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Abstract
The need to engineer novel therapeutics and functional materials
is driving the in-silico design of molecular complexes. This paper
proposes a method to compute symmetric homo-oligomeric protein
complexes when the structure of the replicated protein monomer
is known and rigid. The relationship between the structure of a
protein and its biological function brings the in-silico determina-
tion of protein structures associated with functional states to the
forefront of computational biology. While protein complexes, aris-
ing from associations of protein monomers, are pervasive in ev-
ery genome, determination of their structures remains challenging.
Given the difficulty in computing structures of a protein monomer,
computing arrangements of monomers in a complex is mainly lim-
ited to dimers. A growth in the number of protein complexes stud-
ied in wet labs is allowing classification of their structures. A
recent database shows that most naturally-occurring protein com-
plexes are symmetric homo-oligomers. The method presented here
exploits this database to propose structures of symmetric homo-
oligomers that can accommodate spatial replications of a given
protein monomer. The method searches the database for docu-
mented structures of symmetric homo-oligomers where the repli-
cated monomer has a geometrically-similar structure to that of the
input protein monomer. The proposed method is a first step towards
the in-silico design of novel protein complexes that upon further re-
finement and characterization can serve as molecular machines or
fundamental units in therapeutics or functional materials.

1 Introduction
Protein chains assemble as building blocks into structures of
greater complexity in cells. Protein complexes play central
roles in ion transport and regulation in membranes, transduc-
tion of signal down chemical pathways, degradation of pro-
teins, and even transcriptional regulation [1]. Fig. 1 shows
one such complex, the GroEL chaperonin, a heptamer that
corrects structural defects in newly-synthesized proteins [2].
Interactions between the seven monomers give GroEL both
its three-dimensional (3D) structure and biological function.

Evidence of protein structure determining protein func-
tion has made structure determination a major focus of
molecular biology [3]. Driven by the need for novel ther-
apeutics and functional materials, decades of research have
been devoted to structure determination both in wet labs and
in silico [4–9]. Such research has targeted mainly the char-
acterization of protein monomers, single polypeptide chains
that assume a unique structure under native conditions [10].

Computing native or native-like structures of a protein
monomer is a challenging problem. The space of possible
arrangements, conformations, of a protein chain is vast and
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high-dimensional. The energy surface associated with the
space, rising from interactions among atoms in the chain,
is rugged and can be probed only with empirical energy
functions [11]. Though native conformations are associated
with the global minimum in the funnel-like protein energy
surface [12,13], searching the conformational space for such
conformations remains computationally challenging [14,15].

Given the difficulty in computing native conformations
of a single protein chain, research in determining the struc-
ture of a protein complex has only recently begun to gain
attention [16, 17]. Computing structures of a complex in-
volves exploring different ways of arranging and positioning
monomers in a complex. The computational complexity of
deriving the native structure of a monomer from knowledge
of its amino-acid sequence makes it infeasible to approach
structure determination of a protein complex ab initio.

Figure 1: The seven monomers in GroEL are in different colors, with the
front two drawn in transparent. The black line denotes the symmetry axis.

The vast conformational space of a protein chain
presents a challenge to algorithms that explore this space in
search of relevant monomeric structures. This problem is
only exacerbated when considering direct combinatorial ex-
tensions of these algorithms for the simultaneous exploration
of possible structures for all monomers in a complex [18,19].
Employing protein monomers with known native structures
allows approaching the in-silico structure determination of
a protein complex as a search for possible arrangements of
fixed monomeric structures in the complex.

About 60%-70% of the proteins in every genome
are homo-oligomers, complexes assembled from identical
monomers [20]. On one hand, such pervasiveness of protein
complexes warrants more urgency into structural studies to
offer mechanistic insight into their biological functions. On
the other hand, these estimates allow computational methods



to focus on structure determination of homo-oligomers. That
is, given a protein chain of known structure, compute differ-
ent ways of spatially replicating it in a complex so that the
resulting complex structure is physically-realistic and valid.

The large size of a protein complex, typically tens of
thousands of atoms, poses challenges to structure determina-
tion in wet labs [2, 21]. Size also challenges the scalability
of computational methods that simulate physical motions of
individual atoms [22]. Assuming that the structure of the
protein monomer is not only known, but also rigid, allows
dedicating resources on searching for rigid-body transforma-
tions that properly align monomers in a complex.

Research in computing such transformations for dimers,
protein complexes consisting of two monomers, is active [18,
23–27]. The problem is referred to as the docking problem.
The typical approach in addressing the docking problem is
to keep one monomer fixed and compute possible dimer
structures by sampling the space of rotations and translations
of the docked monomer with respect to the fixed one. This
approach is not feasible on arbitrary complexes, as the
dimensionality of the search space increases exponentially
with the number of monomers in a complex.

Two key features of protein complexes provide auspi-
cious opportunities for efficient in-silico characterization of
their structures. Recent studies have shown that functional,
genetic, and physicochemical needs have driven an evolu-
tionary selection of protein complexes towards symmetric
homo-oligomers [1]. Symmetry, nature’s way of employing
hierarchy to achieve complexity, and redundancy, nature’s
parsimony in reusing identical protein monomers, are two
key features that have begun to be exploited for an efficient
computation of structures of symmetric homo-oligomers.

The number of protein complexes whose structures have
been determined in wet labs is growing. This growth is
spawning new databases devoted to classification of complex
structures, which are revealing that most naturally-occurring
homo-oligomers exhibit either cyclic or dihedral symme-
try [20]. The GroEL chaperonin shown in Fig. 1 is an ex-
ample of a heptamer with cyclic symmetry. Such findings
have prompted computational methods to focus on comput-
ing structures of protein homo-oligomers that observe cyclic
or dihedral symmetry [16, 17].

While focusing on symmetric homo-oligomers narrows
the number of ways monomers can be positioned in a com-
plex, the search space remains high-dimensional. In addi-
tion, the number of monomers in the complex (also referred
to as the oligomeric number) is not known a priori. Current
methods iterate over possible oligomeric numbers, exploring
a high-dimensional space to compute complex structures of
a given oligomeric number. Structures where monomers are
not in serious collision with one another are ranked accord-
ing to agreement with experimental data, often obtained from
Nuclear Magnetic Resonance (NMR) experiments [16, 17].

The NMR data allow determining whether computed struc-
tures of a homo-oligomer are feasible.

Work in [16] focuses on cyclic homo-oligomers. For
each oligomeric number, the space of possible symmetry
axes is systematically explored in search of valid complex
structures. The search space in [16] is subdivided into re-
gions worthy of further exploration and regions correspond-
ing to structures in direct violation of NMR data. The NMR
data employed are distance constraints due to Nuclear Over-
hauser Effects (NOE), which allow determining whether the
packing of monomers in a complex structure is valid or not.
Other work computes cyclic complex structures through a
grid search algorithm, restricting the number of proposed
structures by their agreement with NMR residual dipolar
couplings (RDCs) [17].

While docking research cannot readily be extended to
homo-oligomers, most recent methods on computing homo-
oligomeric structures are limited by the availability of ex-
perimental data on the complex at hand. These meth-
ods cannot be employed to design new symmetric homo-
oligomeric structures. However, growing databases of struc-
tures of naturally-occurring protein complexes can be lever-
aged to design novel complexes similar to how the Pro-
tein Data Bank (PDB) [28] of native protein structures is
employed to design native structures of single polypeptide
chains [6, 9, 29–31].

The method proposed here focuses on computing struc-
tures of symmetric homo-oligomers that can accommodate
spatial replications of a given monomeric structure. The
method exploits the 3D complex database, a recent database
that gathers and classifies experimentally-obtained structures
of naturally-occurring protein complexes [20]. The database
allows extracting protein homo-oligomers of cyclic or di-
hedral symmetry. The proposed method searches over this
database to obtain a set of symmetric homo-oligomeric struc-
tures preferred by protein monomers of geometrically sim-
ilar structure to the structure of the given monomer. The
method is referred to as Espreso, for gEometric structure
prediction in symmetric homo-oligomers.

The presented Espreso method draws inspiration
from fragment assembly methods that address structure pre-
diction of a protein monomer. In these methods, the chain
of a monomer of unknown structure is segmented in con-
secutive overlapping fragments. Non-redundant subsets of
known protein structures, extracted from the Protein Data
Bank (PDB), are then exploited to compute possible struc-
tures preferred by short protein fragments. The structure
of the protein chain is then assembled from structures of its
fragments [6, 9, 29–31].

Espreso exploits the 3D complex database to pro-
pose structures of symmetric homo-oligomers that can ac-
commodate spatial replications of a given protein monomer
of known structure. The structure of the given monomer is



compared to that of monomers in the complexes stored in
the database. Complexes whose monomeric structures are
geometrically similar to the structure of the input protein
monomer are proposed as possible complexes that can ac-
commodate replications of the given monomer.

Espreso works under the assumption that monomeric
structure is the first determinant of both the number and the
way monomers are arranged in a complex. Such an assump-
tion is warranted, given that the packing of monomers in
a complex is geometrically-constrained by the structure of
each monomer. Designing efficient yet effective measures
of geometric similarity for structures of protein monomers,
however, is an active area of research [32].

Part of the inability to design effective similarity mea-
sures for protein structures originates from the potentially
large number of atoms in a protein monomer. Measures
such as least root-mean-squared-deviation (lRMSD) average
over spatial deviations of atoms in two monomeric structures
under comparison, effectively masking away differences.
Moreover, since lRMSD requires that compared structures
are aligned to one another, the measure is too expensive to
execute on a database of potentially thousands of structures.
In addition, lRMSD cannot be readily extended to compare
structures of monomers of different number of atoms. Cor-
respondence of the atoms becomes a problem.

Simple and fast measures such as comparing radii of gy-
ration (Rg) between two monomeric structures (Rg refers to
the average atomic distance from the center of mass) are
too coarse for any practical purpose. Structure compari-
son methods, while abundant, are beyond the scope of a
comprehensive summary in this work. The comparison of
monomeric structures in this work focuses on capturing over-
all shape similarity rather than fine structural details.

The Espresomethod presented here captures the over-
all shape similarity between two monomers through the
recently proposed ultrafast shape recognition (USR) fea-
tures [33]. These features, detailed in section 3, are proposed
in [33] to efficiently compare the structure of a small ligand
against millions of ligand structures stored in pharmaceuti-
cal databases. The features have been recently employed to
keep track of computed conformations of a protein chain in a
low-dimensional projection space for an efficient exploration
of the protein conformational space [34].

The USR features in this work are employed to define
coordinates of a monomeric structure in a low-dimensional
projection space. Projections of two monomeric structures
are compared through a novel normalized Manhattan-based
similarity score, which builds on the similarity score pro-
posed in [33]. Section 3 shows that USR-based projections
capture well the similarity between two monomeric struc-
tures without getting lost in fine details such as content of
secondary structure segments in a protein chain.

The proposed Espreso method is applied on seven

protein monomers that have diverse lengths and native struc-
tures. The chosen monomers are known to be the building
block of homo-oligomers that are important in molecular bi-
ology research in the context of therapeutic applications. The
results in section 4 show that the method correctly captures
the complexes populated in nature by the chosen monomers.
Additional complexes are obtained, showing that the input
monomers can spatially replicate in novel ways.

Further tests shown in section 4 quantify the richness
of the 3D complex database. The method is applied to
more than 36, 000 non-redundant protein chains extracted
from the PDB. Complex structures are proposed for each
chain at different thresholds of similarity between the given
monomeric structure and that of the monomers of the homo-
oligomers in the 3D complex database. Predictions are
shown as a function of similarity.

The proposed method is intended as a first rapid step
when searching for different ways of arranging copies of a
monomer of known structure in a complex. The 3D complex
database allows Espreso to focus only on structures of
naturally-occurring complexes. By employing the database
as the set of solutions preferred by nature (in so far as the
richness of the database allows, an issue discussed further in
sections 3 and 5), the method circumvents computationally-
expensive combinatorial searches over viable arrangements
of an oligomeric number of monomeric structures.

Complex structures proposed by Espreso for a given
monomer are not by any means complete. Alternative
arrangements of the monomeric structure may exist that are
not yet represented in the database. The issue of the current
status of the database is further discussed in sections 3 and 5.
Moreover, the complex structures obtained by the method
need to be further evaluated with energetic considerations.
Refinement of obtained complex structures can be carried
out in computationally-demanding simulations that employ
physically-realistic energy functions. The lowest-energy
resulting complexes can then be employed to guide wet-
lab research in engineering novel complexes or studying
properties such as stability and function in greater detail.

The complex design aspect of the proposed method has
far-reaching implications for proposing physically-realistic
models of molecular complexes. Novel complexes that act as
molecular machines can be designed to have specific struc-
tural morphologies and functionalities. Proposing such com-
plexes in the dry lab and then synthesizing and characterizing
them in greater detail in the wet lab has the potential to push
forward molecular biology research that encompasses drug
design and material science.

The related work places the proposed Espresomethod
in context in section 2. Espreso is then described in
detail in section 3. Applications on 36, 512 non-redundant
protein chains and seven chosen monomers are presented in
section 4. The work concludes with a discussion in section 5.



2 Related Work
Resolving the structure of a protein complex poses signifi-
cant challenges in the wet lab due to complex size and res-
olution quality [2, 21]. Traditional protocols based on solu-
tion NMR employ local optimization techniques that often
get trapped in local minima, consequently missing the true
structure of a complex [35]. For these reasons, in-silico ap-
proaches to structure prediction are gaining ground.

Computational methods on complex structure prediction
have focused primarily on dimers. Docking two monomers
follows a three-stage procedure [36]. The first stage searches
for a set of physically-realistic structures of the monomers
under consideration. In the second stage, one monomer is
kept fixed, while structures of the second monomer are trans-
formed through rigid-body transformations to dock them
onto the first monomer. In the final stage, the resulting dimer
structures are ranked according to energetic criteria, simi-
larity to experimentally-determined native structures of the
dimer, or agreement with other available experimental data.

Literature on searches for physically-realistic structures
of a protein monomer is rich, as the problem of structure
prediction is central in molecular biology [3, 37]. While a
detailed summary is beyond the scope of this work, methods
include Fast Fourier Transforms (FFT) on a voxel grid
that discretizes a monomeric structure [38], Monte Carlo
or Molecular Dynamics [18, 22], genetic algorithms [39],
fragment assembly [9, 29, 40], and many more (cf. to [6]).

Docking methods that forego the first stage assume
rigid or semi-rigid monomeric structures. These methods
address rigid-body docking or docking without flexibility.
They employ either one or a manageable few structures of
each monomer under consideration. These methods are very
effective when employing co-crystalized monomeric struc-
tures. When working on separately crystalized structures,
these methods tend to yield many false positives for the na-
tive structure of the dimer [25].

Docking methods that include the first stage consider the
conformational flexibility of the protein monomers. Work
in [23, 24] removes the effects of van der Waals (vdw) in-
teractions from the edges of docked monomers. These in-
teractions are then reintroduced systematically, allowing the
monomers to shift and sample low-energy conformations.
Because of the additional search for alternative conforma-
tions, flexible docking methods are inherently more com-
putationally demanding than rigid-body docking methods.
Flexible docking methods can also yield too many conforma-
tions that, while relevant on their own, do not allow docking
the monomers onto each-other.

To handle the computational demands of flexible dock-
ing, many methods consider limited local flexibility [38].
These methods implement the docking-with-some-flexibility
approach, where the monomeric structures are considered
semi-rigid. The method in [38], for instance, maintains the

overall monomeric structure rigid, but allows details at the
interaction interface to change slightly. More recent dock-
ing methods allow the backbones of the docked monomers
to move as well [41]. While more comprehensive in their
search of docked structures, these methods can generate
many more structures than are practical to score.

Scoring functions can be computationally-demanding
to execute on a large number of dimer structures. These
functions all attempt to correctly identify the dimer structure
with the lowest energy. Scoring functions typically use
electrostatic, vdw, and hydrostatic energetic interactions [23,
25, 26]. Even when employing physically-realistic energy
functions to rank computed dimer structures, many docking
methods are not complete. Dimer structures that rank low in
energy have been shown to disagree with experimental data
such as NOE distance constraints (cf. to [16]).

Extending docking methods to compute structures of
complexes of more than two monomers is not practical, as
the dimensionality of the search space increases exponen-
tially with the number of monomers in the complex. Re-
cently proposed methods for arranging an arbitrary num-
ber of monomers in a complex move beyond the docking
framework. To efficiently search for viable arrangements
of monomers of known rigid structure, current methods fo-
cus on symmetric homo-oligomeric complexes, where the
monomers can be arranged together only in a limited number
of ways. Specifically, current methods focus on cyclic sym-
metry, which makes it easier to arrange monomeric struc-
tures around a rotational axis. These methods further limit
the number of ways monomers are arranged together by em-
ploying experimental data. The method in [16] employs
NMR NOE distance constraints, whereas that in [17] em-
ploys NMR RDC data.

The method proposed in [16] uses a branch and bound
algorithm to subdivide the conformational space. Regions of
the space that correspond to cyclic homo-oligomeric struc-
tures that are either in serious vdw clashes or violate the NOE
distance constraints are discarded and not considered for fur-
ther subdivision. The method simultaneously evaluates inter-
actions among all monomers in the complex rather than iter-
ate over pairwise interactions. The method in [17] proposes
using NMR RDC data to evaluate computed oligomeric
structures due to possible ambiguity in the experimental as-
signment of intra and inter monomeric NOE distance con-
straints through NMR.

The Espreso method proposed in this work consid-
ers both cyclic and dihedral homo-oligomers, as long as the
monomeric structure in the symmetric homo-oligomer under
consideration is geometrically similar to the structure of the
input monomer. By sampling solutions from the 3D complex
database, Espreso circumvents the problem of determin-
ing oligomeric number and searching for physically-realistic
arrangements of that number of monomers in a complex.



3 Methods
Espreso searches the 3D complex database for com-
plex structures that can spatially accommodate a given
monomeric structure. While the database contains a non-
redundant set of naturally-occurring complex structures de-
termined in the wet lab, the subset considered here contains
only symmetric homo-oligomers. This subset is extracted
from the database through the functionality provided in [20].

The extracted subset is considered as the possible search
space of symmetric homo-oligomers preferred by proteins
in cells. The basic process in Espreso is to iterate over
this subset and identify those symmetric homo-oligomers
whose monomers are geometrically similar in structure to
the structure of the given monomer.

Geometric similarity between two monomeric structures
is estimated not over the cartesian coordinates of atoms in
the monomers, but rather in a low-dimensional projection
space. A monomeric structure is projected on an eight-
dimensional (8d) space and represented through a vector
of eight coordinates. Geometric similarity between two
monomeric structures is then measured through a novel
similarity function that operates on two 8d vectors.

Since the solution set considered here consists of sym-
metric homo-oligomers only, the monomeric structures in
such a complex are identical to one another within rigid-body
transformations. The projection of the monomeric structures
on the 8d projection space naturally removes differences due
to rigid-body transformations. Therefore, each symmetric
homo-oligomer in the considered solution set is represented
through the 8d vector of coordinates of one its monomers.

Small structural deviations among the monomers due
to flexible side-chains in a protein structure are removed by
considering only the backbone of each monomer in the pro-
jection. Additional structural deviations arising from slight
fluctuations of monomer backbones in a symmetric homo-
oligomer are recorded in an average deviation value associ-
ated with each complex. It is worth mentioning that the eight
coordinates employed in the projection are a subset of the
twelve coordinates proposed in [33]. The four coordinates
removed from consideration allow discarding noise due to
local backbone fluctuations of the monomers in a complex.

The quality of the complex structures proposed for a
given monomeric structure depends both on the richness of
the 3D complex database and the assumption that geomet-
ric similarity is the primary determinant whether copies of
a monomeric structure can be accommodated in a symmet-
ric homo-oligomer. Various statistics are compiled over the
3D complex database and its subset of symmetric homo-
oligomers to quantify its richness. Representation of a com-
plex, the projection procedure, and the similarity score pro-
posed to estimate placement of a monomer in a given sym-
metric homo-oligomer are described next. Implementation
details conclude the description of the method.

3.1 Estimating Richness of the 3D Complex Database
As of January 2009, the 3D complex database contained
30, 475 structures of non-redundant protein complexes. Re-
dundant PDB submissions of the same protein complex
were removed in the compilation of the database [20]. Out
of 30, 475 complex structures, 26, 831 structures belong to
homo-oligomers. Symmetric homo-oligomers consist of
8939 cyclic and 2613 dihedral complexes.

Fig. 2(a) shows the distribution of complexes in the 3D
complex database as a function of oligomeric number. As
also observed in [20], the database is heavily biased towards
small complexes. The peak of the distribution in Fig. 2(a)
is reached on dimers. This is not surprising, since wet-
lab experiments have an easier time resolving structures of
small complexes. Evolution of oligomeric complexes in cells
also seems to favor the formation of dimers through pre-
positioned interaction interfaces [1].

Fig. 2(b) plots the number of homo-oligomers as a
function of oligomeric number, whereas (c) and (d) fo-
cus on cyclic and dihedral homo-oligomers, respectively.
Figs. 2(b)-(d) also highlight that dimers dominate homo-
oligomers. Interestingly, as also noted in [20], symmetric
homo-oligomers of an even number of monomers seem to
be more prevalent than those of odd oligomeric number.

Figs. 2(a)-(d) show that the current state of the 3D com-
plex database favors proposing homo-oligomers of cyclic
symmetry over those of dihedral symmetry. Proposed sym-
metric homo-oligomers for a given monomeric structure are
also likely to have a small and even number of monomers.

The functionality associated with the 3D com-
plex database allows extracting complexes according to
oligomeric number and symmetry. This functionality is im-
portant, as it facilitates extracting from the database the sub-
set of symmetric homo-oligomers. While queries with a
given monomeric structure by Espreso are not limited to
homo-oligomers of a specific symmetry class, narrowing the
scope of the search may be useful. Inexpensive wet-lab ex-
periments can detect symmetry or approximate oligomeric
number without the need to determine complex structure in
detail. If such information is available, the search can focus
on symmetric homo-oligomers with the properties observed
in the wet lab.

Since queries by Espreso focus on symmetric homo-
oligomers, their distribution in the 3D complex database is
analyzed in more detail. Fig. 3(a) plots the number of homo-
oligomers as a function of monomeric size. Monomeric
size is defined as the number of amino acids in a monomer.
Figs. 3(b)-(c) focus on homo-oligomers of cyclic and di-
hedral symmetry, respectively. As expected, Fig. 3 shows
that symmetric homo-oligomers in the database prevalently
contain small monomers. The current state of the database
seems to better support queries with small monomers.

The distribution of homo-oligomers as a function of
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Figure 2: (a) plots the number of complexes in logarithmic scale as a
function of oligomeric number. (b) extracts homo-oligomers. (c) and (d)
focus on homo-oligomers of cyclic and dihedral symmetry, respectively.

monomeric fold is detailed in Table 3.1. Fold here refers to
the content of secondary structure segments. An interesting
feature emerges. Monomers that contain exclusively β-
sheets are under-represented in the database. This trend
persists on symmetric homo-oligomers. Symmetric homo-
oligomers, whether cyclic or dihedral, are dominated by
monomers that contain both α-helices and β-sheets. The
results in Table 3.1 suggest that querying the database with
a monomer containing only β-sheets will be limited by the
scarcity of complexes with such monomeric folds.

Fold α β α/β
Cyclic Symmetry 614 94 8231
Dihedral Symmetry 93 39 2481
Homo-oligomers 824 138 11117

3.2 Employing a Backbone Representation Espreso
does not consider all atoms of a monomer when computing
projection coordinates of a monomeric structure. Instead,
the method considers only the cartesian coordinates of the
backbone atoms of a protein chain. The backbone atoms
include the N , Cα, C, and O main-chain atoms shared
among the twenty classic amino acids. There are several
reasons for employing a backbone-resolution representation
of a monomeric structure. First, structures resolved in
the wet lab can be incomplete. There is often missing
information on the cartesian coordinates of side-chain atoms.
In addition, side-chain atoms are more flexible in protein
structures. While the backbones of monomers in a complex
may not be able to move as freely, local fluctuations of side-
chains can be accommodated in a complex.

3.3 Representing a Complex Let n be the oligomeric
number of a complex. The complex consisting of n
monomers can be denoted by U [n] = {U1, . . . , Un}. Ui

refers to the ith monomer, for 1 ≤ i ≤ n. Homo-
oligomers of n monomers that exhibit the cyclic symme-
try are said to belong to the Cn class, whereas those that
exhibit the dihedral symmetry are said to belong to the Dn
class. For instance, the GroEL chaperonin shown in Fig. 1
belongs to the C7 class. While the 3D complex database
includes single monomers, they are removed from consider-
ation here. The Espreso method focuses on finding com-
plexes of more than one monomer that can accommodate a
given monomeric structure.

3.4 Projecting a Monomeric Structure Employing only
the {x, y, z} cartesian coordinates of the backbone atoms
of a monomer Ui, Espreso projects these coordinates
onto a low-dimensional vector pi. The projection builds
on the one proposed in [33] for rapid comparison of ligand
structures. Using the backbone coordinates of a monomer,
the projection procedure designates four atoms to serve as



(a) (b) (c)
Figure 3: (a) plots the number of homo-oligomeric complexes as a function of monomeric size Msz , where Msz refers to the number of amino-acids
in a monomer. The complexes are split according to symmetry, cyclic in (b) and dihedral in (c).

reference atoms: the centroid (ctd), the atom closest to the
centroid (cst), the atom farthest from the centroid (fct), and
the atom furthest from the fct atom (ftf). These four atoms
capture the center and corners of a structure.

Employing the above four atoms as references, distances
of all other atoms are then computed from the references.
Let us denote the vector of distances from the centroid ctd
as {dctd}, that from the cst atom as {dcst}, that from the
fct atom as {dfct}, and that from the ftf atom as {dftf}.
These four vectors contain distributions of distances from
the four reference atoms. The work in [33] represents the
four distributions through a 12d vector by extracting the first
three momenta of each distribution.

The first three momenta computed over a distribution
refer to the mean, variance, and skew, respectively. For
instance, the three momenta computed over {dctd} are de-
noted by µ1

ctd, µ2
ctd, and µ3

ctd, where µ1
ctd = 〈dctd〉, µ2

ctd =
〈dctd − µ1

ctd〉, and µ3
ctd = 〈dctd − µ2

ctd〉. It is worth noting
that various definitions exist for the skew. The one employed
here is the simple skew of a distribution.

Espreso employs eight out of the twelve projection
coordinates. The third momenta are removed from consid-
eration. Computing the third momenta over structures of
identical monomers in a symmetric homo-oligomer revealed
often significant differences. While almost identical ligand
structures in [33] had small deviations due to the small num-
ber of degrees of freedom in them, in structures of identi-
cal monomers even slight backbone fluctuations can signifi-
cantly affect the third momenta. Since the skew is very sensi-
tive to slight backbone fluctuations, the method extracts only
the first and second momenta. A monomeric structure in this
work is therefore projected on an 8d vector.

3.5 Computing Geometric Similarity Employing the
above momenta, a monomeric structure Ui is represented
(in its projected form) through the 8d vector pi = {µ1

ctd,

µ2
ctd, µ1

cst, µ2
cst, µ1

fct, µ2
fct, µ1

ftf , µ2
ftf}. The similarity be-

tween two monomeric structures Ui and Uj is computed in
the projected space over their respective projection vectors
pi and pj . The similarity score employed here adapts the
one proposed in [33]. Operating on 12d vectors pi and pj ,
the score in [33] was Sij = 1

1+ 1

12
·
P

12

k=i |pi[k]−pj [k]|
.

The Manhattan-based similarity score Sij in [33]
reaches 1 when the 12d vectors are exactly the same and 0
when these vectors are most dissimilar. Differences are aver-
aged among all twelve coordinates. The mean, variance, and
skew of all distributions are considered equally important.

3.6 Proposing a New Similarity Score The similarity
score in [33] works well on mostly rigid small ligands, as
supported by the results presented in [33]. As mentioned
above, backbones of long protein chains are more flexible.
However, slight backbone fluctuations should not adversely
affect the similarity among two mostly identical monomeric
structures. A new similarity score Sij is proposed here
that employs only the first and second momenta of the four
distance distributions in a monomeric structure.

The proposed score normalizes differences between
corresponding momenta of projections pi and pj of two
monomeric structures Ui and Uj . Normalization is intro-
duced to properly scale differences between corresponding
momenta. However, no a priori knowledge is available on
the possible range of values of the momenta. Therefore, the
normalization in the proposed score scales differences by the
maximum value between the compared momenta. Specif-
ically, the similarity score proposed here and employed by
Espreso to compare two monomeric structures is:

Sij =
1

1 + 1
8 ·

∑8
k=i

|pi[k]−pj [k]|
max{|pi[k]|,|pj [k]|}



3.7 Estimating Self Similarity in a Symmetric Homo-
oligomer Given a symmetric homo-oligomer U [n] =
{U1, . . . , Un}, 8d projections of its monomers result in the
set {p1, . . . , pn}. One of the monomers can be arbitrarily
chosen to be the representative. That is, its projection p1 is
associated with the complex so that queries with p1 will cap-
ture the complex U [n]. To allow for the fact that there may
be slight deviations among monomers even in a symmetric
homo-oligomer, an average deviation 〈ε〉 is maintained. This
deviation is a self similarity score that averages over the set
{S12, . . . , S1n} of similarity score of all n − 1 monomers
from the one chosen as reference.

(a)

(b)
Figure 4: The x axis in (a) and (b) iterates over homo-oligomers of
cyclic and dihedral symmetry, respectively. The y axis plots the self
similarity between the monomers in a complex, averaged over the number
of monomers as described in the self similarity score defined above.

The self similarity score is defined as 1
n−1 ·

∑n
j=2 S1j .

Figs. 4(a)-(b) plot this score computed over symmetric

homo-oligomers. The plots show that the lowest self simi-
larity value is higher than 0.5, with most of the symmetric
homo-oligomers reaching self similarity values of 0.9− 1.0.
The results on the self similarity value of symmetric homo-
oligomers confirm that the similarity score proposed in this
work captures well the equivalence within rigid-body trans-
formations of identical monomers.

3.8 Putting it All Together: In summary, Espreso first
extracts all symmetric homo-oligomers from the 3D complex
database. The extracted subset is pre-processed to associate
a representative 8d projection vector and average deviation
value with each symmetric homo-oligomer. An 8d projection
vector q is computed on the monomeric structure to be
employed in the query. The method scans over the processed
subset, computing the similarity score between q and the
representative projection of each complex. If this score is
within a designated threshold, the complex is proposed as
viable for accommodating spatial replications of the input
monomeric structure. It is worth mentioning that various
thresholds from 0.6 to 1.0 are employed. The lower bound
is set to 0.6, because the lowest self similarity value 〈ε〉
obtained over the symmetric homo-oligomers is around 0.56.

3.9 Implementation Details: Espreso is implemented
in Python and C++. Experiments are run on an Intel
Core2 Duo machine with 4GB RAM and 2.4GHz CPU.
Pre-processing of the database takes about 0.2 seconds per
complex, which amounts to under 25 minutes for about
7, 000 complexes. The majority of the time, 14/25 minutes,
are spent in unzipping PDB coordinate files corresponding
to the complexes. Querying the pre-processed database
with a monomeric structure takes about 0.48 CPU seconds.
As a result, large-throughput queries of the pre-processed
database with a list of 36, 512 non-redundant PDB chains
(whose extraction from the PDB is detailed in section 4)
amount to 4.87 CPU hours.

4 Results
Espreso is first applied to propose symmetric homo-
oligomeric structures on seven protein monomers of known
structure. The seven monomers are chosen to span different
lengths and folds. These monomers have diverse functional
roles in cells. They serve as antibodies, potassium channels,
kinases, and chaperones.

The monomers include the mouse monoclonal antibody
D1.3 (PDB id 1a7n), a C2 dimer of β monomers of 107
amino acids (aas) each [42], the transmembric domain of
human glycophorin A (PDB id 1af7o), a C2 dimer of α 40-aa
monomers [43], the GP31 co-chaperonin from bacteriophage
T4 (PDB id 1g31), a C7 heptamer of mostly β 107-aa
monomers [44], the nucleoside diphosphate kinase (PDB id
2dxd), a D3 hexamer of α/β 154-aa monomers [45], the
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Figure 5: (a2)-(g2) shows the number of hits obtained for different query structures over varying thresholds of similarity. The query structures are shown
in (a1)-(g1) in their PDB-available complexes. The ribbon representation is employed, and different colors are used to denote the different monomers.



HSP60 bacterial chaperonin GroEL (PDB id 1grl), a C7
heptamer of α/β 107-aa monomers [46], the N-terminal
domain of the voltage-gated potassium channel (PDB id
1qdv), a C4 tetramer of α/β 99-aa monomers [47], and the
human phospholamban (PDB id 1zll), a C5 pentamer of α
52-aa monomers [48].

The chosen monomers exist in symmetric homo-
oligomeric complexes in cells, as Figs. 5(a1-g1) show
through the PDB-available structures. The structure of a
monomer of each of these proteins is used to query the
database, as detailed in section 3. The number of complexes
that Espreso proposes as viable over different thresholds
of similarity is plotted in Figs. 5(a2-g2).

Figs. 5(a1)-(g1) show that Espreso proposes symmet-
ric homo-oligomers for most monomers, even for similarity
thresholds above 0.9. The transmembric domain of human
glycophorin A presents a more challenging case. The num-
ber of complexes whose monomeric structures are similar to
the all α monomer of this protein falls sharply with increas-
ing similarity threshold. It is worth mentioning that most
of the monomers used for the queries do not populate com-
plexes in the 3D complex database.

Analyzing symmetries of proposed homo-oligomers re-
veals that Espreso captures the native symmetry classes.
On the mouse monoclonal antibody D1.4, a C2 dimer in its
native state, Espreso captures the C2 symmetry on 85% of
the symmetric homo-oligomers proposed at the highest sim-
ilarity threshold of 0.95. On the transmembric domain of hu-
man glycophorin A, a native C2 dimer, Espreso captures
the C2 symmetry on 55% of the symmetric homo-oligomers
proposed at the second-highest similarity threshold of 0.9
(only one complex is proposed at 0.95). On the nucleo-
side diphosphate kinase, a native D3 hexamer, Espreso
captures the D3 symmetry on 30% of the symmetric homo-
oligomers proposed at the highest similarity threshold of
0.95. The rest of the proposed complexes for this monomer
split between 63% D2, 5% D5, and 2% D6 symmetries.

To assess the ability of Espreso to compute sym-
metric homo-oligomers at a large scale, the method is em-
ployed to query the pre-processed database of symmetric
homo-oligomers with a non-redundant set of protein chains.
The set is extracted from the PDB through the PISCES
server [49], which makes available various pre-compiled
lists culled from the January 13, 2009 version of the PDB.
The list of protein chains used here is the pdbaanr list.

The pdbaanr list gives unique entries to non-redundant
sequences across all PDB files. Redundant chain ids from
all other PDB files are recorded at the end of the title of the
representative chain entries. Representative chains are then
chosen based on the highest resolution structure available
(if the structure is obtained through X-ray crystallography)
and the best R-values (if it is obtained through NMR).
Priority is given to X-ray structures; non-X-ray structures

are considered only after X-ray structures. The resulting list,
employed here to represent a non-redundant subset of the
PDB, contains in the end 36, 512 chains.

The structure of each chain in this non-redundant set is
used to query the database at various thresholds of similarity
from 0.6 to 0.95. The number of hits, symmetric homo-
oligomers obtained at each similarity threshold, is recorded
and plotted in Fig. 6 for each of the chains. Hits obtained at
different similarity thresholds are plotted in different colors.

Figure 6: The x axis iterates over all 36, 512 chains in the non-
redundant set representative of the PDB. The y axis plots the number
of symmetric homo-oligomers proposed by Espreso on each chain at
different similarity thresholds of 0.6, 0.7, 0.8, 0.9, and 0.95. The number
of hits obtained at the different thresholds is plotted in different colors.

Fig. 6 highlights that Espreso is non-discriminating at
low similarity thresholds. However, the number of hits drops
sharply with increasing threshold. The maximum number of
complexes proposed for a chain drops sharply from 8206,
7666, 4952, 1816, to 447 as the similarity threshold increases
from 0.6, 0.7, 0.8, 0.9, to 0.95. The number of chains for
which Espreso cannot propose more than 1 complex also
drops from 5, 32, 176, 1594, to 7996with increasing similar-
ity threshold. These results suggests that the similarity score
employed by Espreso is discriminating at high thresholds
and limits the number of complex geometries considered
from the 3D complex database.

5 Discussion
The Espreso method proposed in this work is a first step
towards designing novel complexes given the structure of a
protein monomer. The method computes symmetric homo-
oligomeric protein complexes by searching over a database
of experimentally-determined naturally-occurring complex
structures. Geometric similarity between the structure of a
given monomer and the structure of the replicated monomer
in a symmetric homo-oligomer is employed as the main



determinant of which complex geometries can accommodate
a given monomeric structure.

The geometric similarity measure proposed in this work
operates on a low-dimensional space where monomeric
structures are projected. The projection coordinates em-
ployed by Espreso build on the ones proposed in [33], but
take into consideration possible fluctuations of backbones
that can occur even in monomers of a symmetric homo-
oligomer. The similarity measure proposed here captures
well the overall geometric similarity of monomers in such
complexes while filtering away noise in the projection coor-
dinates due to possible backbone fluctuations.

The quality of the proposed complexes depends not
only on the geometric similarity criterion employed in this
work, but also on the richness of the 3D complex database.
Various statistics compiled over this database show that the
current set of deposited complex structures are dominated
by cyclic homo-oligomers of small and even oligomeric
number and small monomers of predominantly α/β folds.
As research on protein complexes advances, the richness
of databases on protein complexes is expected to increase.
Further deposition of complex structures in databases will
allow enlarging the search space and improving the quality
of proposed symmetric homo-oligomers by Espreso.

Further refinement that employs more than geomet-
ric considerations may also improve the quality of the
complexes proposed by Espreso. Since complexes are
larger than single protein chains, refinements that employ
physically-realistic energy functions are computationally de-
manding. They can be conducted by detailed studies focused
on characterizing specific complexes of particular biological
interest. Implementation of efficient coarse-grained scoring
functions to improve the quality of proposed complexes pro-
vides a natural direction of future work.

Additional considerations beyond energy may improve
prediction accuracy. Interaction interfaces in a proposed
complex can be analyzed and compared to existing func-
tional interfaces and motifs in protein structures. Interfaces
that are commonly captured among protein structures may
provide an additional criterion for properly ranking symmet-
ric homo-oligomers proposed by Espreso.

In the context of the Espreso method proposed in this
work, an enhanced complex database and further refinements
of proposed complex structures have exciting implications
for accurate in-silico design of protein complexes. Com-
plexes designed in the dry lab that go through various re-
finements and filtering stages can provide good candidates
for further characterization in the wet lab, where properties
such as stability and biological function can be tested in bi-
ological environments. Complexes designed to function as
molecular machines are of particular interest, since they can
potentially impact the design of both therapeutics and func-
tional materials with novel properties.
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