date, the developmental model is
mentioned in two publications [3] and [2], but none of
them dwells into the details of the implementation, or the
mathematical justification. It is the purpose of this report
to fill in this gap and openly propose to the research com-
munity this diffusion model for discrete environments.
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The model is formulated from first principles and with
mathematical support and validation; the details are pre-
sented in section 2. An implementation in the system
presented in [3] allows for empirical validation as illus-
trated in section 3. Finally, no model is without draw-
backs, and the current case is no exception. Its own lim-
itations are identified and discussed in section 4.

2 A Discrete Model of Diffusion

Mathematical models of diffusion in the continuous
space have been proposed and studied extensively (see
http://en.wikipedia.org/wiki/Heatequation). In deriving
a model for the discrete scenario, starting from first prin-
ciples seems appropriate. The general idea of the diffu-
sion model is that a surface separating two locations will
allow molecules to diffuse both ways and the effect can
be statistically estimated by a differential equation. In
the simplest case (one dimension, homogeneous diffu-
sion) withf(x) denoting the concentration of substance
at pointx the equation has the following form:

∂f(x, t)

∂t
= k

∂

∂x

∂f(x, t)

∂x
(1)

This equation summarizes the following statement: the
overall number of molecules of a substance crossing the
surface in a time interval (infinitesimally small) is pro-
portional to the difference in concentrations of that sub-
stance on either side of the surface.

Solving this equation, with no boundary condition
(unrestricted space) gives the form

f(x, t) =
1√

4πkt

∫ ∞

−∞

f(y, 0)e
−(x−y)2

4kt dy (2)

−∞ < x < ∞ , 0 <= t < ∞
Computational reasons dictate a time and space dis-

cretizing, leading to the following simplifications:t = 1
(one time step) and the spatial locations being designated
as xi and their neighbors. . . xi−2xi−1xixi+1xi+2 . . . .
In these conditionsf(xi) denotes the concentration of
substance at location (not a point)xi. Finally, with the∫

becoming a
∑

, a one step update is described by the
following morphing of equation 2 into:

f(xi) = A
∞∑

j=−∞

f(xi+j)e
−(xi+j−xi)

2/µ (3)

wheref(x) = f(x, t = 0) andf(x) = f(x, t = 1).
µ > 0 encapsulates the modulating effects of the diffu-
sion coefficient andA is a normalization factor that in-
sures conservation

∞∑
i=−∞

f(xi) =
∞∑

i=−∞

f(xi) (4)

Substituting 3 in 4

∞∑
i=−∞

f(xi) (5)

= A

∞∑
i=−∞

∞∑
j=−∞

f(xi+j)e
−(xi−xi+j)

2/µ (6)

=
∞∑

i=−∞

f(xi)A
∞∑

j=−∞

e−(xi−xi+j)
2/µ (7)

=

∞∑
i=−∞

f(xi) (8)

The step in 7 is justified by noticing that all combinations
of i andj are present in the summations. One can there-
fore renamexi+j to xi and factor it out without affecting
the form of the exponent. Finally, the equality imposed
by 8 (which is in fact 4) is satisfied if

A

∞∑
j=−∞

e−(xi−xi+j)
2/µ = 1 (9)

Symbolically, the value ofA seems to depend oni, but
in fact, under the assumption of isotropic universe (each
location has its neighbors arranged in the same pattern),
it is the same regardless ofi.

In both the above 9, as well as in 3 the effect of neigh-
borxi+j is modulated by an exponential decay in its dis-
tance toxi, it is practical to limit the computation to a
convenient fixedn, or in other words to a local diffusion
neighborhood. With that the equation 3 becomes:

f(xi) = A

n∑
j=−n

f(xi+j)e
−(xi+j−xi)

2/µ (10)

and 9 becomes:

A

n∑
j=−n

e−(xi−xi+j)
2/µ = 1, (∀i) (11)

Do equations 10 and 11 describe a process that plau-
sibly resembles diffusion? As a simple validation step,
consider the case ofµ → ∞ (instantaneous diffusion)
andµ = 0 (no diffusion).
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Equation 10 gives

lim
µ→∞

f(xi) (12)

= lim
µ→∞

n∑
j=−n

f(xi+j)Ae−(xi+j−xi)
2/µ (13)

=
n∑

j=−n

f(xi+j) lim
µ→∞

e−(xi+j−xi)
2/µ∑n

k=−n e−(xi+k−xi)2/µ
(14)

=

n∑
j=−n

f(xi+j) lim
µ→∞

λi
j,µ (15)

=

n∑
j=−n

f(xi+j)
1

2n + 1
(16)

=
1

2n + 1

n∑
j=−n

f(xi+j) (17)

whereλi
j,µ introduces a shorthand notation for

λi
j,µ =

e−(xi+j−xi)
2/µ∑n

k=−n e−(xi+k−xi)2/µ
(18)

The above result in 17 attests that forµ → ∞ in one time
step the concentrations are instantly averaged to equilib-
rium.

Similarly, for µ → 0 (µ > 0) the same equation 10
gives:

lim
µ→0

f(xi) =

n∑
j=−n

f(xi+j) lim
µ→0

λi
j,µ (19)

In order to calculatelimµ→0 λi
j,µ it is easier to notice

thatλi
j,µ > 0 and calculatelimµ→∞ 1/λi

j,µ

In general

1/λi
j,µ = 1 +

n∑
k=−n, k 6=j

e−(xi−xi+k)2/µ

e−(xi−xi+j)2/µ
(20)

= 1 +
n∑

k=−n, k 6=j

αi
j,k,µ (21)

whereαi
j,k,µ introduces another shorthand notation for

αi
j,k,µ =

e−(xi−xi+k)2/µ

e−(xi−xi+j)2/µ
(22)

For j = 0, equation 20 becomes

1/λi
0,µ = 1 +

n∑
k=−n, k 6=0

e−(xi−xi+k)2/µ (23)

thus,
lim
µ→0

1/λi
0,µ = 1 ⇒ lim

µ→0
λi

0,µ = 1 (24)

under the reasonable assumption thatxi − xi+k 6=
0, ∀k 6= 0.

To analyze the casej 6= 0, notice from equation 22
that limµ→0 αi

j,k,µ can either be0, or 1, or∞. In partic-
ular, fork = 0 (and rememberj 6= 0):

lim
µ→0

αi
j,0,µ = ∞ (25)

(21)⇒ lim
µ→0

1/λi
j,µ = ∞ (26)

⇒ lim
µ→0

λi
j,µ = 0, ∀j 6= 0 (27)

Combining 19 with 24 and 27 gives:

lim
µ→0

f(xi) = f(xi) (28)

which states that forµ = 0 the diffusion subsides.
Thus, the credibility of equations 10 and 11 having

been established, the one step update rule can be further
modified as such:

∆f(xi) = f(xi) − f(xi) (29)

(11)
= f(xi) − Af(xi)

n∑
j=−n

e−(xi−xi+j)
2/µ (30)

= A
n∑

j=−n

(f(xi+j) − f(xi))e
−(xi−xi+j)

2/µ (31)

Notice that just likeA, under the assumption of
isotropic universe,dj = xi − xi+j does not depend oni
either. With that, the one step update rule becomes

∆f(xi) = A

n∑
j=−n

(f(xi+j) − f(xi))e
−d2

j/µ (32)

Or, in more general terms, if one considers a location
xi and itsn neighborsx1

i x
2
i . . . xn

i :

∆f(xi) = A

n∑
j=1

(f(xj
i ) − f(xi))e

−d2
j/µ (33)

dj = |xi − xj
i | (34)

A

n∑
k=1

e−d2
k/µ = 1 (35)

wheredj andA are dependent on the size and shape
of the diffusion neighborhood.

Finally, even though the model is mathematically jus-
tified starting from the one dimensional diffusion equa-
tion, this latest incarnation (equation 33) is not limited
to any number of dimensions. In effect, it provides a
formulation that is oblivious to the dimensionality of the
space, such details being encapsulated in the diffusion
neighborhood (as in the number and distance of neigh-
bors).
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3 Empirical Validation

The model derived in the previous section (2) is imple-
mented in a developmental system presented in [3]. An
experiment is configured to use a107 × 107 grid with a

(a) Moore 1 (b) Neumann 1

(c) Moore 2 (d) Neumann 2

Figure 1: Diffusion on a fine grid:107 × 107
after 1500 steps

(a) Moore 1 (b) Neumann 1

(c) Moore 2 (d) Neumann 2

Figure 2: Diffusion on a coarse grid:27 × 27
after 50 steps

regenerating well in the center that keeps the concentra-
tion of a substance maximal in the center. At each time
step the substance is spreading according to various dif-
fusion neighborhoods configured. Figure 1 shows the re-
sults of the experiment after 1500 time steps. The pan-
els are labeled according to the diffusion neighborhood
used: Moore (square) or Neumann (diamond) and their
size. Notice that in all cases the substance spreads from
the center in a circular pattern, not betraying the under-
lying bias of the rectangular grid.

However, the larger the neighborhood, the faster the
substance diffuses, even though in all cases the algorithm
is run with the same diffusion coefficient. This is one
drawback of the model and will be further addressed in
section 4.

Figure 2 shows the results of a similar experiment,
but on a much coarser grid (27 × 27). While at macro
level diffusion is still isotropic, the bias introduced by
the diffusion neighborhood is reflected in visible arti-
facts. At this scale, this is an unavoidable drawback, also
discussed further in section 4. Experimental evidence
suggests that if one uses a discretizing grid that is two
order of magnitude higher then the diffusion neighbor-
hood size, such artifacts are no longer visible.

4 Drawbacks of the Model

This model, or rather its practical implementation is not
without drawbacks.

The first drawback is that limiting the diffusion algo-
rithm to use a certain neighborhood, limits the physical
meaning of the diffusion coefficient. In the extreme case,
if the diffusion coefficient is maximal (approaching∞),
then diffusion should be instantaneous. According to the
model, it is, but only limited to the practical size of the
diffusion neighborhood. If it were to be instantaneous
to the whole space, then a diffusion neighborhood as
large as the whole space would be required. However,
in such case, the resulting time complexity of the algo-
rithm would become square in the size of the space.

A second drawback is handling of space edges. The
mathematical formulation (equation 33) relies on the as-
sumption of isotropy, or in other words each location has
the same configuration of neighbors. If such is not the
case, the results of the algorithm are somewhat distorted
in the proximity of the simulated space. One possible
work-around is to choose a space large enough (or a dis-
cretizing grid that is fine enough) such that the practical
application of a particular problem either doesn’t reach
the edges of the space or the effects of the distortion are
not meaningful. Another work-around is to use toroidal
spaces, such that there are no space edges at all.
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A third limitation stems from the very use of a dif-
fusion neighborhood. Even though the algorithm aims
at hiding the discretizing grid bias, it is bound to betray
some effects of the grid due to the fact that the diffu-
sion neighborhood is embedded in said discretizing grid.
However such effects are limited to a scale comparable
to the size of the diffusion neighborhood itself. If one
analyzes the macro effects, the algorithm is successful in
hiding the bias of the grid. Thus, a possible work-around
is to choose a discretizing grid that is fine enough for the
practical purposes of a particular problem.

Finally, a fourth drawback is the time complexity of
the algorithm. In its simplest form (with a small dif-
fusion neighborhood size) the algorithm runs inO(N),
whereN is the number of locations of the space (the size
of the space). A larger space, or a finer discretizing grid
both result in increasing theN number of locations, and
consequently in a more time consuming diffusion pro-
cess. Unfortunately, the only remedy to a number of
other drawbacks is to increase this size of the spaceN .
The problem is further compounded by the fact that the
diffusion algorithm must be run a number of steps com-
parable to the number of developmental steps in the sim-
ulation. As such it turns out that running the diffusion
process uses a significant portion of the time required to
run a simulation. This fact prompted aggressive algo-
rithmic optimizations such as advance identification and
O(1) fetching of neighbors, and pre-calculation of pa-
rameters such as the scaling factorA and the exponential
factorse−d2

j/µ used in equation 33.
Still in one particular experiment when measurements

were performed, running with diffusion turned off was
one order of magnitude faster then running with it on.
This observation dictates the following rule of thumb: if
the model minus diffusion is computationally simple and
there is no strong indication that diffusion is necessary
for solving the problem, one is better off without diffu-
sion. However, if the model is a bit more complex, such
that running it dominates the time required to perform
diffusion, then it would not hurt to leave diffusion en-
abled.

5 Conclusions

This diffusion model presented is grounded in mathe-
matical first principles. It has physical plausibility and
handles well different size and shape neighborhoods: at
macro level (2 order of magnitude larger then diffusion
neighborhood size) it hides the bias introduced by the
discretizing grid. It is also not limited to a certain dimen-
sionality of the space, providing a formulation that is ap-
plicable to linear, planar, spatial and even n-dimensional
constructs.

The implementation of this algorithm has some limita-
tions, chiefly among them the time complexity required.
However this is a drawback that affects all diffusion al-
gorithms equally. If diffusion were to be implemented in
massively parallel manner then it would not be an issue.
Barring the availability of such hardware, a better alter-
native for artificial developmental study is to replace the
diffusion mechanism altogether as a means of transfer-
ring information, with other systems that explicitly carry
it in a more efficient manner.
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