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Abstract

Camera control is essential in both virtual and real-world
environments. Our work focuses on an instance of cam-
era control called target following, and offers an algo-
rithm, based on the ideas of monotonic tracking regions
and ghost targets, for following a large coherent group of
targets with unknown trajectories, among known obsta-
cles. In multiple-target following, the camera’s primary
objective is to follow and maximize visibility of multiple
moving targets. For example, in video games, a third-
person view camera may be controlled to follow a group
of characters through complicated virtual environments.
In robotics, a camera attached to robotic manipulators
could also be controlled to observe live performers in a
concert, monitor assembly of a mechanical system, or
maintain task visibility during teleoperated surgical pro-
cedures. To the best of our knowledge, this work is the
first attempting to address this particular instance of cam-
era control.

1 Introduction

In multiple-target following, the camera’s primary objec-
tive is to follow and maximize visibility of multiple mov-
ing targets. Multiple-target following is essential in both
virtual and real-world environments. For example, in
robotics, a camera attached to robotic manipulators could
be controlled to observe a swarm of mobile robots, or live
performers in a concert; monitor assembly of a mechani-
cal system; or maintain task visibility during teleoperated
surgical procedures. In video games, a third-person view
camera may be controlled to follow a group of characters
through complicated virtual environments. In general,

it is difficult for a user to manually control the camera
while also concentrating on other critical tasks. There-
fore, it is desirable to have an autonomous camera system
that handles the camera movement. This paper focuses
on an instance of camera control called multiple-target
following, and offers an algorithm for autonomous fol-
lowing a large coherent group of 10 ∼ 100 targets with
unknown trajectories, among known obstacles.

The camera control problem has been studied extensively
in both robotics and computer graphics because of its
broad applications, such as dynamic data visualization
[1, 2], robotic and unmanned vehicle teleoperation [3],
and video games [4, 5]. Unfortunately, many of these
methods are not applicable to follow a large group of tar-
gets in real-time among obstacles. For example, there
is a large body of work in robotics, where researchers
have studied similar problems such as pursuit and eva-
sion, visual servoing [6] and cooperative multi-robot ob-
servation of multiple moving targets (CMOMMT) [7].
However, these strategies usually apply to environments
with sparse or no obstacles. While there exist methods
that do consider occlusion [8, 9], they still only consider
situations where the target’s trajectory is known a pri-
ori, or are only applicable to follow a few (2 or 3) targets
[10, 11]. Many researchers [12, 13, 14] have also con-
sidered the case where both trajectory and environment
are unknown. The main idea of these motion planners
is to greedily minimize the escaping risk or maximize
the shortest escaping distance of the target. In all of
these methods, the camera trajectory can be computed
efficiently, but is usually sub-optimal because only local
information about the environment is considered, and the
time horizon for planning is very short. Moreover, to the
best of our knowledge, these motion strategies are all de-
signed to track a single target.
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In computer graphics, much work on camera planning
(see recent surveys [15, 5]) is script-based [16], purely
reactive [17, 6] (whose time horizon equals one), or
mostly focuses on problems with predefined target trajec-
tories [18, 19, 20, 21, 22, 23, 24]. Many of these methods
are based on constraint solving, objective satisfaction or
both. They are mostly designed for offline use and take a
long time (usually seconds) to find a single camera place-
ment.

The main goal of this paper is to provide an initial inves-
tigation into this important problem. Due to the nature
of the aforementioned applications (video games, mo-
bile robot swarms, virtual prototyping and group con-
trol), our investigation will focus on following a coherent
group of targets (such as a crowd or a flock) by a single
camera. Maintaining the visibility of a coherent group
in some aspects is easier than tracking a single target be-
cause there is more than one target that the camera can
follow. However, tracking a group is more difficult if
the camera needs to maximize the number of visible tar-
gets over time. Difficulty also stems from the fact that a
group can assume different shapes (e.g., forming a long
line in a narrow corridor and a blob in an open area),
clutter around the obstacles, or even split into multiple
sub-groups (for a short period of time).

Our Work and Main Contributions. In this paper, we
present a motion strategy that allows a single camera to
robustly follow, at interactive rates, a large group (e.g.,
with 100 targets) among obstacles. In the aforemen-
tioned applications, some information about the environ-
ment is usually available. We believe that, given this
information about the environment, the planner should
be able to perform deeper lookahead in the search space
and therefore provide better real-time camera following
strategies even when the motion of the targets is un-
known. The main idea is to preprocess the given envi-
ronment offline to generate a data structure called mono-
tonic tracking regions (MTRs) (defined later in Section 5)
that can be used to assist real-time planning. This rep-
resentation allows the camera to plan more efficiently by
reducing the possible target movements to a smaller, dis-
crete space. This significant increase in efficiency allows
us to generate and evaluate multiple alternative plans in
real-time. Our method also uses target coherency to bet-
ter predict target positions.

In addition to the MTR-based motion strategy, we also
present three new strategies (in Section 9) extended from
the existing single-target techniques. We present reac-
tive, sampling-based [25], and escaping-risk-based [26]
methods. Our experimental results show that MTR-
based method performs significantly better than the other
strategies, especially in the environments with small ob-

stacles and sinuous tunnels. To the best of our knowl-
edge, this work is the first attempting to address this par-
ticular instance of camera control.

2 Related Work

There exist many methods for following a target with
known trajectory, such as work done by LaValle et al.
[8] using dynamic programming, and by Goemans and
Overmars [27] using probabilistic motion planner. In this
section, we will review strategies for tracking a target
with unknown trajectory. We will also provide a brief re-
view on camera planning methods in computer graphics.
From our review, no method has focused on the problem
of following a large group.

Planning with Unknown Target Trajectories in
Known Environment. There exists some work con-
sidering tracking targets with unknown trajectories in a
known environment [11, 28, 29]. The general idea is to
partition the space into non-critical regions in which the
camera can follow the target without complex compli-
ant motion, that is, rotating the line of visibility between
the camera and the target around a vertex of an obstacle.
The main benefit of this line of work is the ability to de-
termine the decidability of the camera tracking problem
[30]. Unfortunately, the decomposition usually results
in many small components even for a very simple envi-
ronment. The brute-force approach for computing a vis-
ibility graph, visibility polygons of all vertices, and the
visible regions of all finely discretized grid cells, is not
scalable enough for real-world environments. While the
nature of workspace decomposition in our MTR method
is similar to the combination of [11, 28], MTR creates
much fewer components and therefore can handle more
realistic problems. Moreover, in [11, 28], Murrieta-Cid
et al. require that the distance between the camera and
the target is fixed and must precompute and store ex-
haustive visibility information. MTR does not have these
limitations.

Recently, Li and Cheng [4] have proposed a real-time
planner that tracks a target with unknown trajectory.
Their main ideas include a budgeted roadmap method
with lazy evaluation and a simple linear extrapolation to
predict target’s motion. However, their method has no
guarantees on the performance and quality of the camera
path. Oskam et al. [26] developed a visibility transition
planning method which exhaustively precomputes visi-
bility on a roadmap of overlapping spheres in the free
space. This visibility roadmap enables quick prediction
of spheres that represent high risk of occlusion so that
proactive motion can be taken to prevent this occlusion.
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However, this grid-based sphere generation step has dif-
ficulty in narrow passages, and exhaustive visibility com-
putation is inefficient.

Planning with Unknown Target Trajectories in Un-
known Environment. Many researchers have also con-
sidered the case that both trajectory and environment are
unknown. For example, Becker et al. [25] proposed a
very simple planner to follow a target with unknown tra-
jectory in an environment with landmarks. The idea is to
predict the target’s next position and place the camera at
the position that can see most of the predicted target po-
sitions. Later, González-Baños et al. [12, 13] proposed
the main idea of greedily minimizing the escaping risk or
maximizing the shortest escaping distance of the target.
Recently, Bandyopadhyay et al. [31, 14, 32] improved
the definition of escaping risk by introducing the idea of
vantage zone and showed that this definition can improve
the camera’s tracking ability. All of these methods focus
on tracking a single target. There are also extensive stud-
ies on multiple object tracking, e.g., [33], in which the
goal is to maintain a belief of where the target(s) are us-
ing Kalman or particle filters. On the contrary, our goal
is to maintain the visibility of targets.

Methods Based on Constraint Satisfaction. In com-
puter graphics, camera planning is often viewed as a con-
straint satisfaction problem, and so there have been sev-
eral attempts to represent the problem so that it can be
solved efficiently with constraint satisfaction techniques.
For example, several works use the idea of screen space
or image space constraints, e.g., Blinn [18] and Gleicher
and Witkin [24]. There are a number of works which
involve the use of metaheuristics to compute optimal
positions or trajectories for the camera. For example,
Drucker and Zeltzer [34] used an A* planner to com-
pute a camera path. Along the path, the orientation of
the camera is then solved frame-by-frame to satisfy given
constraints.

Constraints can also be represented geometrically. For
example, Bares et al. [23] proposed a method to find
camera positions (rather than a path) to meet given con-
straints. In this method, the constraints are represented as
convex objects. The solutions are in the intersection of
these convex objects. Jardillier and Languénou [19] pro-
posed an offline planner (assuming known object geome-
try and trajectory), where constraints are specified using
a declarative model. The constraints are then solved us-
ing interval mathematics. Later, Christie and Languénou
[35] proposed another declarative model approach, this
time to describe trajectories of cameras as sequences of
parameterized elementary movements called hypertubes.
However, this method is designed for offline purpose,
taking 3 to 6 seconds to solve for a given trajectory.

Our MTR method is similar to the idea of semantic space
partitioning. Christie and Normand [15] used this idea
to partition the space so that in each partition, the cine-
matographic properties remain the same. However, their
method is designed to produce a camera view that satis-
fies certain criteria—not to follow a target.

Reactive and Real-time Behaviors. Some studies have
focused on developing reactive behaviors for real-time
camera motion. For example, Courty and Marchand [6]
used visual servoing along with obstacle and occlusion
avoidance. Prediction of a target’s movement is also rel-
evant for developing real-time camera behaviors. For
example, Halper et al. [17] introduced a camera plan-
ner that predicts state based on the past trajectory and
acceleration. They also proposed the idea of PVR (po-
tential visibility region) for visibility computation, and a
pipelined constraint solver.

3 Preliminaries

In this section, we formally define the problem that we
attempt to solve and notations used throughout the paper.
We assume that the workspace is populated with known
obstacles represented by polygons. These polygons are
the projection of 3D objects that can potentially block
the camera’s view. This projection essential reduces our
problem to a 2D workspace. We further assume that, ini-
tially, at least one of the targets is visible by the camera
C, and, during the entire simulation, the targets T exhibit
certain degree of coherence in their motion, and it is also
possible that T can split into multiple subgroups for a
short period of time (similar to a flock of birds). The tar-
gets are either controlled by the user or by another pro-
gram, so the trajectories of the targets are not known in
advance. However we assume that the size of T and T ’s
maximum (linear) velocity vmax

T are known. The position
xτ(t) and the velocity vτ(t) of a target τ ∈ T at time t are
known only if τ is visible by the camera.

The camera C also has a bounded linear velocity vmax
C .

The camera C’s view is defined as a tuple: (α,rnear,r f ar),
where α is the angle of view, and rnear and r f ar define the
near and far view range. The exact configuration of this
view range at time t, denoted as VC(t), is defined by the
camera’s view direction θC(t) and location xC(t). The
position xC of the camera is simply governed by the fol-
lowing equation: xC(t +4t) = xC(t)+4t ·vC(t) , where
vC(t) is the camera’s velocity at time t.

Given the positions of the targets and the position of the
camera, one can compute the camera’s view direction so
that the number of targets inside the view range is maxi-
mized.
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Therefore, the problem of target following then is re-
duced to find a sequence of velocities vC(t):

argmax
vC(t)

(∑
t

card({T ′ ⊂ T | XT ′(t)⊂ VC(t)})
)

, (1)

subject to the constraints that, for all t, vC(t)≤ vmax
C , and

xC(t) is collision free.

4 Overview of Our Method

The main ideas of the proposed method are to (1) identify
regions with simple (monotonic) topological feature so
that the planner can repetitively use the same data struc-
ture and strategy to follow the target group, and (2) uti-
lize the fact the targets form a coherent group.

Monotonic Tracking Region (MTR). The first step of
the proposed method decomposes the environment into a
set of monotonic tracking regions (MTRs). These regions
usually look like tunnels and may overlap with each
other. Intuitively, in these tunnel-like regions, the cam-
era can monotonically maintain the visibility by moving
forward or backward along a trajectory that supports the
tunnel. More specifically, the main property MTR is that
each MTR is topologically a linear subdivision so that the
problem of camera following in an MTR can be repre-
sented as a linear programming problem. Note that such
an MTR needs not to be convex or star shaped, and, in
fact, it can have an arbitrary number of turns (like a sinu-
ous tunnel). Moreover, MTR decomposition usually cre-
ates much fewer components than convex or star-shaped
decompositions but, as we will see later, still provide
similar functionality in target tracking. More precise def-
inition of MTR and the process of computing these re-
gions will be given in Section 5. In Sections 6 and 7, we
will discuss how to track the target in a single MTR and
then in multiple MTRs.

Ghost Targets. Our planner takes advantage of the fact
that the camera is following a group of somewhat coher-
ent targets. When the number of the targets visible by the
camera is smaller than the total number of the targets, the
planner will generate a set of ghost targets in the invisi-
ble regions. Our experiments show that the idea of ghost
targets significantly increases the visibility. More pre-
cise definition of the ghost targets will be discussed in
Section 8.

5 Build Monotonic Tracking Re-
gions (MTRs)

Definition. We let a region Mπ be a 2D generalized
cylinder defined with respect to a supporting path π . We
say π is a supporting path of Mπ if every point x ∈ Mπ

can see a subset of π . Because of this property, Mπ can
essentially be viewed as a linear object and the camera
can see every point in Mπ by moving along π . Specifi-
cally, we define Mπ as:

Mπ = {x | ∃y ∈ π s.t. xy⊂C f ree} , (2)

where xy is an open line segment between x and y, and
C f ree is the free space (i.e., the area without obstacles).
Furthermore, we define the subset of π visible by x as:
Vπ(x) = {y ∈ π | xy ⊂C f ree} . Note that Vπ(x) can have
one or multiple connected components. Finally, we say
a region Mπ ∈C f ree is an MTR supported by π if

|Vπ(x)|= 1,∀x ∈Mπ , (3)

where |X | is the number of connect components in a set
X . Because each x∈Mπ can see only an interval of π , we
can compactly represent the visible region (called visibil-
ity interval) of x as a tuple Vπ(x) = (s, t),0≤ s≤ t ≤ 1, if
we parameterize π from 0 to 1. Fig. 1 shows an example
of MTR and its supporting path π .

π
x

Vπ(x)

Figure 1: An example of monotonic tracking regions de-
fined by π

With the definition in hand, our task here is to first find a
set of supporting paths whose MTRs that will cover C f ree,
and, next, from a given path π , we compute the associ-
ated MTR and the visibility interval Vπ(x) for every point
x in the MTR. We will describe these two steps in detail
next.

Constructing supporting paths. Our strategy here is to
find the homotopy groups G of the C f ree. We propose to
use the medial axis (MA) of the C f ree to capture G be-
cause of its several interesting relationships with MTRs.
First of all, we can show that the retraction region of ev-
ery edge π on the MA forms an MTR (supported by π).
Lemma 5.1. The retraction region R⊂C f ree of an edge
on the MA forms an MTR.

Proof. Let π be an edge on the medial axis MA of C f ree.
The retraction region R ⊂ C f ree of π is simply a set of
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points that can be continuously retracted to π by a re-
traction function r : R→ π [36]. By definition, given an
arbitrary point x ∈ R, the largest circle c centered at the
point r(x) with x on c’s boundary must be empty. There-
fore, it follows naturally that each point in R must be able
to see at least a point on π .

Now we briefly show that each point x can only see a
consecutive region of π . We prove this by contradiction.
Assuming that x can see multiple intervals of π . This
means that there must be an obstacle between x and π .
However, this contradicts the fact that x can be retracted
to π in a straight line. Thus, we conclude that R forms an
MTR.

Therefore, the supporting paths are simply constructed
by extracting the edges from the MA of a given environ-
ment.

Constructing MTRs. Given an edge π of MA, its retrac-
tion region R forms an MTR supported by π . However,
simply using R as π’s MTR can be overly conservative.
The set of points that satisfy Eq. 2 and 3 is usually larger
than R. To address this issue, we iteratively expand R by
considering the points adjacent to R until no points can
be included without violating the definition of MTR.

Next, we compute the visibility interval for every point
in an MTR. The brute force approach that computes the
visibility interval for each point from scratch is no doubt
time consuming. To speed up the computation, our ap-
proach is based on the following observation.

Observation 5.2. If x and x′ are (topological) neighbors,
and x is further away from π than x′ is, then Vπ(x) ⊂
Vπ(x′).

For example, in Fig. 1, imagining a point x′ below x,
x′ can see a larger interval of π than x does. That is if
we can compute the visibility intervals Vπ(x′) for all the
points x′ on π , then we should be able to obtain the visi-
bility intervals for x that are4d away from x′ by search-
ing inside Vπ(x′).

Dominated MTRs. The exact MA of a given environ-
ment can contain small (and in many cases unneces-
sary) features and result in many small MTRs. In many
cases, these MTRs are unnecessary and should be re-
moved. This is when an MTR is dominated by another
MTR. We say MTR M′ is dominated by another MTR M if
M′ ⊂M. In our implementation, we use an approximate
MA [36] to avoid small features, and then identify and
remove dominated MTRs.

s1

s2
s3 s4 t4

t3
t2t1 π

x1 x2 x3 x4

Figure 2: Make predictions for the next h = 4 future
steps.

6 Follow the Targets in an MTR

The motivating idea behind decomposing the environ-
ment into a set of MTRs is that the target following prob-
lem in MTR can be solved much easily than that in the
original environment. In fact, as we will see in this sec-
tion, the camera can solve a long time horizon plan in
MTR using linear programming.

Follow a single target. To simplify our discussion, we
will first describe how a single target can be tracked in
MTR. Let xτ(t) be the current position of the target τ .
Since we know the cureent speed of the target, we can
estimate the positions xτ(t +4t) in the next time step. In
order to keep the target in the view, the camera’s next po-
sition xC(t +4t) must be: xC(t +4t) ∈Vπ (xτ(t +4t)).
Note that this estimation can be applied to an arbitrary
value of 4t. However, when 4t is bigger, the position
of the target becomes less accurate.

Let Ii = Vπ(xτ(t + i ·4t)) = (si, ti). Here i is an integer
from 1 to h, where h is the user-defined time horizon.
Recall that both si and ti are parameters on the parame-
terized path π . In order to follow the target for h steps,
the planner needs find a sequence of camera locations
xi from a sequence of parameterized intervals such that
every point xi is in its corresponding interval Ii without
violating the constraint on the camera’s max speed (see
Fig. 2). This can be done by solving a h dimensional
linear programming problem:

min th− xh
s.t. si ≤ xi ≤ ti

0≤ (xi+1− xi)≤ vmax
C
|π| ,∀xi ,

(4)

where vmax
C /|π| is the maximum normalized distance that

the camera can travel on π . Finally, the camera’s future
locations are simply xC(t +4t · i) = π(xi).

Note that the rationale behind the minimization of (th−
xh) is that when the target moves further away beyond h
steps in the future, the camera will have better chance of
keeping the target in the view when it is located closer to
th along the path π . We call the above linear program-
ming problem the canonical following problem. Solving
a canonical following problem can be done efficiently
since h is usually not large (h = 20 is used in our exper-
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iments) given that modern linear programming solvers
can handle thousands of variables efficiently.

It is possible that the linear programming problem has no
feasible solution. We reduce the plan horizon iteratively
until a solution is found.

Follow multiple targets. Now, we will extend this
canonical following problem to handle multiple targets
T . Let xT (t) be the current positions of the targets T .
Similar to the case of a single target, we estimate the po-
sitions xT (t +4t) in the next time step. In order to see a
least one target, the camera must move so that

xC(t +4t) ∈ I(4t) =
⋃

x∈xT (t+4t)

Vπ(x) .

To simplify our notation, let Ii = Ii(i ·4t) = (si, ti). By
placing the camera in Ii, we can guarantee that at least
one target is visible. However, our goal is to maximize
the number of visible targets, at least over the planning
horizon. To do so, we segment Ii into j sub-intervals
I j
i , each of which can see n j

i targets. Then our goal is
to pick a sub-interval from each Ii so that the total num-
ber of visible targets is maximized while still maintain-
ing the constraint that the minimum distance between I j

i
and Ik

i+1 is smaller than vmax
T 4t. Fortunately, this op-

timization problem can be solved greedily by iteratively
adding the sub-interval with the largest n j

i without violat-
ing the constraint. Once the sub-interval from each Ii is
identified, the problem of finding the camera positions is
formulated as a linear programming problem in the same
way as Eq. 4.

When the targets and the camera moves (but still in the
same MTR), we may need to repetitively solve the canon-
ical following problem. Instead, we use lazy update.
That is, we only update the old solution if it cannot sat-
isfy all the constraints in Eq. 4.

7 Follow the Target between MTRs

In this section, we will discuss strategies to follow the
targets across MTRs. Without loss of generality, we only
consider the case with two MTRs. The same approach
can be naturally extended to handle three or more inter-
secting MTRs.

Given two MTRs, M and M′, we let X = M ∩M′. The
intersection X of two MTRs plays two critical roles. On
the one hand, when the target enters X , the possibility for
the target to escape increases. On the other hand, when
the camera enters X , the possibility of seeing the target
increases.

M

M ′

ob
st

ac
le

ob
st

ac
le

ob
st

ac
le

ob
st

ac
le

x0

xh
xh

xh

xi

Figure 3: Search tree for multiple MTRs.

Recall that we plan the camera’s location by predict-
ing the targets’ future locations xT (t +4t) and by com-
puting the visible intervals I(4t) of xT (t +4t). When
xT (t +4t) reaches X , each xT (t +4t) can have two in-
tervals, one in M and the other one in M′. To compute
the future locations of the camera, we solve at most four
canonical following problems. Two of these are in M
and the other two are in M′. Fig. 3 shows an example,
in which the targets may move from M to M′ after time
step i. Therefore, the camera will solve one canonical
following from step 0 to i and three canonical following
problems from step i to h. Finally, the best solution that
maximizes the visibility will be used to move the camera.

8 Put It All Together

In this section, we summarize the strategies for following
a group and describe the implementation details. In par-
ticular, we distinguish between offline and online com-
putations.

σM1

σM2

∅

in M1

in M2

workspace pixel
σ

Figure 4: Data structure for MTRs.

Offline computation. Instead of a continuous space,
our implementation is built on a regular grid which uni-
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formly discretizes the workspace. The dimension of the
(square) grid cell is the size of a target. We first ap-
proximate the workspace’s medial axis MA using [36]
and compute an MTR for each MA edge. Each MTR is
a collection of cells that can see part of its supporting
path π . Each cell in the grid stores (1) a boolean variable
which indicates if it is in C f ree, and (2) a list of linked
MTR cells, denoted as σM . Each σM belongs to the MTR,
M and stores the visibility interval Vπ(σM) = (si, ti). A
cartoon on the left illustrates this. Advantages of using
grid-based representation also include efficiency and ap-
plicability to video games and mobile robots, which of-
ten store the environmental data in bitmaps.

Online computation. This is where the actual tracking
take place. In every time step, the camera obtains a list
of visible targets, and computes the ghost targets accord-
ingly (see below). To update the existing plan, the posi-
tions of the visible and ghost targets are used to retrieve
occupied MTRs and visibility intervals from the precom-
puted grid, which acts like an open hash table. Then, the
canonical following problems, if any, associated with the
new MTRs are solved. The camera then simply follows
the trajectory that maximize the visibility.

Ghost targets. Our planner can estimate the positions
of the targets even when they are not visible by the cam-
era. We call these invisible targets “ghost targets.” Note
that the planner does not distinguish if a target is visible
or is a ghost. Therefore the planning strategy described
in the previous sections remains the same. The positions
of the ghost targets are estimated based on the following
assumptions: (1) targets tend to stay together as a group,
and (2) invisible targets are in C-free outside the visibil-
ity region of the camera. Therefore, even if targets are
invisible, they must be in some occluded regions nearby.
Again, in our implementation, we use the grid to find the
ghost targets by determining the occluded regions near
the cells occupied by the visible targets.

9 Experimental Results

9.1 Three Additional Following Strategies

We also developed three additional group following
strategies. These strategies are extensions of the existing
methods which are originally designed to track a single
target. Since there is no prior work on group following,
we will also use these strategies to compare against the
proposed MTR camera.

Reactive Camera. This reactive camera determines its
next configuration by placing the visible targets as center

in the view as possible based only on the targets’ cur-
rently positions. The motivation is that by placing the
visible targets at the center of its view, the camera will
have better chance to make invisible targets visible.

IO Camera. IO camera is a sampling-based method ex-
tended from [25]. At each time step, given the visible
targets T , the planner first creates k point sets PT , where
k is a parameter. Each point set contains |T | predicted
target positions. The predicted position of each target
τ is sampled from the region visible from τ , and is at
most (vmax

T · 4t) away from τ . The planner then cre-
ates a set PC of camera configurations that are at most
(vmax

C ·4t) away from C. To decide the next camera con-
figuration, we simply determine argmax

x∈PC
(
∑

X∈PT

vis(x,X)) ,

where vis(x,X) is the number of points in X visible by x.

To simplify our discussion, we will use the notation IO-
k to denote an IO camera that samples k point sets for
target prediction (e.g., in Fig. 6). It’s important to re-
member that the IO cameras usually cannot be used as
an online planner for tracking a large group (e.g., more
than 50 targets) because of the large number of visibility
checks between the sampled target positions and camera
configurations in every time step.

VAR Camera. VAR camera is based on [26]. Here, we
first obtain a coarse representation of the environment by
sampling a grid of discs in C-free. A roadmap is formed
over the intersections of the discs. Finally, visibility is
computed between each pair of discs with Monte-Carlo
raytracing. Our VAR method is a hybrid approach that
uses the constructed visibility information in a reactive
behavior when the camera has good visibility of the tar-
gets (more than 50% of the targets are currently visible
by the camera), and uses visibility-aware path planning
from [26] to plan short, alternative paths to reach pre-
dicted locations of targets when the camera is far away.

The reactive behavior in VAR computes a waypoint for
the camera on each frame. First, we find a disc Dc that
is closest to the camera, and a disc Dr (from the pre-
computed roadmap) that represents an imminent occlu-
sion risk. That is, the disc Dr is one that is in the di-
rection of the visible targets’ velocity, closest to the cen-
troid of the visible targets, and whose visibility from the
camera’s disc is less than 100%. A waypoint is selected
along the ray extending from Dr passing through Dc. The
visibility-aware path planner is the same as described
in [26]. It uses an A* algorithm on the pre-computed
roadmap with a heuristic function to compute a path to
the Dr which simultaneously minimizes distance traveled
and maximizes visibility of the target.
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(a) disc (b) bars

(c) islands (d) RSS

Figure 5: Experimental environments.

9.2 Experiments and Results

In our experiments, the target group is constantly mov-
ing toward a random goal, which is not known by the
camera. If all targets are invisible, the camera will stay
stationary. Throughout the experiments, we measure the
performance of the cameras by computing the normal-
ized visibility which is the ratio of the visible targets dur-
ing the entire simulation. Every data point presented in
the plots in this section is an average over 32 runs, each
of which is a 10000 time-step simulation. We set the
planning horizon h = 20 for all MTR cameras.

We perform our experiments in four workspaces shown
in Fig. 5. These workspaces are designed to test the per-
formance of the cameras in various conditions, such as
large open space (disc), open space with narrow gaps
(bars), small irregular obstacles with many narrow gaps
(islands) and long sinuous narrow passages (RSS). Both
islands and RSS environments are considered difficult as
the targets tend to separate around the small obstacles or
hide behind a bend in the passage.

MTR outperforms other strategies. Our first experi-
ment in Fig. 6 shows strong evidence that MTR cam-
era consistently performs better than the other cameras
when following 50 targets in all environments. Note that
we also include data called upper bound obtained from
an MTR camera that has no speed limitation, i.e., it can
move to the best configuration instantly. The strong per-
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Figure 6: Following 50 targets in four environments.
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Figure 7: Comparing MTR cameras with and without
ghost target.

formance of MTR is further supported by the small dif-
ference between the MTR camera and the upper bound in
all four environments.

It is clear that the reactive camera performs worst, except
in the disc environment. The VAR camera is the second
worst, except in the RSS environment. However, as we
will see, the VAR camera seems to handle large and fast
moving targets better because of its ability in estimating
risks. Although IO cameras perform well in some sit-
uations, IO-25 in the bar environment is more than 200
times slower than VAR (≈2600 fps) and 12 times slower
than MTR (≈157 fps), thus cannot be used in many ap-
plications, such as real-time task monitoring and video
game. There is no significant difference between IO-25
and IO-50.

Ghost targets boost performance. In this experiment
shown in Fig. 7, we attempt to estimate quantitively the
performance gain due to the idea of ghost targets (GS).
Our result shows that the performance gain is more sig-
nificant in more difficult environments. If compare to the
(very time consuming) IO cameras in Fig. 6, MTR with-
out GS is only slightly better in the island and RSS en-
vironments, but there are significant differences between
the IO cameras and MTR with GS. In the future, it will be
interesting to measure the performance gain by applying
GS to reactive and VAR cameras.

Target size and target speed. In our last experiment,
we attempt to gain better understanding of our cameras
by varying the size and the maximum speed of the tar-
gets. In Fig. 8(a), we vary the sizes of the targets from
10 to 100, and we can see that the size change has little

8



effect on their performance, except in RSS environment.
By further examining the simulations, we observed that
this performance drop is in fact inevitable (unless mul-
tiple cameras are used) because it is simply impossible
for a single camera to see the entire group, e.g., when the
group contour bends with the environments.

In Fig. 8(b), we vary the speed of the target from 1
2

(which is what used in the previous experiments) to twice
the camera speed. When the targets and camera have
the same maximum velocity, MTR keeps more than 70%
visibility of the targets in all environments and is still
significantly better than other cameras. However, when
the targets are 1.5 times faster than the camera, MTR,
although still performance noticeably better than other
cameras, its performance drops quite significantly, espe-
cially in the island and RSS environments. Again, we
found that this performance drop is due to the environ-
mental constraints (e.g., when the targets escaped, the
RSS environment provides no shortcut for the camera to
re-capture the targets), and is inevitable unless multiple
cameras are used.

10 Conclusion

In this paper, we contribute an online camera planning
method, called MTR, which is suitable for autonomous
following of multiple targets with unknown trajectories
among known obstacles. The idea is to preprocess the
known environment offline to obtain monotonic tracking
regions (MTRs) which can then be used to increase the
efficiency of the online planner. In addition to MTR, we
present three new methods for camera planning that are
extensions of existing single-target work, and we com-
pare the performance of MTR with each of these meth-
ods. In the tested scenarios, MTR performs significantly
better than all other methods, particularly in situations
where environments are cluttered with many obstacles
or long sinuous tunnels. We also show that adding ghost
targets to MTR increases the performance.

Additional experiments involving varied target sizes and
maximum velocities show that in some situations mul-
tiple cameras may be needed to achieve better perfor-
mance. Therefore, we are working on applying this
method to tracking scenarios involving multiple cam-
eras, and scenarios involving multiple objectives (such
as quality, or cinematographic preferences).
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Figure 8: Camera performance with varying target sizes
and maximum speeds.
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