
Department of Computer Science
George Mason University Technical Reports

4400 University Drive MS#4A5
Fairfax, VA 22030-4444 USA
http://cs.gmu.edu/ 703-993-1530

Conservative Collision Prediction
Among Polygons with Unknown Motion

Yanyan Lu
ylu4@gmu.edu

Zhonghua Xi
zxi@gmu.edu

Jyh-Ming Lien
jmlien@gmu.edu

Technical Report GMU-CS-TR-2013-4

Abstract

Collision detection is a fundamental geometric tool for
sampling-based motion planners. On the contrary, collision
prediction for the scenarios that obstacle’s motion is unknown
is still in its infancy. This paper proposes a new approach
to predict collision by assuming that obstacles are adversar-
ial. Our new tool advances collision prediction beyond the
translational and disc robots; arbitrary polygons with rotation
can be used to better represent obstacles and provide tighter
bound on predicted collision time. Comparing to an online
motion planner that replans periodically at fixed time inter-
val, our experimental results provide strong evidences that the
new method significantly reduces the number of replans while
maintaining higher success rate of finding a valid path.

1 Introduction

During the past three decades, there have been extensive work
on planning motion in dynamic environments. One of the first
ideas was to construct visibility graph(s) in configuration-time
space (CT-space) [1]. In late 1990s, probabilistic methods
such as PRM [2] and RRT [3] greatly enhanced the ability of
planners by sampling and connecting configurations in CT-
space.

The idea of temporal coherence is later exploited to gain better
efficiency by repairing the invalid portion of the (tree-based or
graph-based) roadmaps or path since the changes in the config-
uration space is usually small from frame to frame [4, 5, 6, 7].
These planning strategies are often known as replanning meth-
ods [8, 9, 10, 11, 12]. Although these replanning methods are
efficient, almost all existing frameworks update the environ-
mental map and then replan periodically at fixed time interval.
That is, even if there are no changes in the configuration space,
motion planner will still be invoked to replan. The situation
is even worse when replanning is not done frequently enough.
Paths that are believed to be valid may become unsafe. Ideally,
the repair interval should be determined adaptively based on

the motion of the obstacles. we would like to have a planner
that can adaptively update the roadmap at “critical moments”
at which the topology of the free configuration space changes.

Motivated by this observation, we consider the problem of
collision prediction under the framework of online motion
planning in the workspace consisting of dynamic obstacles
that moves along some unknown trajectories with bounded
velocities. More specifically, we are interested in determining
the time that the robot R collides with an obstacle O whose
motion is unknown when R travels on a path Π.

Main Contribution In this paper, we propose a new geomet-
ric tool called collision prediction that allows the robot to
determine the critical moments when the robot and obstacles
can collide. Then, only at critical moment, the robot will up-
date its belief of the environmental configuration and re-plan if
necessary. The main challenge in predicting collision steams
from the assumption that obstacle’s motion is unknown. To
provide conservative estimation, the basic framework intro-
duced in this paper models the obstacles as adversarial agents
that will minimize the time that the robot remains collision
free. As a result, a robot can actively determine its next re-
planning time by conservatively estimating the amount of time
(i.e., earliest collision time) that it can stay on the planned
path without colliding with the obstacles. The idea of earliest
collision time and conservative advancement are detailed in
Section 3.

Overall, our new tool advances collision prediction beyond
the translational and disc robots [13, 14, 15, 16, 11]. Arbitrary
(even non-simple) polygons with rotation can be used to better
represent obstacles and provide tighter bound on predicted
collision time. This prediction is determined only based on
the last known positions of the obstacles and their maximum
linear and angular velocities. In our experimental results (Sec-
tion 7), we demonstrate that our method significantly reduces
the number of replannings while maintaining higher success
rate of finding a valid path.

1

2 Related Work

Motion planning problems involving dynamic environments
can be roughly classified into two categories: (1) The trajectory
of every moving obstacle is fully known in advance, and (2)
the trajectory of a moving obstacle is partially or completely
unpredictable. Since our work falls into the second category,
we will focus on reviewing recent works considering unknown
environments.

2.1 Collision Avoidance

Due to little knowledge of the environment, safety becomes
very important and challenging in path planning in unknown
environments [17, 18, 15, 19, 20, 21, 22, 23, 24, 25]. Fraichard
and Asama [21] provided the formal definitions of two new
concepts: inevitable collision state (ICS) and inevitable colli-
sion obstacle (ICO). If the robot is in an ICS, no matter what
its future trajectory is, a collision eventually occurs with an
obstacle in the environment. ICO is a set of ICS yielding a col-
lision with a particular obstacle. Shiller et al. [19] proposed a
motion planner based on Velocity Obstacles (VO) for static or
dynamic environments. The time horizon for a velocity obsta-
cle is computed based on the current positions of robot and the
obstacle as well as control constraints. With this adaptive time
horizon strategy, the velocity obstacle tightly approximates
the set of ICS. Gomez and Fraichard [22] proposed another
ICS-based collision avoidance strategy called ICS-AVOID.
ICS-AVOID aims at taking the robot from one non-ICS state
to another. The concept of Safe Control Kernel is introduced
and it guarantees ICS-AVOID can find a collision-free trajec-
tory if one exists. Recently, Bautin et al. [26] proposed two
ICS-checking algorithms. Both algorithms take a probabilistic
model of the future as input which assigns a probability mea-
sure to the obstacles’ future trajectories. Instead of answering
whether a given state is an ICS or not, it returns the probability
of a state being an ICS. Wu and How [27] extended VO to
moving obstacles with constrained dynamics but move un-
predictably. To compute the velocity obstacle of an obstacle,
it first predicts its reachable region considering all possibly
feasible trajectories and then maps this reachable region into
velocity space by dividing it by time.

Apparently, computation of ICS or VO (even [26, 27]) re-
quires some information about the future in the environment.
When it comes to environments whose future is completely
unpredictable, methods applying ICS or VO may fail to avoid
approaching collisions, while our new method can guarantee
safety by only knowing the maximum velocities of obstacles.

Yoshida et al. [28] proposed an online replanning method with
parallel planning and execution and roadmap reuse. Howev-
er, this strategy is only suitable for discrete environmental
changes since replanning is time consuming and the robot
needs to stop frequently if replanning is not finished in time.
To address this issue, Yoshida and Kanehiro [29] proposed

a reactive planning approach which considers both path re-
planning and deformation. When environmental changes are
detected, it first checks if the path can be improved by local
deformation. Only when the path becomes infeasible due to
obstacles in its way and local improvements do not work, re-
planning is applied to generate a new feasible path by roadmap
reuse.

Yang and Brock [30] proposed the Elastic Roadmaps for au-
tonomous mobile manipulation. A free configuration is sam-
pled around obstacles and moves with its associated obstacle.
Therefore, the roadmap can always maintain task-consistent
constraints.

Kim and Khosla [31] introduced harmonic potential functions
to address the local minimum issue in Potential Fields. Feder
and Slotine [32] extended this work to dynamic obstacles
moving with constant translational or rotational velocities.
However, the assumption that motions of both the robot and
obstacles to follow harmonic functions is too strict. To relieve
this limitation, Khansari-Zadeh and Billard [33] proposed
an online local obstacle avoidance strategy using dynamic
systems. The original motions of the robot defined by the
user are specified by a continuous and differentiable dynamic
system without considering any obstacles. Then given an
analytical formulation describing the surface of obstacles, the
original dynamic systems are locally deformed in order not to
hit the obstacles.

The work closes to the spirit of our new method is by van
den Berg and Overmars [11]. Their work assumes that the
robot and all obstacles are discs and it conservatively models
the swept volume of an obstacle over time as a cone with the
slope being its maximum velocity. In this way, no matter how
the obstacle moves, it is always contained inside this cone.
Therefore, the computed path is guaranteed to be collision
free. However, these assumptions can be unrealistic for many
applications. For obstacles with arbitrary shapes or rotation,
computing their swept volumes is nontrivial.

2.2 Collision Prediction

Since the robot has partial or no information about the envi-
ronment, it is very difficult to plan a collision free path for it to
move through a field of static or dynamic obstacles to a goal.
One of the biggest challenge is to predict possible collisions
with dynamic obstacles whose trajectories are unknown. There
exists a lot of work which checks collisions at a sequence of
fixed time steps [10, 34, 35, 36, 37]. For example, van den
Berg et al. [10] performed collision detections at fixed time
intervals (every 0.1 seconds in their experiments). Both the
robot and dynamic obstacles were modeled as discs moving in
the plane. Moreover, the future motions of a moving obstacle
were assumed to be the same as its current motions. In order
not to miss any collisions, they either increased the number of
time steps or assumed the objects move very slowly.

There are also works which adaptively changed the frequency

2

of collision checks: collisions are more frequently checked
for two objects which are more likely to collide. Hayward
et al. [13], Kim et al. [16] and Hubbard [14] assumed that
the maximum magnitude of the acceleration is provided for
each object. Hayward et al. calculated the amount of time
within which two moving spheres are guaranteed not to collide
with each other. Then more attention was adaptively paid to
objects which are very likely to collide. Hubbard first detected
collisions between the bounding spheres of two objects. Then
the pairs of objects whose bounding spheres intersect are fur-
ther checked for collisions using sphere trees that represent
the objects. Kim et al. [16] first computed the time-varying
bound volume for each moving sphere with its initial position,
velocity and the maximum magnitude of its acceleration. As
time goes by, the radius of this time-varying bound volume
increases and it is guaranteed to contain the sphere at any time
in the future. For two moving spheres, whenever their time-
varying bound volumes intersect, they are checked for actual
collision. Chakravarthy and Ghose [15] proposed collision
cone approach (similar as velocity obstacle) for predicting
collisions between any two irregularly shaped polygons trans-
lating on unknown trajectories. All these methods are limited
to discs, spheres or translational objects. Our new tool allows
polygons with arbitrary shape (even non-simple polygons)
with rotation.

Almost all existing works collect sensory data and update its
environmental information at fixed times. As a result, either
updating is redundant or the situation is even worse if update
is performed not frequently. The robot may be at some state
which leads it to be in unavoidable collisions. To address this,
we propose to update environmental belief when necessary
by exploring temporal coherence of obstacles and predict a
critical time t such that the robot is guaranteed to move safely
along its current path until t.

3 Overview: Conservative Advance-
ment

Planning a path in environments populated with obstacles with
unknown trajectories usually involves two steps: (1) find an
initial path Π based on known information and then (2) modify
Π as the robot receives new information from its onboard
sensors at fixed times. To provide a more concrete framework
for our discussion, we assume that the robot R still plans a
path Π based on its current belief of the state of the workspace.
However, instead of determining if Π is still safe to traverse
at fixed time, R determines the critical moment t that Π may
become invalid. The robot budgets a certain amount of time
4t before this critical moment t to update its belief and replan
if necessary. To make our discussion more concrete, let us
emphasize again that this setting is merely a framework among
other applications of collision prediction.

Because the trajectory of the obstacles in workspace is un-
known, the critical moment t can only be approximated. To

ensure the safety of the robot, our goal is to obtain conser-
vative estimation t ′ ≤ t of the unknown value t. Follow the
naming tradition in collision detection, we call such an estima-
tion conservative advancement on Π and denote it as CAΠ. To
compute CAΠ, the robot assumes that all obstacles are adver-
sarial. That is, these adversarial obstacles will move in order
to minimize the time that Π remains valid.

Contrary to traditional motion planning methods, the calcula-
tion of CAΠ (performed by the robot) in some sense reverses
the roles of robot and obstacles. The robot R is now fixed
to the path Π, thus the configuration of R at any given time
is known. On the other hand, the obstacles’ trajectories are
unknown but will be planned to collide with R in the shortest
possible time. As we will see later, the motion strategy for an
obstacle Oi will only depend on the the maximum translational
velocity vi and a maximum angular velocity ωi around a given
reference point o. o is the rotation center specified by users for
an obstacle. Different obstacles can have different reference
points for rotation.

3.1 Estimate Conservative Advancement on
Path Π

Without loss of generality, the problem of estimating CAΠ can
be greatly simplified if we focus on only a single obstacle and a
segment of path Π. Let Π be a sequence of free configurations
Π = {c1,c2, ...,cn} with c1 = S and cn = G, where the S and
G are start and goal configurations, respectively. Given a
segment c jc j+1 ⊂ Π, we let ECTi, j be the earliest collision
time (ECT) that Oi takes to collide with the robot on c jc j+1.
Then we have CAΠ =mini (min j (ECTi, j)), where 1≤ i≤ |O|
and 1≤ j < n. Note that ECTi, j is infinitely large, if Oi cannot
collide with R before R leaves c jc j+1.

Lemma 3.1 If ECTi, j 6= ∞, then ECTi, j ≤ ECTi,k, ∀k > j

That is once an earliest collision time is detected for a path
segment c jc j+1, it is not necessary to check all its subsequent
segments ckck+1 with j < k < n. In Section 3.3, we will
provide a brief overview on how ECTi, j can be computed.

Before we proceed our discussion, we would like to point out
that our method does not consider collisions between the ob-
stacles. Although this makes our estimate more conservative,
the obstacle with the earliest collision time rarely collides with
other obstacles.

3.2 Pre-processing

For a segment c1c2 ∈Π, let t1 be the time when robot reaches
c1 and t2 be the time when robot reaches c2. We first perform a
preprocessing step to filter out obstacles which are impossible
to hit the robot on c1c2 between the time period [t1, t2].

In order to achieve this, we first build an “envelope” of c1c2
with respect to every dynamic obstacle Oi ∈ O. As shown

3

a

Oi

d

c

b

c2c1

Figure 1: An “envelope” of path segment c1c2 induced by
Oi. It is bounded by two circles which are centered at c1 and
c2, respectively and two lines ab and cd which are tangent to
these two circles.

in Fig. 1, such an envelope is bounded by two circles and
two lines which are tangent to these circles. The radius of
the circle centered at c1 is v× t1 with v being Oi’s maximum
translational velocity. And the radius of the circle centered at
c2 is v× t2. A point p is on the boundary of this “envelope” if
its closest distance to c1c2 is v× t with t being the time when
robot reaches p’s closest point on c1c2. Let SA be the area Oi
sweeps over during [t1, t2]. In order to hit the robot on c1c2,
SA needs to intersect the envelope. In this way, we can filter
out any obstacle whose swept region is separated from the
envelope. For an obstacle, the further it is from c1c2, the more
possible it will be filtered out. Since it is nontrivial to compute
swept area for an arbitrary shape with rotation, we can use a
simple shape such as its oriented bounding box to approximate
the original shape.

3.3 Earliest Collision Time (ECT)

Given a segment c jc j+1 ⊂Π of path in C-space, our goal is
to compute the earliest collision time ECTi, j when obstacle
Oi hits robot R somewhere on c jc j+1. Assume R starts to
execute on Π at time 0.

Since the robot R moves along a known path Π, R knows
when it reaches any configuration c ∈Π. Let t be the time that
R takes to reach a configuration c(t) ∈ c jc j+1 and let T be
the time when Oi reaches this c(t). Because Oi is constrained
by it maximum linear and angular velocities vi and ωi, there
must exist an earliest time T̂ for Oi to reach any c ∈ c1c2
without violating these constraints. Since every configuration
on c jc j+1 is parameterized by t, this T̂ can also be expressed as
a function of t. Let this function be f (t). Furthermore, when
the robot R and Oi collide, they must reach a configuration c
at the same time. Therefore, we also consider the relationship
between t and T modeled by the function g(t) : t = T .

Collision Region

ECT

tj+1
t

T

f

t = T

0 tj

(a)

f

t

T

t = T

0 tj tj+1

(b)

Figure 2: The red (thicker) curves in both figures are plots of
the earliest arrival time f (t) for an obstacle. Black straight
lines are plots of g(t) : t = T . (a) When there is at least one
intersection (blue dot) between f (t) and g(t), collision region
is not empty. (b) Otherwise, the collision region is empty.

In both figures Fig. 2(a) and Fig. 2(b), a bold (red) curve
represents f (t) and a black straight line represents g(t). These
two curves subdivide the space into interesting regions.

• For a point p = (t,T > t), indicates situations that Oi
reaches c(t) later than t. No collisions will happen be-
cause when Oi reaches c(t), the robot R already passes
c(t).

• The points p = (t,T < f (t)) indicates impossible situ-
ations that Oi needs to move faster than its maximum
velocities in order to reach c(t) at T .

• For a point p = (t, f (t) < T < t) from the region above
curve f (t) but below curve t = T , Oi has the ability to
reach c(t) earlier than R. In order to collide with R, Oi
can slow down or wait at c(t) until R arrives. We call
this region the collision region.

Given that the robot R enters the path segment c jc j+1 through
one end point c j at time t j and leaves c jc j+1 from the other
endpoint c j+1 at time t j+1, the earliest collision time ECTi j
is the t coordinate of left most point of the collision region
between t j and t j+1. Therefore if this collision region is empty,
R and Oi will not collide on c jc j+1.

4

Based on what has been discussed so far, the most important
step of estimating critical moment is to compute f (t), the
earliest moment when Oi reaches c(t). The shape of function
f (t) depends on the type and the degrees of freedom of the
robot and obstacles.

In the following sections, we will discuss two examples of how
f (t) can be formulated when: (1) both R and Oi are points,
and (2) R is a point and Oi is a polygon. From these examples,
we can build up f (t) for complex polygons using the f (t) of
points and line segments even when rotation is considered.

4 Point-Point Case

c

p

θ

cj+1
cj

Figure 3: When both Oi and R are points, their closest distance
can be computed using Law of cosines in4pc jc.

To warm up our discussion, we start with a point robot R and
a point obstacle Oi without rotation. Let obstacle Oi’s current
pose p coincide with its reference point o and c(t) is the pose
of the robot at time t. The function f (t) can be simply defined
as

f (t) = |pc(t)|/vi . (1)

Since R moves with a given velocity, c jc j+1 ⊂ Π can be
linearly interpolated and every point on c jc j+1 is parameter-
ized by 0≤ λ ≤ 1. So the distance L between c j and c(t) is
L = |c jc(t)| = λ |c jc j+1| and, the function f can be simply
written as:

f (t) =
√

L2 + d2−2dLcosθ /vi (2)

where d = |pc j| and θ is the angle ∠pc jc j+1. This is illustrat-
ed in Fig. 3.

In order to compute the collision region, we need to find out
the intersections of functions f (t) and g(t) = t = T . By re-
placing f (t) with t, we get a quadratic equation with only one
variable t =

√
L2 + d2−2dLcosθ /vi. By solving this equa-

tion, we can determine the collision region between [t j, t j+1]
based on the solutions. If the collision region is empty, there
will be no collision between Oi and R on path segment c jc j+1
(Fig. 2(b)).

A

B

A

B

(a)

p1

p3

p4

o

p2

(b)

Figure 4: (a) If A is fixed and B translates towards A along the
closest direction, the closest features between B and A remain
the same until they collide. (b) A polygon rotates around a
point o. The area it sweeps over is bounded by the trajectory
of every vertex (p1 through p4) and edges from both original
and destination shapes.

5 Point-Polygon Case

Now, we move on to the case where robot R is a point and
obstacle Oi is a polygon that can translate and rotate around a
given reference point o. This also includes the case that R is
translational thus can be reduced to a point via the Minkowski
sum of −R and Oi.

R and Oi collide when the closest distance between R and
the boundary of Oi becomes zero. Let us first consider a
simpler case that R is static and Oi can only translate. In this
case, the trajectory that brings R and Oi together is a straight
line connecting their closest features (Fig. 4(a)). During the
translation, the closest features between R and Oi remain the
same, and therefore identical to the point-point case discussed
previously. However, when Oi can rotate, the closest features

5

between R and Oi might change.

To estimate the earliest collision time (ECT), we observe that
Oi’s rotation and translation can be considered separately. That
is, ECTi j can be determined by analyzing the distance between
R and the swept area of Oi rotating around o. Let SAt

i be Oi’s
swept area created by rotating Oi with maximum angular
velocity ωi for time t as illustrated in Fig. 4(b). Because SAt

i
is the union of the swept area of every edge of Oi, ECTi j is
simply the minimum among all earliest collision times of the
edges in Oi and R. This simple observation allows us to focus
on one single edge of Oi.

Now we consider a moving segment p1 p2 ∈Oi colliding with
R. As shown Fig. 5(a), the swept area of p1 p2 is a donut-
shaped area bounded by two concentric circles centered at the
reference point o traced out by p1 and p2. Without loss of
generality, it is assumed that p2 forms the bigger circle.

p′
1

p1

c1

c

p2

c2

o

θ

p′
2

(a)

p1

c

d

c′
d

p′2

p2

o

p′1

(b)

Figure 5: (a) The swept area of p1 p2 rotating is bounded by
this grey shadowed donut-shape. The closest distance between
p1 p2 and c is realized when p2 becomes colinear with o and c.
(b) If p1 p2 is fixed and c rotates around o with velocity −ω ,
both the closest features and closest distance will be the same
as in the case where c is fixed and p1 p2 rotates around o with
ω .

As in point-point case, given a configuration c(t) ∈ c jc j+1
which represents the location of R at time t, we are interested
in solving f (t) which is the earliest moment when p1 p2 hits
this c(t).

5.1 ECT of p1 p2 and c ∈Π

We separate our analysis into two cases: (1) p1 p2 and c are
sufficiently far apart, and (2) p1 p2 and c are sufficiently close.

Let us first consider the situation that the segment p1 p2 and
the point c are sufficiently far apart so that when p1 p2 moves
at maximum (rotational and translational) speed, translation
takes more time than rotation. In this case, the optimal motion
is to translate p1 p2 along oc while rotating p1 p2 until p2 is
colinear with o and c. Thus, ECT of p1 p2 and c is simply

(|oc|− |op2|)/vi ,when |oc| ≥ (φ/ωi)vi + |op2| , (3)

where φ is the rotation needed to make p2, o and c collinear.

When c is sufficiently close to the segment p1 p2, p1 p2 can
hit c before p2, o and c become colinear. Depending on the
relative position of c and the swept area of p1 p2, the motion
strategy taken by p1 p2 will be different. As illustrated in
Fig. 6, there are three cases we have to analyze.

Before we detailed our analysis, we found that fixing p1 p2
and rotating c around o significantly simplifies our discussion.
That is, if p1 p2 rotates around o with velocity ωi, then the
closest distance will not change if c rotates around o with
velocity −ωi (see Fig. 5(b)).

p1

β2

c1

c3

α2c2

c4

o

β1

α1

p2

(a)

α

p1
c1

β

c2

o

p2

(b)

c2

p2

o

β

α

p1

c1

(c)

Figure 6: Three cases when c is sufficiently close to the seg-
ment p1 p2

When c orbits around o, the closest feature between c and p1 p2
changes among p1, p2 and the points in p1 p2

◦, the open set of
p1 p2. If c is outside the circle traced out by p2 (Fig. 6(a)), the
closest feature can change four times from p2 to p1 p2

◦ to p1 to
p1 p2

◦ and back to p1 p2
◦. If c overlaps with the swept area of

p1 p2 (Fig. 6(b)), the closest feature changes twice between p1

6

and p1 p2
◦. If c is inside the circle traced out by p1 (Fig. 6(c)),

the closest feature also changes twice between p1 and p1 p2
◦.

Determining these closest feature changes (i.e., α and β in
Fig. 6) is straightforward; they are the intersections between
the circle traced out by c (around o) and the lines containing
p1 or p2 and perpendicular to p1 p2. We will talk about this in
details later.

If we let the closest distance between c and p1 p2 be a function
d(t) of time (we will talk about how to formulate d(t) for all
three cases of Fig. 6 later), and let tT be the time that the point
c needs to translate at velocity vi, and let tR be the time that
c needs to rotate at velocity −ωi. Because tT is a function of
tR, we let tT = hT (tR) = d(tR)/vi, where d(tR) is the distance
between c and segment p1 p2 when c rotates θ =−tRω around
o. The ECT between p and c1c2 is:

ECT = argmin
tR

(max (tR,hT (tR))) (4)

= argmin
tR

(|tR−hT (tR)|) . (5)

Therefore, ECT is tR such that tR = d(tR)/vi. In other words,
since both translation and rotation decrease the closest distance
between R and Oi, in order to detect the earliest collision time,
tT must equal tR.

5.1.1 Computation Of α and β

To detect α and β , we transform the reference point o to
the origin and p1 p2 to be aligned with the x-axis. Let p1 =
[a1,a2] and p2 = [b1,b2]. The line passing through p1 and
perpendicular to p1 p2 is L1 : x = a1. The straight line passing
through p2 and perpendicular to p1 p2 is L2 : x = b1. Let tR
be the moment when c reaches α1 or β1, then tR satisfies the
following constraint:

cos(ωtR)cx + sin(ωtR)cy = a1 . (6)

Similarly, the moment tR when c reaches α2 or β2 satisfies

cos(ωtR)cx + sin(ωtR)cy = b1 . (7)

Fig. 7(a) shows the plots of equations 6 and 7. It illustrates
how tR changes as R moves from c1 to c2. Of course, both
functions 6 and 7 are periodical because tR is the variable of
Trigonometric functions. We are only interested in the values
of tR in the first period due to ECT.

5.1.2 Distance Function d(t)

Closest Point Is An Endpoint Of p1 p2. We first consider
that case that the closest feature from p1 p2 is p1. Since p1 is
fixed and c(t) rotates around o with −ω ,

d(t) = |c(t)p1|.

Therefore,

d2(t) = (xt −a1)
2 +(yt −a2)

2,

where c(t) = (xt ,yt) and p1 = (a1,a2).

After applying Laws of cosines to4op1c(t),

d(t) = |c(t)p1|
= |op1|2 + |oc(t)|2−2|op1||oc(t)|cos∠p1oc(t) (8)

We can get c(t) by rotating c around the reference point o for
θ with θ being −ωt. Let c = [x,y]. Then

xt = cosθx− sinθy

yt = sinθx+ cosθy

By applying the above equations, d(t) can be further repre-
sented as follows.

d2(t) = |op1|2 + |oc|2
−2cosθ (a1x+ a2y)+ 2sinθ (a1y−a2x) (9)

Assume c is on c1c2, then c can be interpolated with c1 and c2.
In other words, c = [x,y] is parameterized by 0≤ λ ≤ 1 and
c1c2. Let c1 = [x1,y1] and c2 = [x2,y2], then

x = x1 +λ (x2− x1)

y = y1 +λ (y2− y1)

To make it easier, c1c2 is rotated to be aligned with x-axis.
Then

y = y2 = y1.

In order to detect ECT, we need to solve equation

d2(tR) = (vitR)2

= |op1|2 + |oc|2−2cosθ (a1x+ a2y)+ 2sinθ (a1y−a2x).
(10)

where θ = −ωtR.

Equation 10 is a complex function with trigonometric function-
s and polynomials. It can be solved with trust-region methods
such as Levenberg-Marquardt algorithm or the Dogleg algo-
rithm.

Closest Point Is p1 p2
◦. If d(t) is defined between p1 p2

◦ and
c, then d(t) is the distance from c to the straight line containing
p1 p2. To make it simpler, p1 p2 is rotated to be aligned with
y = x and c1c2 is transformed accordingly. This line is easily
computed and let it be

y = x+ b.

Then d(t) can be written as

d2(t) =
(xt − yt + b)2

2
.

7

By replacing xt and yt with the equation above, d(t) can be
represented as follows with θ being −ωt.

d2(t) =
|oc|2 + b2− sin2θ (x2− y2)

2
− xycos2θ + bcosθ (x− y)−bsinθ (x+ y) (11)

5.2 ECT of p1 p2 and c1c2 ⊂Π

c c2
t

β1

α1

α2

α1

β1

β2

α2

tR

α1

c1 c′

(a)

o

c

c2

α1

p2

p1

c1

L2

L1

(b)

α2

o

L2

L1
α1

p1

p2

c′

β1

c2

c1

(c)

Figure 7: (a) The relationship between tR and α and β when
R moves from c1 to c2. (b) and (c) illustrate the configurations
c and c′ in (a). L1 and L2 are the lines perpendicular to p1 p2
and contain p1 and p2, respectively.

The discussion in Section 5.1 allows us to partition an edge
c1c2 ⊂Π into subsegment such that all configurations in each
subsegment belong to one of the four classes identified in the
previous section, i.e., sufficiently far, or case (a), (b) or (c)
in Fig. 6. More specifically, if we relate time t to α and β

in Fig. 6, we can get a plot similar to Fig. 7. In Fig. 7(a), if
the robot R is between c1 and c, the closest feature between
p1 p2 and R is always p1. If R is between c and c′, the closest
feature can change from p1 to p1 p2. If R is between c′ and
c2, the closest feature between p1 p2 and c′c2 can change four
times. If there exists a configuration c′′ between c′ and c2 that

is sufficiently away (not shown in Fig. 6), then the closest
feature between p1 p2 and c′′c2 is always p2.

Recall that our goal is to determine the time of earliest col-
lision for every configuration on c1c2, i.e., the function f (t).
For the subsegments (e.g. c1c and c′′c2) that the closest feature
does not change, the function f (t) of the subsegments is sim-
ply tR = d(tR, p)/vi, where the point p is p1 or p2 and d(tR, p)
is the distance between p and the configuration of the robot at
time tR. The function d(tR, p) is detailed in Appendix. For the
subsegments (e.g. cc′) that the closest features change with ro-
tation, the function f (t) of the subsegments can be determined
by combining tR = d(tR, p)/vi and tR = d(tR, p1 p2

◦)/vi that
is valid only in the gray area shown in Fig. 7(a).

Therefore, the function f (t) for the segment c1c2 can be deter-
mined in the piecewise fashion by solving tR in each of these
subsegments. Fig. 8 show an example on the function f (t)
and the closest distance between an edge of an obstacle and
the robot over time.

t = T

T

t1 t2

f (t)

t

(a)

0 2 4 6 8 10 12 14 16 18 20

0

1

2

3

0

5

10

15

T

t

d(t,T)

(b)

Figure 8: (a) The plot for f (t) when the closest feature to
c locates on p1 p2

◦. The collision region is bounded by the
two leftmost intersections. (b) The 3D plot shows the closest
distance between an edge of some obstacle and the robot
changes over time.

Similar to the analysis that we have done in Section 5, when
f (t) = t, Oi collides with R at maximum velocity and f (t)< t
means Oi can collide with R at location c if Oi slows down.

8

Otherwise, Oi cannot reach c before R already passes c. There-
fore, we are interested in detecting the collision region which
is above tR = f (t) and below t = tR and also bounded by t = t1
and t = t2.

Note that, although the function f (t) can be complex, the
intersections can be determined by trust-region-based root-
finding methods such as Levenberg-Marquardt algorithm or
the Dogleg algorithm.

6 Planning Motion Using Predicted
Collision

So far we assume that the robot only stays on a given path.
In this section, we show how to use the predicted collision
when replanning becomes necessary. There are two desirable
properties when a robot replans a path. First, we want a path
to bring the robot near the goal. Second, we prefer the path to
remain safe for as long as possible. With these two properties
in mind, we propose to augment RRT [38] with predicted
collision. More specifically, the RRT is constructed as usual
but each path from the root to a leaf is now associated with an
earliest collision time (ECT). The best path is then a path in the
RRT that has the latest ECT while still reduces the geodesic
distance between the robot and the goal. An example of an
augment RRT is shown in Fig. 9. In this example, paths from
configuration r to all leaves reduce the distance to the goal but
the path πd to configuration d has the latest ECT, thus πd is
the best path.

obstacle goal

d′

r

a

e

c
f

c′

b

d

Figure 9: An RRT augmented with earliest collision time. The
tree is rooted at current configuration r of the robot. Configu-
rations c′ and d′ are the predicted earliest collision locations
on the paths from r to c and d, respectively.

7 Experimental Results

We implemented the collision prediction method in C++ using
Eigen linear algebra library. Experimental results reported in
this paper are obtained from a workstation with two Intel Xeon
E5-2630 2.30GHz CPUs and 32GB memory. We tested our

implementation in ten environments shown in Fig. 10. Each
environment is designed to demonstrate certain features. For
example, Fig. 10(c) has a complicated bird shape, Fig. 10(d)
has many (16) dynamic cross shapes, Fig. 10(g) has bars with
large angular velocities, Fig. 10(f) or Fig. 10(i) contains narrow
passages, Fig. 10(j) has long bars with large angular velocities
and static bars surrounding start and goal.

These environments contain a point robot and both static and
dynamic obstacles. For a dynamic obstacle, its motion is
simulated using Box2D physics engine by exerting random
forces. The robot knows the locations of static obstacles and
the maximum translational velocity and angular velocity of
dynamic obstacle. The only way that the robot knows the
pose of a dynamic obstacle is through its (simulated) onboard
sensors. The best way to visualize the environments is via
animation. We encourage the reader to view the video sub-
mitted with this paper. More videos can also be found at
http://masc.cs.gmu.edu/wiki/ECT.

7.1 Compare to a Fixed-Time Strategy

In our first experiment, we compare two planning strategies:
One replans adaptively based on collision prediction using aug-
mented RRT (see Section 6), and the other replans periodically
at fixed time interval using regular RRT.

Fig. 11 and Fig. 12 show the success rate and number of re-
plans obtained from environments in Fig. 10. The success rate
is the number of runs that robot reaches the goal over the total
number of runs, and the number of replans is the number of
times that the robot replans to reach the goal. The maximum
translational velocity of an obstacle is set to 2m/s and the max-
imum angular velocity is set to 3 radians/s. The experiments
are conducted for multiple situations when robot’s velocity is
1, 2, 4, 8 and 16m/s. Each data point from Fig. 11(a) through
Fig. 11(j) and Fig. 12(a) through Fig. 12(j) is collected over
100 runs. And each data point from Fig. 12(k) and Fig. 11(k) is
collected over 1000 runs (i.e. 100 runs for each environment).

Success Rate and Number of Replans. From the plots in
Fig. 11 and Fig. 12, we show that our approach using predicat-
ed collision helps the robot achieve nearly optimal success rate
with a small number of replans. First, let us look at Fig. 11.
We see that the success rate of the proposed method is almost
identical to the fixed-time strategy with very high (and almost
unrealistic) replanning frequency (i.e. replan every 0.05 sec.).
This is especially clear when the robot’s velocity is greater
than 2m/s. However, frequent updates introduce a large num-
ber of replans. As shown in Fig. 12, in order to provide a
success rate similar to the proposed method, the fixed-time
strategy needs to replan around 100 times more.

Running Time. In the table on the right, we provide average
computation times spent on replanning over all five environ-
ments. We observe that, to achieve similar success rate, our
method runs 3 and 12 times faster than fixed-time strategy
with time step 0.1 and 0.05 sec, respectively.

9

http://masc.cs.gmu.edu/wiki/ECT

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Figure 10: Ten environments used in experiments. In any of them, a green dot and a blue dot indicate start position and goal
position, respectively. Black obstacles are static and light grey obstacles are dynamic. A red obstacle is the one which introduces
earliest collision with the robot. A green curve shows the trajectory that the robot has traversed. So a red dot indicates the robot’s
current position when the image is captured. A brown dot shows the predicted location where the earliest possible collision
might happen. A blue curve shows the path that robot plans to take. Notice that this path might be changed later due to possible
collisions.

10

Method Time (sec)
Our method 2.68
Replan every 0.05 sec 25.70
Replan every 0.1 sec 8.76
Replan every 0.2 sec 4.00
Replan every 0.5 sec 1.66
Replan every 1.0 sec 0.97

7.2 Compare to a Conservative Optimal Strat-
egy

We further compare our method to an optimal strategy pro-
posed by van den Berg and Overmars [11]. In their work,
every obstacle must be a disc and its swept volume over time
is conservatively modeled as a cone with the slope being its
maximum velocity. Therefore, the path, if any, generated by
their method is guaranteed to be safe.

To apply their strategy in our environments shown in Fig. 10,
we replace the obstacles with their smallest bounding circles.
Static obstacles are modeled as moving obstacles with zero
velocity. Also note that bounding box is not allowed in their
method. Our experiments found that, the robot needs to move
at 22m/s or faster in order to find a safe path in Fig. 10(d),
and at least 15m/s in Fig. 10(j). No path can be found at lower
speed in these environments. For environments in Fig.s 10(c),
10(g) and 10(j), the start or the goal is covered by one or more
obstacles at the very beginning, thus no path can be found. On
the contrary, the proposed method provides better flexibility
while still allows the robot to achieve a nearly 90% success
rate at 4m/s and almost 100% at 8m/s.

8 Conclusion

In this paper, we proposed an adaptive method that predicts
collisions for obstacles with unknown trajectories. We believe
that this collision prediction has many potential usages and
advantages. Similar to collisions detection in the setting of
known obstacle motion, we have shown that collision predic-
tion allows the robot to evaluate the safety of each edge on the
extracted path with unknown obstacle motion. When the robot
travels on a predetermined path, collision prediction enables
adaptive repairing period that allows more robust and efficient
replanning. Comparing to a planning strategy that replans
periodically at fixed time interval, our experimental results
show strong evidences that the proposed method significantly
reduces the number of replans while maintaining higher suc-
cess rate of finding a valid path. Even though the obstacles are
modeled as adversarial agents in this paper, we are currently
investigate strategies to incorporate the constraints in obsta-
cles’ motion when better behavior patterns of the obstacle are
known [10].

References

[1] M. Erdmann and T. Lozano-Perez, “On multiple moving
objects,” Algorithmica, vol. 2, pp. 1419–1424, 1986.

[2] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H.
Overmars, “Probabilistic roadmaps for path planning in
high-dimensional configuration spaces,” IEEE Trans. on
Robotics and Automation, vol. 12, no. 4, pp. 566–580,
August 1996.

[3] S. M. LaValle and J. J. Kuffner, “Randomized kinody-
namic planning,” in Proc. of IEEE Int. Conf. on Robotics
and Automation, 1999, pp. 473–479.

[4] L. Jaillet and T. Simeon, “A prm-based motion planner
for dynamically changing environments,” in Proc. IEEE
Int. Conf. Intel. Rob. Syst. (IROS), 2004, pp. 1606–1611.

[5] M. Kallman and M. Mataric, “Motion planning using
dynamic roadmaps,” in Robotics and Automation, 2004.
Proceedings. ICRA’04. 2004 IEEE International Confer-
ence on, vol. 5. IEEE, 2004, pp. 4399–4404.

[6] T.-Y. Li and Y.-C. Shie, “An incremental learning ap-
proach to motion planning with roadmap management,”
in Proc. of IEEE Int. Conf. on Robotics and Automation,
2002, pp. 3411–3416.

[7] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with
rrts,” in Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on.
IEEE, 2006, pp. 1243–1248.

[8] O. Khatib, “Real–time obstacle avoidance for manipu-
lators and mobile robots,” Int. Journal of Robotics Re-
search, vol. 5, no. 1, pp. 90–98, 1986.

[9] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and
S. Thrun, “Anytime dynamic a*: An anytime, replanning
algorithm,” 2005.

[10] J. van den Berg, D. Ferguson, and J. Kuffner, “Anytime
path planning and replanning in dynamic environments,”
in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), May 2006, pp. 2366 –
2371.

[11] J. van den Berg and M. Overmars, “Planning the shortest
safe path amidst unpredictably moving obstacles,” in
Proc. Int. Workshop Alg. Found. Robot.(WAFR), 2006.

[12] M. Wzorek, J. Kvarnstrom, and P. Doherty, “Choosing
path replanning strategies for unmanned aircraft system-
sun,” 2010.

[13] V. Hayward, S. Aubry, A. Foisy, and Y. Ghallab, “Effi-
cient collision prediction among many moving objects,”
Internat. J. Robot. Res., vol. 14, no. 2, pp. 129–143,
1995.

[14] P. M. Hubbard, “Collision detection for interactive graph-
ics applications,” Ph.D. dissertation, 1995.

11

[15] A. Chakravarthy and D. Ghose, “Obstacle avoidance
in a dynamic environment: A collision cone approach,”
Systems, Man and Cybernetics, Part A: Systems and
Humans, IEEE Transactions on, vol. 28, no. 5, pp. 562–
574, 1998.

[16] H. K. Kim, L. J. Guibas, and S. Y. Shin, “Efficient col-
lision detection among moving spheres with unknown
trajectories,” Algorithmica, pp. 195–210, 2005.

[17] N. Du Toit and J. Burdick, “Robotic motion planning in
dynamic, cluttered, uncertain environments,” in Robotics
and Automation (ICRA), 2010 IEEE International Con-
ference on. IEEE, 2010, pp. 966–973.

[18] K. Hauser, “Randomized belief-space replanning in
partially-observable continuous spaces,” Algorithmic
Foundations of Robotics IX, pp. 193–209, 2011.

[19] Z. Shiller, O. Gal, and A. Raz, “Adaptive time horizon
for on-line avoidance in dynamic environments,” in In-
telligent Robots and Systems (IROS), 2011 IEEE/RSJ
International Conference on. IEEE, 2011, pp. 3539–
3544.

[20] B. D. Luders, G. S. Aoude, J. M. Joseph, N. Roy, and J. P.
How, “Probabilistically safe avoidance of dynamic obsta-
cles with uncertain motion patterns,” MIT Aerospace
Control Laboratory: Technical Reports, Tech. Rep.,
2011.

[21] T. Fraichard and H. Asama, “Inevitable collision states. a
step towards safer robots?” in Intelligent Robots and Sys-
tems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ
International Conference on, vol. 1. IEEE, 2003, pp.
388–393.

[22] L. Martinez-Gomez and T. Fraichard, “Collision avoid-
ance in dynamic environments: an ics-based solution
and its comparative evaluation,” in Robotics and Automa-
tion, 2009. ICRA’09. IEEE International Conference on.
IEEE, 2009, pp. 100–105.

[23] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and
G. Fiore, “Real-time motion planning with applications
to autonomous urban driving,” Control Systems Technolo-
gy, IEEE Transactions on, vol. 17, no. 5, pp. 1105–1118,
2009.

[24] S. Bouraine, T. Fraichard, and H. Salhi, “Relaxing the
inevitable collision state concept to address provably safe
mobile robot navigation with limited field-of-views in
unknown dynamic environments,” in Intelligent Robots
and Systems (IROS), 2011 IEEE/RSJ International Con-
ference on. IEEE, 2011, pp. 2985–2991.

[25] E. Lalish and K. Morgansen, “Decentralized reactive col-
lision avoidance for multivehicle systems,” in Decision
and Control, 2008. CDC 2008. 47th IEEE Conference
on. IEEE, 2008, pp. 1218–1224.

[26] A. Bautin, L. Martinez-Gomez, and T. Fraichard, “In-
evitable collision states: A probabilistic perspective,” in
Proc. of IEEE Int. Conf. on Robotics and Automation,
Anchorage, AK, 2010, pp. 4022 – 4027.

[27] A. Wu and J. P. How, “Guaranteed infinite horizon avoid-
ance of unpredictable, dynamically constrained obsta-
cles,” Autonomous Robots, pp. 227–242, 2012.

[28] E. Yoshida, K. Yokoi, and P. Gergondet, “Online replan-
ning for reactive robot motion: Practical aspects,” in
Proc. IEEE Int. Conf. Intel. Rob. Syst. (IROS), p. 5927.

[29] E. Yoshida and F. Kanehiro, “Reactive robot motion us-
ing path replanning and deformation,” in Proceedings of
IEEE International Conference on Robotics and Automa-
tion (ICRA ’2011), May 2011.

[30] Y. Yang and O. Brock, “Elastic roadmaps: Globally
taskconsistent motion for autonomous mobile manipula-
tion in dynamic environments,” in Proc. Robotics: Sci.
Sys. (RSS), 2007.

[31] J. oh Kim and P. K. Khosla, “Real-time obstacle avoid-
ance using harmonic potential functions,” IEEE Trans.
on Robotics and Automation, vol. 8, no. 3, p. 338349,
June 1992.

[32] H. J. S. Feder and J.-J. E. Slotine, “Real-time path
planning using harmonic potentials in dynamic environ-
ments,” in Proceedings of IEEE International Confer-
ence on Robotics and Automation (ICRA ’97), May 1997.

[33] S. Khansari-Zadeh and A. Billard, “A dynamical system
approach to realtime obstacle avoidance,” Autonomous
Robots, 2012.

[34] J. Cohen, M. C. Lin, D. Manocha, and M. Ponamgi,
“I-collide: An interactive and exact collision detection
system for large-scale environment,” in Symposium on
Interactive 3D Graphics, 1995, pp. 189–196.

[35] S. Gottschalk, M. C. Lin, and D. Manocha, “OBBTree:
A hierarchical structure for rapid interference detection,”
Computer Graphics, vol. 30, pp. 171–180, 1996.

[36] D. Baraff, “Curved surfaces and coherence for non-
penetrating rigid body simulation,” Comput. Graph.,
vol. 24, no. 4, pp. 19–28, 1990.

[37] J. K. Hahn, “Realistic animation of rigid bodies,” Com-
put. Graph., vol. 22, no. 4, pp. 299–308, 1988.

[38] S. M. Lavalle, “Rapidly-exploring random trees: A new
tool for path planning,” Iowa State University, Tech. Rep.,
1998.

12

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(a)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(b)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(c)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(d)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(e)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(f)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(g)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(h)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(i)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(j)

 0

 20

 40

 60

 80

 100

 0 1 2 4 8 16

S
uc

ce
ss

 R
at

e
%

Robot Speed (m/s)

our method
fixed replan time 0.05

fixed replan time 0.1
fixed replan time 0.2
fixed replan time 0.5
fixed replan time 1.0

(k)

Figure 11: Compare our method to the fixed-time strategy on success rates for environments in Fig. 10. In the fixed-time strategy,
the robot replans every 0.05, 0.1, 0.2, 0.5 and 1.0 seconds. For every specific robot velocity, (k) plots the average success rate
over all these 10 environments.

13

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(a)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(b)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(c)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(d)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(e)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(f)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(g)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(h)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(i)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(j)

 1

 10

 100

 1000

 0 1 2 4 8 16

N
um

be
r

of
 R

ep
la

ns

Robot Speed (m/s)

(k)

Figure 12: Compare our method to the fixed-time strategy on number of replans for environments in Fig. 10. In the fixed-time
strategy, the robot replans every 0.05, 0.1, 0.2, 0.5 and 1.0 seconds. For every specific robot velocity, (k) plots the average
number of replans over all these 10 environments. Notice that the y-axis of (b) is in logarithmic scale.

14

	Introduction
	Related Work
	Collision Avoidance
	Collision Prediction

	Overview: Conservative Advancement
	Estimate Conservative Advancement on Path
	Pre-processing
	Earliest Collision Time (ECT)

	Point-Point Case
	Point-Polygon Case
	ECT of p1p2 and c
	Computation Of and
	Distance Function d(t)

	ECT of p1p2 and c1c2

	Planning Motion Using Predicted Collision
	Experimental Results
	Compare to a Fixed-Time Strategy
	Compare to a Conservative Optimal Strategy

	Conclusion

