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Abstract

Traditionally, Network Intrusion Detection Systems
(NIDS) inspect packet header and payload data for ma-
licious content. While each system is different, most
NIDS perform limited analysis on network streams and
network protocols. Unfortunately, current NIDS are typ-
ically susceptible to evasion through network protocol
encoding, such as base64 encoding of SMTP/MIME or
gzip compression of HTTP. In addition, malicious desk-
top application payloads (e.g., PDF documents, Flash
multimedia files) are beyond the inspection capabilities
of popular NIDS.

To address these limitations, we introduce Ruminate,
a scalable object-centric traffic inspection and analysis
architecture. Ruminate provides a distributed platform
for deep analysis of network payload content. This in-
cludes full decoding of network protocols and recur-
sive extraction of client application objects transferred
over the network. While traditional NIDS utilize static
packet load balancing to provide scalability, Ruminate
employs dynamic load distribution of reassembled net-
work streams and embedded objects, outsourcing the
heavy processing to other processors or connected hosts.
Therefore, high latency or computationally expensive
analysis can be performed on commodity servers. Fur-
thermore, our approach empowers system administra-
tors to provision resources and preferentially treat traf-
fic not only depending on the packet header but also
on the data objects it carries. To achieve this, each ob-
ject inspection algorithm is implemented as a separate
component or service offered through a highly scalable
producer-consumer architecture. We demonstrate using
real-world traffic that our load balancing is far superior
to existing techniques. This is because its granularity de-
pends on the reconstructed objects rather than packet or
simple stream analysis. Unlike existing systems, Rumi-
nate can prevent NIDS evasion that leverages encoding
or compression of malicious objects in network proto-
cols, desktop application file formats, or encapsulation
within other objects.

1 Introduction

Network-born attacks continue to move up the stack [29]
from network layer attacks against remotely accessible
system daemons to multiply encoded content attacks tar-
geting desktop applications. Indeed, vulnerabilities in
popular desktop applications, such as document readers
(Adobe PDF and Microsoft Office), multimedia (Adobe
Flash and Apple Quickime), and browsers (Internet Ex-
plorer and Firefox) are chief among the remote exploita-
tion mechanisms. Some sources indicate that the num-
ber of vulnerabilities exploited in user applications ex-
ceeds the number of vulnerabilities in operating sys-
tems [13, 22]. In addition, targeted attacks often leverage
a very high level of social engineering, further advancing
these attacks up the stack from exploitation of techni-
cal vulnerabilities to exploitation of user behavior. The
recognition of highly-persistent targeted attacks, includ-
ing those attributed to the Advanced Persistent Threat
(APT) [11], as an important emerging attack class pro-
vides a strong impetus for the capability to detect attacks
that exploit client application vulnerabilities and social
engineering. Maintaining a defense against persistent
attackers also requires extensive network forensics ca-
pabilities allowing for correlation of related activities
spanning large time frames.

Current Network Intrusion Detection Systems
(NIDS) [26, 32, 24, 33] are focused on inspecting packets
and, in some cases, offer pattern matching for popular
protocols. However, they steer-off from extracting
embedded objects from streams and detect application
attacks as they traverse the network. Exposing attacks
that hide inside application objects requires reordering,
parsing, and decoding that involves many packets.
Extracting the object from the network often requires
recursive decoding and de-compression in network
protocols, which obscure packet payloads from direct
analysis. For instance, the base64 encoding used in
MIME or the gzip compression used in HTTP render
the extraction and inspection of network traffic a
computationally hard problem. Another complication
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stems from the fact that some of the extracted objects
can often contain other embedded objects. For example,
an attack that exploits a vulnerability in a multimedia
renderer may be embedded in an otherwise innocuous
container such as a document. The exploit is auto-
matically triggered upon opening of the document by
calling the multimedia renderer. To make matters worse,
successfully analyzing packets as they traverse the
network often requires that both network protocols and
client application objects be parsed and decoded. This
level of analysis is currently not supported in a scalable
fashion by NIDS.

In this paper, we introduce Ruminate, an object-
focused inspection and analysis architecture. Ruminate
provides a platform for performing analysis of client ap-
plication objects embedded within network traffic. The
primary goal is complete decoding/decapsulation of
network protocols and client objects. As such, recur-
sive analysis is supported. Analyzers are built using
a service-oriented approach wherein each analyzer is
designed to accept a given data type, which can extract
embedded objects for further analysis. For example, net-
work packets are reassembled into TCP streams, which
are then are processed by network protocol analysis ser-
vices such as HTTP and SMTP/MIME. Payloads are
analyzed by their respective parsing services (e.g., PDF
document, ZIP archive). These services implement ex-
tensive parsing and transaction audit log generation, in
addition to other possible detection mechanisms such
as signature matching or dynamic analysis. Ruminate
identifies any nested objects and submits them to the
appropriate service for analysis. For example, the ZIP
archive analysis service extracts compressed objects in-
cluding JPEG images, PDF documents, or even other
archives for recursive analysis. Ruminate seeks to en-
sure complete recursive analysis, if desired, in order to
counter evasion through network or embedded-object
encoding.

Ruminate can prevent NIDS evasion attacks that em-
ploy: a) encoding or compression of malicious objects in
the network protocol (e.g. HTTP gzip) b) encoding or
compression of embedded file formats (e.g. compression
in PDF) and c) encapsulation within other objects (PDF
inside a ZIP file). We do so by performing recursive
decoding and unpacking of protocols and embedded
objects. Though Ruminate does not introduce any new
detection techniques, it provides a scalable and modular
framework for network payload analysis. To measure
the efficiency of our approach, we have implemented a
prototype of Ruminate. Furthermore, we installed Rumi-
nate on a small cluster of commodity machines and we
were able process and analyze the network traffic gener-
ated by the users of an entire university campus without
any packet loss. Our results show that we can efficiently
use commodity hardware to fully decode and audit net-
work protocols, and to inspect any and all objects that
leave or enter an organization. We also demonstrate

the ability of Ruminate to perform object inspection and
detection on live network traffic. We demonstrate profi-
cient detection of malicious PDF documents, which re-
quires network protocol decoding, client application spe-
cific file format parsing, and computationally-expensive
analysis.

Moreover we were able to demonstrate that our ap-
proach is capable of providing scalable detection of
application-level malfeasance. For the empirical evalua-
tions of Ruminate, we used datasets collected from the
Internet router of a 30,000-student university campus,
consisting of 973,718,083 packets and totaling 737 Gb.
With this approach, we managed to load-balance 64 con-
nected nodes and to detect malware that spanned the
entire campus connection. Our goal was to show that a
framework like Ruminate has become a necessary tool
to complement the operation of current signature-based
NIDS in ferreting out known threats.

In summary, our contributions are:

• A scalable object-centric network payload analy-
sis architecture that is modular and enables the
distributed deep inspection of network traffic on
commodity hardware. This framework includes dy-
namic load-balancing of transport layer streams, full
network protocol decoding, and a service oriented
approach to recursive embedded object analysis.

• Ruminate acts as the conduit between different
packet, flow, object decapsulation, and object analy-
sis mechanisms enabling the extraction and analysis
of deeply embedded data objects. Ruminate read-
ily integrates with existing detection mechanisms,
including those not designed specifically for NIDS.

• Ruminate empowers network and system operators
to load-balance network traffic based on stream con-
tent rather than mere packet header and protocol
information. Resources and detection mechanisms
can be adjusted dynamically.

2 Related Work

The majority of recent NIDS research [33] focuses on
improving the performance of NIDS through improving
the performance of detection mechanisms such as signa-
ture matching [26, 32, 24]. For example, improvements
over non-deterministic finite-state automata (NFA) are
demonstrated by Yu et al. [38] through the use of de-
terministic finite-state automata (DFA) and by Smith
et al. [30, 31] through the application of extended fi-
nite automata (XFA). Duncan and Jungck [15] extend
the capabilities of special purpose hardware and the
packetC language, allowing additional operations and
data storage mechanisms to be implemented efficiently.
While this research offers faster implementation of ex-
isting detection techniques, namely signature matching
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and packet inspection, there is little focus on providing
functionality necessary for embedded object analysis.
Another thread of research has focused on string and
regular expression matching for network intrusion de-
tection [34, 36, 19, 21, 16]. All these approaches, while
scalable, cannot offer robust protection against adver-
saries that target desktop applications and end users.
Indeed, their matching mechanisms can be easily by-
passed through commonplace encoding, compression,
or other object embedding techniques. To make mat-
ters worse, in most cases, their filters can be easily miss
attacks that extend beyond a single packet.

Other research focuses on improving the performance
of NIDS on commodity hardware through improve-
ments in scalability. Paxon et al. [27] and Vallentin et
al. [35] demonstrate significant progress towards a NIDS
cluster that can scale through the use of parallel NIDS
analysis nodes but which still supports analysis across
all nodes. Various load balancing schemes based on
packet header information are explored including both
network layer and transport layer schemes. This system,
based on Bro running on commodity hardware, demon-
strated the capability to scale beyond the capacity of a
single NIDS instance using commodity hardware, with
the exception of special purpose hardware for the load
balancing.

Deri and Fusco [12] implemented an extension to their
PF RING Linux kernel modification to better support
multithreaded or multiple process analysis. The new
extension, called threaded network application program-
ming interface (TNAPI), allows multiple processor cores
to service independent packet queues simultaneously
and efficiently provide network packets to multiple inde-
pendent monitoring applications without the bottleneck
of a single kernel socket. An open issue identified is
that the effectiveness of this mechanism is reliant on
even distribution of load by the packet header hashing
mechanism. Gu et al. [17] presents a very short study
on the issue of transport layer load balancing algorithms
as applied to NIDS and demonstrates that alternative
mechanisms for load balancing, including ones that re-
quire tracking connection state and/or knowledge of
load on individual nodes, can provide more efficient
load balancing than more naive approaches. Ruminate
demonstrates the value of implementing a more granu-
lar load distribution, especially dynamic load balancing
of transport layer sessions and embedded objects.

Furthermore, there is a plethora of mechanisms that
attempt to automatically classify network packets and
identify the corresponding protocol or attribute the com-
munication to a specific application [23, 10, 18, 25, 8, 14].
In addition, there are techniques that attempt to iden-
tify the network traffic characteristics using visual mo-
tifs [20]. All of the above techniques can be used as a
component in our modular architecture and feed proto-
col specific analysis engines that can further process the
contents of the streams extracting objects and data for

subsequent inspection. Such engines include [9, 28, 37]
among others can be applied in parallel to streams of
packets after a protocol has been assigned to this stream.
In addition, VRT Razorback [6] advances an alternative
implemention of a client application object analysis plat-
form allowing the use of arbitrary engines, but does
not present a mechanism for comprehensive and sca-
ble analysis of network protocols in order to extract all
embedded objects from network traffic. Our aim is to
make these systems operate under the same umbrella by
becoming the “glue” that ties them together in a scalable
and resource aware architecture.

3 System Architecture

Ruminate provides a scalable architecture for perform-
ing packet re-assembly and re-ordering, decapsulation,
decompression, and analysis of desktop application ob-
jects nested within network traffic. Our primary goal
was to achieve full decoding/decapsulation of network
protocols through recursive analysis. To that end, we
built a consumer-producer, service-oriented system con-
sisting of individual analysis engines that can parse and
extract different protocols, data types, and objects. Anal-
ysis engines are fitted in a service-oriented approach
where each analyzer is designed to accept a given data
type, perform analysis and alerting, and submit any em-
bedded objects to the appropriate service. For example,
network packets are reassembled into TCP streams, that
are then processed by network protocol analysis services
such as HTTP and SMTP/MIME. Packets and proto-
cols are redirected and are processed by their respective
parsing services at different levels. For instance, HTML
stream, email, PDF document, a ZIP archive. Some of
these services implement extensive transaction audit log
generation in addition to other possible detection mech-
anisms such as signature matching or dynamic analysis.
Since some objects may contain other objects, objects
extracted from an analysis service are submitted to the
appropriate service for further analysis. For instance,
the ZIP archive analysis service can decompress objects,
such as JPEG images, PDF documents, or even other
archives for recursive analysis. Ruminate seeks to en-
sure complete recursive analysis, if desired, to counter
evasion through network or embedded object encoding.
While not required in real-world testing and usage, lim-
its or prioritization could be used to mitigate the effects
of resource exhaustion and “blinding” attacks.

One of the design tenets for Ruminate was the ability
to operate on commodity servers, including cloud archi-
tectures. This constraint requires that Ruminate provide
more efficient load distribution mechanisms than are
currently used in NIDS, especially as the complexity and
latency of the analysis performed increases. An architec-
ture that can utilize existing analysis mechanisms with
as few modifications as possible is also desirable. The
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service-based approach accommodates this and allows
for analysis mechanisms to be implemented in various
programming languages or even on different platforms.
The desire to leverage off-the-shelf hardware and soft-
ware is a driving factor behind the architecture of Rumi-
nate. This architecture also supports agility in detection
capabilities and allows for services to be modified or
added by changing the embedded-object analyzers that
apply across all protocols.

To facilitate analysis on network payload data, includ-
ing computationally-expensive or high-latency analysis,
a more efficient load-balancing mechanism is required.
The current NIDS load-balancing mechanisms operate
on packets and distribute load to analysis pipelines that
are largely independent. The efficiency of this load dis-
tribution method breaks down as the number of analysis
pipelines increases, as the latency of analysis increases,
or as the variance in the complexity of analysis increases.
Conversely, Ruminate provides for dynamic load distri-
bution at the network stream and object level.

Ruminate separates the processing of each object type
into modules or services. For example, packets are
reassembled into streams by one service, another ser-
vice implements each network application protocol (e.g.,
HTTP, SMTP), and each client application payload (e.g.,
PDF documents, ZIP archives) are processed by a third
service. The separation of these tasks into discrete ser-
vices provides various advantages, including the ability
to perform a more granular load distribution, as well as
a flexibility in implementation and infrastructure. Since
services operate on a single object type (and only on that
type), we can take advantage of the locality of reference
of data regarding the target object type. This can help
to simplify the problem of inter-analyzer coordination,
thereby facilitating cross-object analysis. After pack-
ets are reassembled, the resulting network streams are
placed into queues according to protocol. Each queue
can be prioritized relative to the others. Each stream
that is ready to be processed is then passed to an avail-
able network application analyzer. Network analyzers
subscribe to feeds of streams based on type and indi-
cate to the stream reassembly component when they are
available to processes additional streams. If a network
analyzer processes a stream containing an embedded
object, that object is extracted and made available to the
appropriate object analyzer server. Each object analysis
service parses objects, creates a transaction log that can
be audited, extracts any embedded objects, and performs
detections such as signature matching. The methods of
load distribution for embedded object analyzers are not
proscribed by Ruminate. The reference object analysis
services presented here (ZIP archive and PDF document)
both use a web service interface, which allows them
to leverage web service load distribution mechanisms.
While not explicitly demonstrated here, this architecture
allows for different services to operate simultaneously
on the same object, and it provides parallelism by sepa-

rating the various layers of analysis.
Ruminate provides a platform that is capable of uti-

lizing existing detection and analysis mechanisms while
agilely deploying new ones. Ruminate does not con-
tribute any new or unique detection mechanisms. It is
designed to support existing detection and analysis tech-
niques, such as signature matching, statistical and other
forms of anomaly detection, protocol transaction audit-
ing, and dynamic run-time analysis. Ruminate provides
the advantage of being able to perform these analysis
techniques on payload objects transferred through the
network, particularly on objects that can not normally be
analyzed with conventional NIDS due to complications
such as obfuscation through compression or encoding,
high latency analysis, or analysis specific to client appli-
cation file formats.

In addition to facilitating deep network layer and em-
bedded object analysis in real time, Ruminate provides
facilities for extensive transaction auditing through meta-
data extraction, normalization, and collection. An im-
portant aspect of this meta-data collection is that each
service can collect meta-data for the data type that it
processes. Therefore, in addition to collecting network
layer audit logs, Ruminate collects client application au-
dit logs and can perform expensive operations to collect
the required data, such as calculating MD5 hashes of
payload objects. Collection of this type of meta-data pro-
vides valuable network forensics capabilities, which are
vital to incident response efforts. These capabilities also
aid in defense efforts against persistent attack groups
that are unlikely to be detected by community-wide sig-
natures but historically demonstrate similarities between
successive attacks.

4 Implementation

Ruminate is implemented as software that runs on com-
modity hardware and software. Ruminate is open source
and will be available for download following publi-
cation. Figure 1 shows Ruminate as currently imple-
mented.

The first portion of Ruminate is a component that per-
forms packet capture, stream reassembly, and stream dis-
tribution. Packet capture and any other desired packet
filtering can be performed at that stage. In addition,
Packets are reassembled into streams that are buffered
in memory until the stream is closed or terminated for
another reason such as a timeout. This component of Ru-
minate is based leverages heavily the packet processing
capabilities of Vortex [5]. Completed network streams
are placed into queues by protocol, which can be priori-
tized if desired. Streams are removed from each queue
on a first-in-first-out (FIFO) basis to be processed by the
next available application layer analyzer.

Distribution of streams to analyzer nodes is done dy-
namically using a publish-subscribe model. Network an-
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Figure 1: Rumiante Components

alyzers subscribe to feeds of streams using a stream sub-
scription and transfer component. This component sub-
scribes to streams and then transfers assigned streams
to shared memory for analysis by the appropriate net-
work protocol analyzer. The stream subscription com-
ponent operates by connecting to the stream reassembly
component and requesting streams of a certain type, ex.
HTTP. The stream subscription component indicates to
the stream reassembly component when it is ready to
receive another stream for analysis. Hence, an analyzer
node is not assigned a new stream until it is ready to
process it. Network analyzers can arbitrarily connect to
and disconnect from the stream reassembly component,
making the load distribution truly dynamic. The num-
ber of network analyzers can vary over time without
affecting the continuous operation of Ruminate.

Under normal operating conditions, a sufficient num-
ber of network analyzers are allocated to ensure that
streams can always be distributed immediately. In the
event that load spikes occur or the number of avail-
able network analyzers becomes insufficient, streams
are buffered in a FIFO queue. If the size limit for the
queue is exceeded, the streams are dropped without be-
ing analyzed, similar to packets being dropped by a con-
ventional NIDS. Ruminate does support the pipe-lining
of stream subscriptions, whereby a network analyzer can
request more than one stream at a time or can request
a new stream while simultaneously processing another.
In practice, however, this is unnecessary due to the low
latency of the high bandwidth links that are likely to be
used for transferring bulk network stream data.

Network application layer protocol analyzers process
network streams by parsing them to perform actions
such as normalization of transactions, generation of
transaction events, and extraction of embedded pay-
loads. Audit logs are created for every network applica-
tion layer event. These transaction events are not audited
internally to Ruminate, but the logs are centralized and
can be fed directly into log monitoring and correlation
engines. Analyzers for HTTP and SMTP/MIME are cur-
rently implemented in Ruminate. These protocols were
chosen due to their extensive use within most organiza-
tions and their preeminence as protocols through which
malicious objects are transferred.

The parser for HTTP normalizes and decodes HTTP re-
quests and responses, including all HTTP payload encod-
ing types such as chunked transfer encoding and gzip
compression. An event is created for each request/re-
sponse pair, including the population of data structures
that can be used for analysis and event audit. Currently,
no standardized mechanisms for defining event auditing
criteria exist in Ruminate, but these mechanisms could
easily operate on such normalized data structures. The
parsing and normalization of network transactions into
events that can be audited is similar to the processing
required for the detection model of Bro IDS. In Ruminate,
an audit log entry is created for each event. This log en-
try can contain whatever data is desired for auditing. As
implemented for demonstration purposes, audit events
include the HTTP method, the resource, and various
headers (e.g., the Host, Content-Type). Payload objects
are decoded from both requests and responses, and they
are then submitted to the object multiplexer for further
analysis. The event audit logs also contain meta-data
pertinent to the payload objects, such as the decoded
payload size and the MD5 hash of the payload.

On the other hand, the parser for email is broken into
two separate services: SMTP and MIME. These are im-
plemented separately since emails can be transferred
through various network protocols. The MIME com-
ponent can be used in conjunction with other network
protocol analyzers. Furthermore, exposing emails as an
object to be analyzed allows for the retention of emails, if
desired by the organization. As currently implemented,
the SMTP analyzer provides minimal functionality. Due
to privacy concerns, the SMTP parser does not provide
transaction logs containing highly-identifiable personal
data, such as email addresses. The MIME parser per-
forms extensive analysis of MIME-encoded emails. Sim-
ilarly to HTTP, the MIME analyzer provides meta-data
(e.g., attachment names, content-types) in audit logs.
The MIME analyzer extracts embedded objects in the
form of attachments or encoded email data and sub-
mits payloads to the object multiplexer for analysis. The
MIME transaction event logs include payload-relevant
data, such as size and MD5 hashes of embedded pay-
loads.

All embedded payload objects are routed through an
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embedded object multiplexer. This component has a
common interface used by all analyzers that can extract
other embedded objects so that each analyzer uses its
own instance of this multiplexer. As such, there is no
single bottleneck for embedded objects; the multiplexer
receives the objects and meta-data about their origin
from each analyzer. It uses libmagic of the file utility [2]
to perform inspection of each payload object and deter-
mine its type. Based on its determined type, origin, and
defined policy, the payload object is then submitted to
an appropriate service(s) for analysis. In addition to the
disposition of the payload object, the object multiplexer
provides audit logs of the result of the payload type de-
termination and other meta-data that can be determined
easily (e.g., image dimensions).

To demonstrate the type of embedded object analysis
that can be performed, a ZIP archive and a PDF analysis
service are implemented in Ruminate. The ZIP archive
service was selected because it is one of the most com-
mon types of embedded client application objects used
to contain other embedded objects. ZIP archives can
be used effectively to obfuscate malicious activity in
socially-engineered attacks. While the compression and
obfuscation of ZIP archives can help attackers evade
detection, the container is so popular and widely used
that opening a ZIP archive to access malicious content
provides minimal obstacle to users who are fooled by
social engineering and would have otherwise acted on
bare malicious content. The ZIP archive service provides
transaction audit data, including the name, size and
MD5 hash for every file in the archive. Files extracted
from the archive are submitted to appropriate scanning
services using the object multiplexer.

The other service currently implemented is a PDF scan-
ning service. PDF documents were selected because of
their ubiquitous use across network protocols, as well
as the large numbers of existing analysis techniques
and recent vulnerabilities. Many trojan PDF documents
leverage Javascript to trigger exploits. However, this
Javascript is often intentionally obfuscated. The PDF file
format allows for various methods to encode or com-
press document contents, which can serve as an evasion
mechanism. These factors, combined with network layer
encoding, make detection of trojan PDF documents us-
ing traditional NIDS mechanisms very difficult. Thor-
ough analysis of PDFs transferred through the network
requires decoding of many layers of encoding, compres-
sion, and obfuscation.

The detection mechanisms used in the PDF analy-
sis service include string matching, signature matching,
meta-data extraction, Javascript dynamic analysis, and
obfuscation-technique cracking. Simple string match-
ing is implemented using the GNU grep utility. More
advanced signature matching, some amount of PDF de-
coding, and some degree of heuristics are implemented
using ClamAV [1]. The meta-data contained in PDFs
(e.g. document title, author name, PDF creation utility,

creation date) are extracted using pdftk [4]. Javascript
decoding, dynamic analysis, and other miscellaneous
detections are implemented using jsunpack-n [3]. Lastly,
XORSearch [7] is used to search for strings obfuscated bu
techniques commonly used to evade signature detection
(e.g. XOR, ROL).

The services implemented in Ruminate provide valu-
able analysis capabilities that are not possible within
traditional NIDS due to their high latency or high com-
putational expense, as will be shown in Section 5. In
addition, the service-oriented architecture of Ruminate
allows for a simple integration of existing analysis utili-
ties regardless of attributes of the utility. The program-
ming language in which it was implemented, the native
interface, its API or underlying platform do not mat-
ter. For example, various components of Ruminate are
implemented in the following programming languages:
C/C++, Perl, Python, Java, and PHP. Therefore, Rumi-
nate is flexible, allowing the use of any existing imple-
mentations of detection mechanisms without adherence
to a strict API.

5 Experimental Evaluation

To quantify the performance and limitations of our ap-
proach, we performed a large set of experiments. First,
we compared the dynamic network stream load balanc-
ing mechanism implemented in Ruminate with the ex-
isting packet load-balancing algorithms used in conven-
tional NIDS. Second, we demonstrated why, in practice,
a stream load balance alone cannot perform optimally
due to (1) the ubiquitous use of network layer encod-
ing schemes and (2) the fact that variance in the com-
putational complexity that stream load balance entails
can create very disparate traffic load on the analysis
hosts. This stems from the fact that we are interested in
performing embedded object analysis that goes beyond
simple pattern matching. Third, we measured both the
performance overhead and detection capability from the
application of Ruminate on the traffic collected real-time
from a live network feed.

The data we used for the empirical evaluations of
Ruminate was collected from the Internet router of a
university campus with a student body of 30,000. More
specifically, the empirical evaluations comparing con-
nection load balancing techniques used a packet trace
that spanned a 24-hour period from midnight to mid-
night, local time, and consisted of 973,718,083 packets
totaling 737 GB. This packet trace was replayed for each
permutation of the stream load balancing parameters.
Section 5.2 refers to a collection of all PDF documents
that were transferred through the network during a time
period of about three days; this corpus comprises 44,921
PDF documents that total 24 GB of data. All evaluations
that demonstrate detection capabilities, the type of ob-
jects transferred through the network, and performance

6



Table 1: Specification of Servers Used in Evaluation

Server
Role

Total CPU
Type

CPU
Speed

Cores RAM

Front
End

1 intel
X5550

2.67GHz 16 72
GB

Analysis 4 intel
X3363

2.83GHz 4 8 GB

of the system were taken from a two-day observation of
Ruminate operating on live traffic. The approximate vol-
ume of this two-day live run was 1.6 billion packets and
1.4 TB of data. Since Ruminate currently implements
HTTP and SMTP protocol parsing, only TCP ports 80
and 25 were analyzed. (Counts above only include this
filtered data). The potential limitations of the data used
are addressed in Section 6.

We deployed our system prototype on a cluster of five
servers, the specifications of which are outlined in Ta-
ble 1. The front end node was used for packet capture
or for replay and stream reassembly. Protocol analysis
was performed on the analysis nodes. Due to an abun-
dance of excess capacity, embedded-object analysis and
log centralization were performed on the front end node.
The servers were connected with Gigabit Ethernet. In all
servers, we used Linux for the operating system.

5.1 Connection Load Distribution

We conducted experiments to measure the load balanc-
ing behavior of the dynamic stream-based load balanc-
ing over static hashing of packet header data. In the lat-
ter case, a static hash function applied to packet header
data is deterministic. Simulating the load distribution
based on static packet header hashing was performed
by operating on network flow records. Dynamic load
balancing distributes load based on the availability of
analyzer nodes. which varies based on the load expe-
rienced by each analysis node and is not deterministic.
Therefore, the empirical data for dynamic load distribu-
tion was obtained through actually distributing load to
analysis nodes and varying the parameters, such as the
number of nodes between replays of the same traffic.

To demonstrate the characteristics of packet level load
balancing, network flow data was extracted from the
packet capture trace using Argus. Load balancing was
simulated by distributing load (i.e. the amount of net-
work data in flow record) across analysis nodes using a
hash function on network and transport layer parame-
ters. A 5-tuple hash was used which included the source
IP, source port, destination IP, destination port, and trans-
port layer protocol (e.g., TCP) of the packets. MD5 was
used as the hash function. Load statistics were recorded
using measurement windows of 1s, 3s, and 5s. The byte
counts from the network flow data were scaled down by
a constant factor of 0.41 to allow the statistics from these

calculations to be directly comparable to those gathered
during the trials using dynamic stream load balancing.
Reasons for this data reduction include differences in
data sizes for packets and reassembled payload data
(due to a lack of packet headers, retransmissions only
being counted once, etc.) and to compensate for the
inability to fully reassemble some streams (due to lost
packets, imperfections in TCP reassembly routines, etc.).
In all cases, these parameters were chosen to represent
the best possible scenario for packet header hashing. For
example, 5-tuple hash was used instead of 2-tuple hash,
and MD5 was used as the hash function instead of a
weaker hash function.

While packet header hashing is static, dynamic stream
balancing results in streams being multiplexed to analy-
sis nodes based on availability. Full-length simulations
were run to accurately simulate dynamic stream-based
load balancing. The packet capture, stream reassembly,
and stream distribution functionality of Ruminate were
used in these evaluations. The packet captures are re-
played in real time on the front end node, which reassem-
bles and buffers streams then passes finished streams
to one of the analysis nodes based on their availability.
The analysis nodes simulate processing of the streams
by downloading the stream content and then processing
the stream data. In lieu of performing any actual pro-
cessing on the stream data, analysis was simulated by
sleeping a length of time commensurate with the size of
the stream, such that analysis was upper-bounded by an
arbitrary speed specified for the trial. Each analysis node
had the same maximum processing speed of approxi-
mately 100 Mbps per total number of analysis nodes in
the trial. The number of analysis nodes is held constant
throughout a given trial. In trials involving more than
four analysis nodes, multiple independent instances of
the analysis node software are run on a single physical
analysis server.

Figures 2 and 3 portray the results of simulations using
eight analysis nodes. These graphs depict the maximum
and mean load (measured in Mpbs) over the time of the
trial. Figure 2 shows statistics from 5-tuple static packet
load balancing. Figure 3 shows statistics from stream
based dynamic load balancing. The lines represent the
mean bandwidth each node is assigned at a resolution
of one hour. The points represent the maximum load
assigned to a node for a single measurement window
of five seconds during a given hour. Each node is rep-
resented by a point of unique shape. Figures 4 and 5
illustrate the same results when 64 analysis nodes were
used instead of 8.

Figure 6 shows the overall traffic for this packet trace.
The average total payload bandwidth for this packet
trace is 30 Mbps, but this number increases to about
65Mbps during the busiest portion of the day. It peaks
at 180 Mbps for a single 5s interval, but there are very
few 5s intervals when payload data over 120 Mbps is
observed. Note that despite static load distribution be-
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Figure 2: Static Load Balancing (5 second window)
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Figure 3: Dynamic Load Balancing

tween eight analysis nodes, it is common for a single
node to be assigned load up to and exceeding 50 Mbps.
Furthermore, when the number of analysis nodes is in-
creased to 64, there are still single analysis nodes as-
signed loads up to and exceeding 50 Mbps. Conversely,
in the dynamic load balancing trials, the load is dis-
tributed close to the desired rate of 100 Mbps divided by
the number of nodes. For example, with eight analysis
nodes, the upper bound of the load assigned to any node
is close to their individual capacity of approximately 12.5
Mbps. Similarly, with 64 analysis nodes, the maximum
load assigned to a given node remains under approxi-
mately 2 Mbps as desired.

Figures 7 and 8 demonstrate the maximum load seen
by any one node during a time window of the specified
length. The super-imposed line reflects the curvature of
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Figure 4: Static Load Balancing
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Figure 5: Dynamic Load Balancing

an ideal distribution (max bandwidth/number of nodes).
Note that in both cases of packet header load balancing,
the maximum load drops off dramatically at first, closely
following the ideal line. In the case of static load balanc-
ing, the maximum load line is basically horizontal after
eight nodes. On the other hand, in the case of dynamic
stream load balancing, the maximum load scales with
the number of nodes.

The results show that packet header load balancing,
while effective for a small number of nodes, can not
scale to very large numbers due to the variance in load
assigned to a single node. However, dynamic stream
load balancing provides very efficient scaling of analysis
to a large number of nodes in a NIDS cluster.

In practical terms, the use of static hashing means
adding more nodes to a NIDS cluster provides dimin-
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Figure 6: Overall Average Bandwidth

ished returns. A single node still has to be able to pro-
cess the maximum bandwidth that could be assigned
to it, or large amounts of packet loss must be accepted,
even if, on average, a given node processes much less.
Static header hashing can not scale to highly-parallel
clusters to perform computationally-expensive analysis
or leverage many processors with low individual capac-
ity. However, the dynamic stream based load balancing
of Ruminate provides a high level of scalability.

5.2 Variance in Analysis Techniques

Distributing load in a NIDS is further complicated when
the complexity or latency of the analysis performed by
the NIDS varies greatly. Conventional NIDS perform
analysis that has relatively low variance (e.g., signature
matching). Ruminate is designed to efficiently support
analysis across a wide range of latencies and computa-
tional complexities.

Many conventional NIDS are limited in their ability to
effectively process embedded objects due to network
protocol encoding such as HTTP chunked encoding,
HTTP compression, or MIME encoding such as base64.
Decoding these network protocol encoding introduces
significant intra-packet processing or state tracking, com-
putational complexity, and latency. However, these en-
coding mechanisms represent a very large portion of the
embedded objects transferred through the network. Fig-
ures 9 and 10 demonstrate the observed network layer
encoding used for both HTTP and MIME during the two
day live run. These figures show the decoded volume
of payload objects transferred by encoding type. The
volume presented in these graphs is a reflection of the
size of decoded payload objects. Therefore, transactions
that do not contain an embedded payload, such as an
HTTP request/response that results in a 404 error, are
considered to have an embedded object volume of 0.
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Note that for HTTP, encoded payloads make up a signif-
icant portion of the embedded object volume and that
for MIME, encoding methods such as quoted-printable
and base64 are used to transport the the vast majority
of the payload objects by volume. All of these encoding
methods can and do inhibit the detection capabilities of
traditional NIDS.

The network protocol decoding and the analysis in
the PDF scanning service demonstrate the amount of
variance that Ruminate is designed to support. Ta-
ble 2 shows the time required and resulting analysis
bandwidth for various decoding/decompression mech-
anisms and analysis methods performed on a corpus
of PDFs collected from the campus network. For each
analysis method, the corpus was analyzed serially. The
time to analyze the corpus was recorded and the aver-
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age bandwidth of the technique was calculated. Tests
were rerun at least three times, ensuring consistency
in measurements to at least the two significant digits
presented. While detailed performance data is not pre-
sented here, it is noted that all analysis techniques were
CPU-bound except for meta-data extraction, which was
IO bound. In the case of the decoding mechanisms,
namely gzip decompression and base64 decoding, the
bandwidth is calculated from the decoded volume. The
standard Unix utilities gzip and base64 were used for
these measurements. Note that in the case of base64
decoding, the documents were encoded with base64, but
newline characters were inserted every 60 characters to
match the encoding found in MIME. Javascript analysis
was only performed on PDFs that contained markers
for Javascript streams as determined by a simple string
match. There were only 746 PDFs, totaling 350 MB, on
which Javascript analysis was performed. Therefore, an
average bandwidth of 3.3 Mbps was calculated for the
whole corpus, but since Javascript analysis was only
performed on a subset, the average bandwidth of the
mechanism is actually 0.048 Mbps on the subset of PDFs
with markers for Javascript.

Table 2: Variance in Embedded Object Analysis

Analysis/Decoding
Method

Time (min) Average
Bandwidth
(Mbps)

String Match 0.23 14000
gzip Decompres-
sion

3.0 1100

base64 Decoding 6.2 510
Virus Scan 19 170
Meta-data Extrac-
tion

67 49

Javascript Analysis 970 3.3
Obfuscation Crack-
ing

2100 1.5

We have shown that a large portion of embedded-
object volume involves some sort of network protocol
encoding on a real network. We have also demonstrated
the speed of some analysis techniques that could be per-
formed on a given embedded object type using data
from a real network. There was a large variance in the
average bandwidth at which each of these techniques
could be performed. The variance in speed was four
orders of magnitude. Furthermore, some analysis tech-
nique operate at speeds far below the bandwidths at
which detection mechanisms must operate in traditional
NIDS. These techniques, however, represent the type of
detections that Ruminate is designed to support.

5.3 Analysis of Detection Capabilities

The primary contribution of Ruminate is to provide a
framework that can efficiently utilize commodity hard-
ware and software to perform analysis of network proto-
cols and embedded objects including recursive analysis
not possible in traditional NIDS architectures. While no
original detection mechanisms are presented, Ruminate
is leveraged to apply network analysis and payload anal-
ysis techniques that can not be preformed efficiently in
traditional NIDS. The analysis techniques demonstrated
include valuable detections on real network traffic.

An important capability provided by Ruminate is the
parsing of network protocol transactions and embedded
objects to generate transaction events which can be au-
dited. Transaction events are generated by each analysis
service. The HTTP, MIME, Object Multiplexer, ZIP, and
PDF analysis services all generate audit events for the
protocol/file format they analyze. These audit events
include data that is relatively computationally cheap
to generate, such as the URL of the HTTP events, and
data that is expensive such as MD5 hashes of decoded
payload content. Ruminate demonstrates this capability
through generation of transaction event logs which are
centralized for potential auditing and correlation.

Table 3 shows the number of audit events generated

10



Table 3: Audit Event Counts by Analysis Service

Analysis
Service

HTTP Object
Multi-
plex

MIME ZIP PDF

Audit
Event
Count

22,300K 19,000K 900K 394K 30K

by Ruminate during the two-day live traffic processing.
These audit logs are important because they represent
a large amount of computationally expensive analysis
that must occur to parse and normalize the network
transactions and payload objects. The traffic patterns on
this day were very similar to those of one day packet
trace as shown in Figure 6. The overall packet capture
bandwidth, including packet headers, during that time
period was 60 Mbps. Nearly 500 GB of embedded pay-
load objects were extracted and analyzed during that
time period. No packets were dropped by the Ruminate
system.

With Ruminate, it is possible to collect extensive trans-
action audit data, including network protocol and em-
bedded object meta-data. Figures 11 and 12 show the
content type of embedded objects as indicated in the
“Content-Type” headers for the specified protocols. Note
that any arbitrary protocol or embedded object file for-
mat meta-data could be exposed in event audit logs.

In addition to collecting extensive audit logs, Rumi-
nate can also perform extensive analysis that results in
detections not possible with conventional NIDS. The
PDF scanning service provides detections of malicious
PDF documents using numerous methods.

During the time in which these detections occurred,
packet capture and stream reassembly were preformed
on the front end server as defined in Table 1. All network
protocol analyzers were run on the four analysis nodes.
Four instances of the HTTP analyzer and one instance of
the SMTP/MIME analyzers where run on each analysis
node. The PDF and ZIP analyzers were run on the front
end server due to an abundance of available resources,
but they could be run on any set of servers. Event audit
logs were centralized to the the front end server also.

Performance statistics were kept during this period
also. The statistics gathered were CPU utilization and
memory consumption. In most cases the performance
statistics represent the combination of multiple thread-
s/processes performing the same functionality. The per-
formance was monitored at a resolution of 1 second, but
has been averaged over 1 hour intervals for presentation.
Figure 13 shows CPU resources used by the front end to
perform packet capture, stream reassembly, and stream
distribution (Stream Reassembly.) and the CPU time
used to collect and store the event audit logs generated
by Ruminate (Log Centr.). Note that that Ruminate cur-
rently uses a maximum of about 25% of one processor
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Figure 11: HTTP Content Type Observed
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Figure 12: MIME Content Type Observed

core. This load is an aggregate of two processes for the
stream reassembly component (one for HTTP streams,
and one for SMTP streams) which both use utilize mul-
tiple threads, as well as other processes on the system,
namely audit log collection.

Figure 14 shows the memory usage of the packet
capture and stream reassembly. During operation, the
stream reassembly and distribution component of Ru-
minate consumes between 6% and 7% of the front end
node’s memory, or about 5 GB. The majority of this mem-
ory is consumed in large data structures for tracking con-
nections which is why the memory consumption does
not dip when the load does during the night of the first
day and morning of the second day and why the mem-
ory consumption does not rise as much as load during
high traffic times. A portion of this memory is also used
for collecting network streams and buffering them be-
fore distribution to the analysis nodes. This is the only
component of Ruminate using a pertinent amount of
memory, so no other memory consumption statics will
be presented.

Streams are transferred from the stream reassembly
component to an available network protocol analyzer.
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Figure 13: CPU Utilization on Front End Server
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Figure 14: Memory Consumed in Stream Component

The protocol analyzers were run on four similar analysis
nodes. The load characteristics on all four nodes were
very similar. Figure 15 shows the components on the
analysis nodes which used a non-negligible amount of
CPU time. Note that the SMTP analyzer is intention-
ally excluded because it used consistently under 0.1%
CPU time. As currently implemented, the SMTP ana-
lyzer does a very limited amount of processing. The
CPU consumption on the analyzer node is dominated by
the HTTP analyzer (HTTP Anal.). The MIME analyzer
(MIME Anal.) uses such a small amount of processing
power because the amount of SMTP traffic is consider-
ably smaller than HTTP traffic. The measurements for
the stream subscription and transfer (Stream XFER) com-
ponent and the object multiplexer (Object MUX) compo-
nents include the load contributed for both the HTTP
and SMTP traffic. While minimal, CPU utilization of the
stream subscription and transfer component provides
a good measure of the amount of overhead incurred by
distributing load across the network as this component
merely subscribes to the stream distribution component

and copies assigned streams into shared memory for
analysis by the appropriate protocol analyzer. The mem-
ory consumed by protocol analysis was minuscule, never
topping 100 MB. Note that all of the aggregate load on
the analyzer nodes utilized at most 1/3 of one of the four
CPUs in these systems.
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Figure 15: CPU Use for Analyzer Nodes
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Figure 16: CPU Use for PDF Service

While run on the front end node as currently imple-
mented, the performance statistics for the PDF analysis
service will be presented separately. Figure 16 shows the
CPU usage of the PDF service. Only the three compu-
tationally expensive sub-components of the PDF anal-
ysis service are shown as all other portions of the PDF
service consume orders of magnitude less CPU time.
The virus scanning (clamscan) and obfuscation cracking
(xorsearch) provide a relatively constant load. Since the
Javascript analysis (jsunpack) is only performed on PDFs
with Javascript and because the analysis performed on
individual PDFs is highly dependent on the specific data
transferred through the network, there is great variance
in the load of the that sub-component. Note that while
PDFs comprise less than 3% of the objects extracted from
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the network for analysis, the analysis performed on them
requires greater CPU resources than all other analysis
performed in Ruminate combined. This is precisely the
type of expensive but valuable detection mechanism
Ruminate is designed to make efficient and scalable in-
side of NIDS. No data is presented for the ZIP analysis
service because it used an extremely low amount CPU
time.

6 Discussion

6.1 Latency

The majority of NIDS are designed to be able to ana-
lyze packets and detect real-time attacks in order to sup-
port prevention through actions on the network traffic
(e.g., dropping packets that contain attacks). The drivers
for the capabilities unique to Ruminate differ signifi-
cantly with these real time constraints. Ruminate can
perform many types of analyses with higher efficiency
since it places higher priority on auditing and detection
capabilities than on prevention capabilities. For exam-
ple, performing dynamic analysis or other high-latency
analyses may not be compatible with prevention within
some protocols (e.g., HTTP) due to untenably high la-
tency. Furthermore, the focus of forensics or historical
detection capabilities (e.g., collecting network transac-
tion audit logs that include embedded object meta-data)
does not benefit by the real-time constraints imposed by
prevention.

Notwithstanding the low priority placed on preven-
tion in its design and testing, Ruminate can be utilized
to provide prevention capabilities, especially for proto-
cols that allow for significant delay (e.g., SMTP). This is
especially true of the portions of Ruminate that do not
perform high-latency analysis. For example, Ruminates
stream reassembly and buffering mechanism, which in-
crementally collects but does not provide the stream data
to external analyzers until the stream is finished, intro-
duces from 1 to 2 ms of delay from the time the stream is
closed until the data is provided to an external analyzer.

6.2 Memory Usage

Ruminate makes extensive use of memory for buffering.
For example, incomplete streams are buffered in mem-
ory. This buffering facilitates simplicity in detections
on embedded objects and efficient utilization of proces-
sors. Memory usage is not deterministic. It is based
on traffic and payload characteristics. Memory use in-
creases with the size of network streams and embedded
objects and the length of time these objects are collected
or processed.

Table 4 shows the distribution of network connections
and volume by connection length for the same data set
used throughout this paper.

Table 4: Distribution of Connections by Length

Length (s) [0,10) [10,100) [100, 1000) [1000,*]
Count 10594342 921972 309567 23607
Volume 186GB 113GB 111GB 58GB

Given typical network traffic, this use of memory is
not a serious limitation. While memory use depends
on many factors, it is not uncommon for Vortex IDS, on
which the stream reassembly component of Ruminate
is based, to require between 1 GB and 10 GB of RAM
monitoring links up to 1 Gbps. Due to the practical-
ity and economy of equipping commodity servers with
large quantities of RAM, decreasing the amount of RAM
consumed has not been addressed. It is recognized that
it could be possible to create a resource exhaustion at-
tack against Ruminate by causing large network streams
to occur which stay open for long periods of time. Ru-
minate does provide mechanisms for limiting usage of
RAM through limits on the amount of RAM to be used
by individual streams, timeouts on streams that are not
closed but which don’t transfer data, etc. Attacks that at-
tempt to overwhelm Ruminate through excessive RAM
utilization would be noisy due to anomalous network
parameters and expensive for attackers to perpetuate.
Further possible improvements are detailed in Section 7.

6.3 Evasion Techniques

A major motivation for Ruminate is to be able to perform
analysis on client application objects transferred through
the network, including recursive analysis of embedded
objects. For example, a malicious payload can often
evade detection by NIDS by merely being wrapped in a
container such as a zip archive. It is conceded that Ru-
minate’s effort to recursively decode objects, or even the
highly computationally expensive analysis that Rumi-
nate can do but which can not be predicted in advance,
make it vulnerable to resource exhaustion, depending on
conditions, some of which are in control of the attacker.
Attempts at resource exhaustion, such as transferring an
archive that contains very many layers of nested archives
or transferring documents with computationally expen-
sive but benign scripting could be made, and some may
be practical. It should be noted however, that this can be
mitigated through proper limits on recursion and indi-
vidual analysis as well as detection of apparent resource
exhaustion attacks.

6.4 Data Limitations

One limitation to empirically evaluating Ruminate is the
amount and quality of data used. The amount of data
traffic on the university network is not large enough
to stress the capabilities of the hardware on which Ru-
minate is currently deployed. The volume of traffic
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could be scaled up nearly an order of magnitude without
any changes to the implementation evaluation. While
greater overall volume would be useful in proving Ru-
minates scalability, the current volume is large enough
for demonstration purposes. A serious limitation of the
data used in these evaluations is that many packets are
dropped in the tapping infrastructure and link that trans-
fers packets from the main Internet router to the lab in
which Ruminate is deployed. These packet drops that oc-
cur externally to the Ruminate system can be inferred by
observing holes in packet streams. Nearly 1% of packet
loss was inferred to have occurred externally to Rumi-
nate in both the day-long packet trace and the two-day
live trial. The effects of this packet loss were magnified
by Ruminates inability to reconstruct full streams if holes
existed in the streams. While Ruminate would have been
able to reconstruct more complete stream and embedded
object data, the presence of this packet loss did not sig-
nificantly affect the validity of the empirical evaluations
based on the streams that could be reconstructed. It is
possible that other limitations of Ruminate, such as its
inability to correctly emulate all TCP/IP stacks, also con-
tributed to the low volume of reassembled stream data.
However, these limitations did not affect the validity of
the data that was correctly reassembled.

7 Future Work

Many facets of Ruminate could potentially be researched
further, and numerous implementation weaknesses
could be improved. For example, the stream re-assembly
component based on Vortex has some limitations in its
ability to correctly model all TCP implementations, as
well as in its tolerance for packet loss. Ruminate cur-
rently provides a flexible platform on which many poten-
tial detection mechanisms could be implemented. Inte-
grating additional detection mechanisms (e.g., methods
found in conventional IDS, mechanisms not possible in
current NIDS) would make Ruminate more valuable.

Another area of improvement for Ruminate is that
it currently only processes network transaction events
after the transport layer stream is finished. While this
facilitates efficient dynamic load balancing, the latency
of analysis could be improved if portions of streams
representing individual network application layer trans-
actions were distributed to an available analyzer node
before the stream terminates. In addition, Ruminate
provides effective dynamic load balancing, including
the ability to dynamically add additional resources in
the form of more analyzer nodes. However, we do not
provide a comprehensive study of multiple optimiza-
tion objectives for the dynamic allocation of resources
beyond mere provisioning. Such study could improve
the overall system efficiency and is a natural topic for
future work.

8 Conclusions

In this paper, we present Ruminate, an object-centric
network payload analysis architecture. To that end,
Ruminate aggregates and re-orders traffic packets into
streams. Then it employs a modular consumer-producer
mechanism to outsource the computationally expensive
tasks to other machines. These machines run protocol
parsers, object decapsulation, and object analysis en-
gines to ferret-out attacks that are concealed deeply in
network payload objects.

Furthermore, Ruminate allows the traffic to be prior-
itized and treated preferentially based on the reassem-
bled content rather than mere packet header and pro-
tocol information. Our experiments, using real-world
traffic from a deployment on a site with 30,000 users in-
volving 973,718,083 packets and totaling 737 Gb, showed
that we can dynamically process and load-balance the
analysis of multiply encoded and embedded desktop
application objects, such as Adobe PDF documents or
ZIP archives, scalably and without packet loss.
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