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Abstract
We present a study of cooperative coevolution applied
to moderately complex optimization problems in large-
population environments. The study asks three ques-
tions. First: what collaboration methods perform best,
and when? Second: how many subpopulations are de-
sirable? Third: is it worthwhile to do more than one
trial per fitness evaluation? We discovered that paral-
lel methods tended to work better than sequential ones,
that “shuffling” (a collaboration method) predominated
in performance in more complex problems, that more
subpopulations generally did better, and that more trials
performed marginally better.

1 Introduction

Cooperative coevolution [14] is an evolutionary algo-
rithm framework which breaks a population into several
subpopulations, each optimizing a sub-part of the com-
plete solution. An individual in a subpopulation is tested
by grouping it with one individual from each of the other
subpopulations (known collectively as its collaborators)
to form a complete candidate solution, which is then
assessed. We call this process a trial. The fitness of the
individual is then evaluated from a single trial or from
the best or average result of a series of trials.

The promise of cooperative coevolution is that it can
take advantage of problems which are partially decom-
posable: breakable into separate subproblems which can
be somewhat, though not entirely, optimized indepen-
dently due to low linkage between variables across sub-
problem boundaries. In such cases, cooperative coevo-
lution projects the joint optimization space into much
smaller independent subspaces.

There are many such problems. For example, con-
sider a soccer team: we are evolving attacker, midfielder,
defender, and goalie behaviors. The strongest linkages

This report is an expansion on a paper of the same name at the
GECCO 2011 conference [7].

exist within individual behaviors, and those behaviors
may to some degree be optimized independently. How-
ever, they benefit from being optimized jointly, such as
goalies optimized with defenders.

This promise comes with a downside: by projecting
the joint space, we are throwing considerable informa-
tion away. As a result, cooperative coevolution may fall
victim to pathologies such as relative overgeneralization
[17], causing it to gravitate towards broad suboptimal
peaks surrounding Nash Equilibria in the joint space.
Cooperative coevolution may also be subject to misco-
ordination [8]. As we set the fitness to the maximum of
more and more trials, cooperative coevolution in theory
loses these pathologies. Unfortunately, trials are the cur-
rency of stochastic optimization, and so large numbers
of trials per fitness assessment typically means fewer
fitness assessments, either via smaller populations or
fewer generations.

Cooperative coevolution entails many parameters be-
yond those common to evolutionary computation: one
must also decide on how collaborators are chosen, how
fitness is determined, how many subpopulations to use,
how many trials to perform, and so on. Empirical stud-
ies of these parameters have often made simplifying
assumptions, such as easy problems or small genomes,
small population sizes, binary representations, and often
two subpopulations. We wished to examine coopera-
tive coevolution in problems and scenarios more closely
matching its promise.

In this paper we test certain coevolutionary parame-
ters against several problems of varying complexity, all
with a moderately large genome size (100), with large
numbers of trials (one million per run), and with the
large populations made possible by current computer
hardware and multithreading. We asked the following:

• Which collaboration schemes work best?

• Assuming the problem constraints permit them, are
more subpopulations helpful?

• Are more trials helpful?
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Problem Description Bounds
Sum ∑n

i=1 xi −5.12 ≤ xi ≤ 5.12
Median median(x1, ..., xn) −5.12 ≤ xi ≤ 5.12

Min min(x1, ..., xn) −5.12 ≤ xi ≤ 5.12
Rastrigin* 10n ∑n

i=1 x2
i − 10 cos(2πxi) −5.12 ≤ xi ≤ 5.12

Schwefel* ∑n
i=1−xi sin

(√
|xi|

)
−512.03 ≤ xi ≤ 511.97

Rosenbrock* ∑n−1
i=1 (1− xi)

2 + 100(xi+1 − x2
i )

2 −2.048 ≤ xi ≤ 2.048
Rotated Rastrigin* Rastrigin(rotate(x1, ..., xn)) −5.12 ≤ xi ≤ 5.12
Rotated Schwefel* Schwefel(rotate(x1, ..., xn)) −512.03 ≤ xi ≤ 511.97

Table 1: Test problems used in the study. * indicates a minimization problem: the study negates all minimization
problems to make them maximization problems for consistency.

The remainder of this paper discusses related work,
then lays out empirical experiments which examine
these issues.

2 Related Work

As originally formulated [13, 14] cooperative coevolu-
tion was sequential: each generation only one subpopu-
lation (selected round-robin) would be evaluated, then
breed and update itself. The obvious alternative is to
perform parallel coevolution, where all subpopulations
would be evaluated and bred each generation. There
have been only a few comparisons of the two [6, 12].
Somewhat in-between have been various “punctuated”
approaches [9, 11, 15]. For example, the population
might be evaluated jointly, then broken into subpop-
ulations, with each subpopulation evaluated and breed
for some number of generations, always using the best
collaborators from the earlier parallel evaluation. Even-
tually the populations would be joined up again and the
cycle would continue anew.

Another aspect of cooperative coevolution is how
collaborators are chosen to test an individual. Nearly
all literature either uses the best-performing collabora-
tors from the previous generation (commonly known
as single-best), or selects collaborators at random with
replacement. Here again empirical analysis has been
sparse (notably [19, 18]).

Though seminal work [13] employed many subpop-
ulations, much later cooperative coevolution analysis
has assumed two subpopulations. However as coopera-
tive coevolution has been applied to increasingly com-
plex problems, a recent trend has seen three [14, 18], ten
[15, 20], 30 [21], and even 1000 [3] subpopulations, some-
times dynamically reorganized to identify linkages. Not
much empirical work has directly examined the effect of
many subpopulations.

Finally, how many trials should be applied before de-
termining the fitness of an individual? The original co-
operative coevolution papers compared two methods:
CCEA-1 (a single trial using single-best) and CCEA-2

(two trials: one with the single-best and one with a ran-
dom collaborator). In certain basic test problems it has
been shown that the convergence properties improve
with more trials [8], leading to various approaches to
maximize the impact of trials by forming archives of
collaborators [2, 4, 8].

Once trials are completed, how should an individual’s
fitness be assessed? Some literature has examined basing
the fitness on the worst or mean of the trials (for example
[21]), but it’s since been established that the maximum
over trials best overcomes known pathologies [8].

For a survey of cooperative coevolution and current
theoretical and empirical issues, see [10].

3 Experimental Parameters

Evolutionary computation entails many parameters, and
coevolution only increases that number. We cannot ex-
amine all their combinations. As such we held the fol-
lowing parameters fixed. All problems had n = 100
variables, and were run for one million trials, distributed
in various ways. Breeding used tournament selection (of
size 2), then one-point crossover, then gaussian mutation
(σ = 0.01), reselecting mutation until the new gene was
within valid gene boundaries.

We ran each experiment for 100 independent runs.
Statistical significance tests were performed using one-
way ANOVAs each set to p = 0.00025 in order to retain
slightly better than p = 0.05 for the paper as a whole.
Experiments were performed using ECJ [1]. We then
varied the following parameters:

Coevolved Subpopulation Sizes Given the complex-
ity of the problems and the wide availability of multiple
cores, we chose to use a large population: p = 1000 in-
dividuals. The population was then nominally divided
into subpopulations to perform coevolution. This size
also allowed us to examine larger numbers of subpop-
ulations. We examined s = 1, 2, 4, 10, 50, and 100 sub-
populations (with p/s individuals per subpopulation,
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Problem Number of Subpopulations
2 4 10 50 100

Sum SB PB SB PB PB SB SB PB PP PG PB SB PP PG
Median PB SB PP SB PB SB PB SB PB PP PT PR PG SB PB PP PT PR PG

Min PP PG PG PP PG PG PG
Rosenbrock PP PP PP PP PP

Rastrigin PP PP PP PP PP
Schwefel PP PP PP PP PP

Rotated Rastrigin PP PP PP PP PP
Rotated Schwefel PT PR PG* PG PG PG PG

Legend: SB: Sequential Single Best PB: Parallel Single Best PP: Parallel Shuffled Pops PG: Parallel Shuffled Gens
PT: Parallel Shuffled Trials PR: Parallel Random

Table 2: Summary of Results for First Experiment. Each entry shows the best-performing collaboration schemes with
no statistically significant differences among them, in decreasing order of performance. Note * where PR and SB are
also not significantly different; and PG, SB, PP, and PB are not significantly different.

except in one case described next). Individuals in each
subpopulation had genome lengths of n/s respectively.

Collaboration Schemes and Update Timing We
tested using both parallel and sequential update timing.
Parallel update timing runs lasted for g = 1000 gener-
ations, except with one exception discussed next. All
sequential update timing runs lasted for g × s gener-
ations. Collaborators were chosen using one of eight
collaboration schemes based on the following criteria:

• Individuals were tested with the single best collabo-
rators of the prior generation from other subpopu-
lations.

• Individuals were tested with collaborators chosen at
random, with replacement, from the current individ-
uals of other subpopulations. As a result while all
individuals would have at least one trial, some indi-
viduals may also have been selected as collaborators
in several additional trials. Individuals’ fitnesses
are set to the maximum over all trials in which they
appeared.

• In a method of our own devising, individuals in
each subpopulation were randomly shuffled, then
individuals were paired off: for each i, individuals
indexed i from each subpopulation were tested to-
gether. If the update timing was parallel, a single
shuffling would result in p/s total trials: the surplus
in trials could be redistributed using larger subpop-
ulation sizes (p individuals each), more generations
(g× s generations), or more trials (s per individual,
with new shufflings per trial). Sequential updates
on the other hand do not result in redistribution
options.

In summary, we had eight combinations of update
timing and collaboration schemes in total: Sequential

Single Best, Sequential Random, Sequential Shuffled,
Parallel Single Best, Parallel Random, Parallel Shuffled
Pops, Parallel Shuffled Gens, and Parallel Shuffled Trials.
In the third experiment, we then varied certain of these
schemes to allow for more trials per fitness evaluation.

Test Problems Table 1 shows the problems used in the
study, chosen for their different traits:

• Sum is simply the sum of the variables. It is linearly
separable.

• Min and Median are somewhat more difficult than
Sum: in Median, improving a variable will not im-
prove fitness unless the amount changes enough
that the variable crosses the median. In Min, im-
proving a variable will not improve fitness unless it
is the minimum-value variable. However in either
case improving a variable will never worsen fitness.

• Rastrigin, Schwefel, and Rosenbrock are the standard
functions. Rastrigin is additively separable.

• Rotated Rastrigin and Rotated Schwefel are randomly
rotated versions of these functions, in order to in-
crease linkage among variables. A single fixed
m×m rotation matrix M was used for all problems.
The rotation matrix was generated in a fashion simi-
lar to that described in [5]: first, all entries in M were
produced using random standard-normal gaussian
noise. Then for i from 1 to m, each row Mi was
decreased by ∑m

j=i〈Mi Mj〉Mj, then renormalized.

4 First Experiment:
Collaboration Scheme Choice

We began by comparing the eight collaboration schemes
in the context of all combinations of problem type and
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number of subpopulations. We asked: which collabora-
tion schemes worked best and in which situations?

We started with a one-population baseline GA with a
population size of 1000, run for 1000 generations. This
came to 1,000,000 trials per run. When performing co-
evolution, these trials may be divvied up in different
ways depending on the collaboration scheme. Our eight
schemes result in different distributions of generations,
subpopulation sizes, and minimum number of trials
per individual to compute fitness. For example, for 2-
subpopulation coevolution, the distribution was:

Collaboration Scheme Gens Subpop-Size Subpops Trials
Parallel Single Best 1000 500 2 1

Parallel Random 1000 500 2 1
Parallel Shuffled Pops 1000 1000 2 1
Parallel Shuffled Gens 2000 500 2 1
Parallel Shuffled Trials 1000 500 2 2
Sequential Single Best 2000 500 2 1

Sequential Random 2000 500 2 1
Sequential Shuffled 2000 500 2 1

At the extreme other end, the 100-subpopulation co-
evolution distribution was:

Collaboration Scheme Gens Subpop-Size Subpops Trials
Parallel Single Best 1000 10 100 1

Parallel Random 1000 10 100 1
Parallel Shuffled Pops 1000 1000 100 1
Parallel Shuffled Gens 100000 10 100 1
Parallel Shuffled Trials 1000 10 100 100
Sequential Single Best 100000 10 100 1

Sequential Random 100000 10 100 1
Sequential Shuffled 100000 10 100 1

Observation Abridged results are shown in Figures 1
and 2 and summarized in Table 2. We had hypothesized
that single-best strategies would work well for simple,
linearly separable problems, but less well for others. In
fact this is what occurred: Parallel Single Best and Se-
quential Single Best both yielded the best results for the
two easiest problems (Sum and Median) but failed to
impress anywhere else.

What was surprising was the near dominance of the
remaining problems by Parallel Shuffled Pops and, to a
lesser extent, Parallel Shuffled Gens. Parallel Shuffled
Pops did best on Rosenbrock, Rastrigin, Schwefel, and
Rotated Rastrigin, and performed well in Min, Median,
and Sum. In fact the only problem where Parallel Shuffled
Pops did not perform well was in Rotated Schwefel.
Parallel Shuffled Gens did well in Min and in Rotated
Schwefel.

The sole exception was Schwefel with 2 subpopula-
tions, where Parallel Shuffled Trials and Parallel Random
performed best. In nearly all problems, the baseline (1-
population) GA was middling. Sequential Shuffled and
Sequential Random were poor performers There was no
result in which a sequential scheme statistically signifi-
cantly outperformed parallel schemes, and many cases
where the opposite was true.

Problem Collaboration Scheme Subpops
Sum Sequential Single Best 2 4 10 50 100

Median Sequential Single Best 2 4 10 50 100
Min Parallel Shuffled Gens 2 4 100 50 10

Rosenbrock Parallel Shuffled Pops 2 4 10 50 100
Rastrigin Parallel Shuffled Pops 2 4 10 50 100
Schwefel Parallel Shuffled Pops 2 4 10 50 100

Rotated Rastrigin Parallel Shuffled Pops 2 4 10 50 100
Rotated Schwefel Parallel Shuffled Gens 2 4 10 100 50

Table 3: Summary of Results for the Second Experiment.
Subpopulations are ordered in increasing performance.
Overbars indicate statistically insignificant differences.

5 Second Experiment:
Number of Subpopulations

As the number of subpopulations grows, cooperative
coevolution begins to look similar (in an important
sense) to univariate estimation of distribution algorithms
(EDAs), with which it shares much in common [16]. As
they assume low linkage, univariate EDAs perform well
on separable problems; and so we hypothesized the
same would occur with large numbers of subpopula-
tions. Correspondingly we assumed that high-linkage
problems (rotated Rastrigin and rotated Schwefel) would
prove difficult for large numbers of subpopulations.

Observation The results were very surprising. Gen-
erally speaking, as the number of subpopulations in-
creased, the performance order of the collaboration
schemes stayed roughly the same, but the variance
among results increased dramatically. This can be seen
in Figures 1 and 2. The poorer-performing collaboration
schemes generally performed much worse, but more im-
portantly, the highest-performing collaboration schemes
consistently performed even better. We do not have an
explanation for this phenomenon, but it is encourag-
ing: if you pick a good method, subdividing into more
populations will help.

We performed statistical significance tests across num-
bers of subpopulations when solely using the best col-
laboration scheme for a given problem. These results
are summarized in Table 3. As can be seen, at least up
through 50 subpopulations, high-performing collabo-
ration schemes get better and better, even on the high-
linkage problems tested.

6 Third Experiment: Extra Trials

The prevailing wisdom regarding cooperative coevolu-
tion is that it may be worthwhile to perform multiple
trials to compute a fitness evaluation, because individu-
als are evaluated in the context of other individuals who
may or may not prove to be worthwhile collaborators
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Problem Chosen Collaboration Scheme Number of Subpopulations
2 4 10 50 100

Sum Parallel Single Best (PB) PB PB PB PB PB
Median Parallel Single Best (PB) PB PB PB PB PB 2G

Min Parallel Shuffled Gens (PG) PG 2P PG 2P PG 2G 2G
Rosenbrock Parallel Shuffled Pops (PP) PP 2G 2G PP 2G 2G 2G

Rastrigin Parallel Shuffled Pops (PP) PP 2G 2G PP 2G 2G 2G
Schwefel Parallel Shuffled Pops (PP) PP PP PP PP 2G PP 2G

Rotated Rastrigin Parallel Shuffled Pops (PP) 2G PP 2G 2G 2G 2G
Rotated Schwefel Parallel Shuffled Gens (PG) 2G 2P* 2P PG 2P PG PG 2P 2G 2P 2G PG

Legend: PB: Parallel Single Best PP: Parallel Shuffled Pops PG: Parallel Shuffled Gens
2P: 2-evaluation, half-subpopulation size version of PB (single best + 1 random), PP, or PG
2G: 2-evaluation, half-generations version of PB (single best + 1 random), PP, or PG

Table 4: Summary of Results for the Third Experiment. For each problem we compared the best performing
collaboration scheme (PB, PG, PP, as shown in the Scheme column) against two kinds of two-trial variations of that
scheme. Each entry shows the best-performing collaboration schemes with no statistically significant differences
among them, in decreasing order of performance. See text for details on 2G and 2P variations. Note * where 2P is not
significantly different from PG (but 2G is).

[8]. However increasing the number of trials per fitness
evaluation is expensive.

We wondered if this prevailing wisdom was true. To
test this we selected the best collaboration method for
each problem. These methods originally had used one
trial each. We then constructed two-trial variations of
these methods and compared them to the originals.

For the Sum and Median problems, we chose Par-
allel Single Best as the collaboration method to test,
and compared it against a variation where an individ-
ual is tested against the single best collaborators and
also against randomly-chosen collaborators (so-called
“CCEA-2” from [13]). For the Min and Rotated Schwe-
fel problems, we chose Parallel Shuffled Gens as the
collaboration method to test, and compared it against
a variation where two randomly shuffled trials were
performed. For the remaining problems we chose Par-
allel Shuffled Pops as the collaboration method to test,
again compared against a variation where two randomly
shuffled trials were performed.

In all cases, fitness was assessed as the maximum over
the trials. In order to retain the same number of total
trials but perform two trials per evaluation, something
must be halved. For each variation, we tried halving
the subpopulation size and halving the total number of
generations. In Table 4 these are referred to as the “2P”
and “2G” subvariations. Note that for 2 subpopulations,
PG/2G and PP/2P are equivalent to PT.

Observation Table 4 shows the results. We expected
that for separable problems (such as Sum, and to a lesser
extent Median) more trials would provide no benefit:
and this was in fact the case. Interestingly, in Schwefel
and Rotated Schwefel more trials weren’t useful either.

In the remaining problems the clear pattern was that,

with more subpopulations, it was useful to have more
trials. This made sense, as more subpopulations meant
more collaborators to add contextual noise to the fitness
evaluation. We note that it was universally as good or
better to halve the generations rather than to halve the
population size.

Even so, the improvements, while statistically signif-
icant, were rarely large. Figure 3 shows situations se-
lected from those where two trials were preferred over
one trial. As can be seen, the differences were not as
dramatic as in the other experiments.

We note that for Rotated Schwefel, 2 subpopulation,
PG/2G (that is, PT) was statistically significantly better
than PG, where as in the first experiment, it was not.

7 Conclusions and Future Work

This paper presented a study of parameter settings for
cooperative coevolution for moderately large problems,
and using large populations. In three experiments we
examined various collaboration methods (including shuf-
fling, an approach of our own devising), subpopulation
numbers ranging from 1 to 100, and the addition of more
trials per fitness evaluation. A summary of our findings:

• Shuffling methods allow redistribution of trials for
other purposes, such as longer generations or larger
population sizes: and this paid off. While “single-
best” methods performed well in simple, separable
problems, shuffling methods (notably Parallel Shuf-
fled Pops) predominated in more complex methods.

• Sequential update timing was generally equaled or
outperformed by its parallel counterpart. This is
particularly good news, as parallel update timing
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can better take advantage of parallel architectures.
This corroborates earlier studies, such as [12].

• Even for strongly linked problems, more subpopu-
lations was better.

• In the more complex problems, doubling the trials
per Parallel Shuffled Pops fitness evaluation, and
halving the generations, seemed worthwhile. The
improvement, however, was not large, unlike in [8].
This may cast some doubt on the need for complex
archive methods (as in [2, 4, 8]).

There are many further parameters to explore as fu-
ture work: for example, to reexamine these parameters
for smaller population sizes or methods other than the
genetic algorithm (like differential evolution). Some re-
cent work has taken to more exotic variations [3, 15, 20],
and it is not yet known if these result hold in those cases.
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Figure 1: Experiment 1 mean best fitness results for Sum, Median, Min, and Rosenbrock. Subpopulations of 2 and
100 shown.
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Legend: — One Subpop × Parallel Single Best + Parallel Random © Parallel Shuffled Pops � Parallel Shuffled Gens
M Parallel Shuffled Trials � Sequential Single Best 3 Sequential Random O Sequential Shuffled

−
70

0
−

50
0

−
30

0
−

10
0

rastrigin 2

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980
●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−
70

0
−

50
0

−
30

0
−

10
0

rastrigin 100

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10
00

0
30

00
0

schwefel 2

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10
00

0
30

00
0

schwefel 100

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−
10

00
−

60
0

−
20

0
0

rotated−rastrigin 2

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

●

●

●

●

●
●

● ● ● ● ●
●

●

●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

−
10

00
−

60
0

−
20

0
0

rotated−rastrigin 100

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

●

●

●

●
●

● ● ● ● ● ● ● ●
●

●

●

●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10
00

0
15

00
0

20
00

0

rotated−schwefel 2

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

● ●
●

●
● ● ● ●

10
00

0
15

00
0

20
00

0

rotated−schwefel 100

Trials x 1000

F
itn

es
s

0 80 180 280 380 480 580 680 780 880 980

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ●
●

●
● ● ● ● ●

Figure 2: Experiment 1 mean best fitness results for Rastrigin, Schwefel, and rotated versions. Subpopulations of 2
and 100 shown.
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Legend: —— One Trial – – – Two Trials (Reduced Generations) · · · · · · Two Trials (Reduced Subpopulation Size)
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Figure 3: Experiment 4 selected mean best fitness results showing typical situations where two trials outperformed
one trial.
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