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Abstract

Self-folding robot is usually modeled as rigid origami, a
class of origami whose entire surface remains rigid dur-
ing folding except at crease lines. In this work, we focus
on finding valid folding motion that brings the origami
from the unfolded state continuously to the folded state.
Although recent computational methods allow rapid
simulation of folding process of certain rigid origamis,
these methods can fail even when the input crease pat-
tern is extremely simple but with implicit folding orders.
Moreover, due to the rigidity requirement, the proba-
bility of generating a valid configuration via uniform
sampling is zero, which greatly hinders that applicabil-
ity of traditional sampling-based motion planners. We
propose a novel sampling strategy that samples in the
discrete domain. Our experimental results show that
the proposed method could efficiently generate valid
configurations. Using those configurations, the planners
successfully fold several types of rigid origamis that the
existing methods fail to fold and could discover multiple
folding paths for Multi-DOF origamis.

1 Introduction

In recent year, we have witnessed the acceleration in
the development of self-folding origami or self-folding ma-
chines [1] due to the advances in robotics engineering
and material science. These self-folding origami can fold
itself into a desired shape via the micro-thick folding
actuators [2] or by reacting to various stimuli such as
light [3], heat and magnetic fields [4]. Although the de-
velopment is still in its early stage, there have already
been many applications, such as surgical instruments
for minimally invasive surgery, where there is a need for
very small devices that can be deployed inside the body
to manipulate tissue [5].

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 1: Folding sequence (from (a) to (h)) of a rigid sail-
boat origami produced by the proposed planner which
samples in the discretized configuration space of the
sailboat.

Designing self-folding origami that can resume or ap-
proximate a single or multiple target shapes requires
careful foldability analysis. The foldability problem can
usually be addressed in two steps. First, does there exist
an angle assignment for the crease pattern that maps an
unfolded sheet to the target shape? Second, if such a
mapping does exist, what is the folding process, i.e., a
sequence of angle assignments, that brings the crease pat-
tern from the unfolded state continuously to the folded
state. In this paper, our focus is on the second question:
planning folding motion of rigid origami. Fig. 1 shows
an example of folding motion generated by the motion
planner proposed in this paper.

The challenges of planning motions for rigid origami
stem from two main sources: the high dimensionality
in the search space and highly constrained kinematic
system resulted from the rigidity requirement. Conse-
quently, we have experienced great difficulty in apply-
ing traditional sampling-based methods such as PRM
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[6] and RRT [7] directly. This is due to the fact that
the valid configurations of many origami usually form
a manifold in lower dimensional space, thus the prob-
ability of generating a valid configuration is zero via
uniform sampling. This phenomenon can be observed
from Waterbomb and Miura origami in Fig. 2, where the
valid configurations form 1D curves in the projected 2D
configuration spaces.

In this paper, we propose a sampling-based motion plan-
ner that generates configurations using only a small set
of folding angles, such as those found in the initial and
final configurations and some commonly used angles
such as π

2 and π. Given the simplicity of the proposed
method, it provides many advantages comparing with a
strategy that samples from the continuous space [8, 9].
First, our method can find more valid configurations in
shorter sampling time. Second, our method can quickly
discover implicit folding order that provides critical infor-
mation to guide the folding process of many origami,
such as the sailboat in Fig. 1. It should be noted that,
finding the implicit folding order, that requires the crease
lines to be folded in a very specific order, can be viewed
as the notorious “narrow passage problem” in sampling-
based motion planners. Finally, contrary to the exist-
ing methods that only report a single folding path, our
method can provide multiple folding paths in different
homotopic classes (see Fig. 7).

The rest of the paper is organized as the follows. We sur-
vey related work on simulating and planning motion for
origami in Section 2. Rigid origami model used in our
work is provided in Section 3. In Section 4, we describe
our method to fold rigid origamis in details. Experimen-
tal results and discussions are given in Section 5. Finally,
Section 6 concludes the paper.

2 Related Works

Although there has been many works on computational
origami in the past few decades, few of them focused
on planning and simulating origami motion. In this
section, we will review some of these works. In 1996,
Miyazaki et al. [10] simulates origami folding by a se-
quence of simple folding steps, including bending, fold-
ing up, and tucking in. It is easy to reconstruct an anima-
tion from a sheet of paper to the final model. However,
the simplicity of folding steps limits the types of origami
models that could be represented in the system. Conse-
quently, this method is not suitable for many complex
origami models whose folding process cannot be repre-
sented as simple folding steps such as the Miura crease
pattern. shown in Fig. 3(c). Song et al. [11] presented
a PRM based framework for studying folding motion.
However, their kinematic representation of origami is a
tree-structure model whose folding angle of each crease

line is independent of other crease lines. Although tree-
structure model greatly simplifies the folding map that
can be easily defined along the path from base to each
face, this model is not applicable to represent the major-
ity of the origami, due to their closure constraints. Balk-
com [12] proposed a simulation method based on the
ideas of virtual cutting and combination of forward and
inverse kinematics using a rigid origami model. Al-
though this approach is computational efficient, it can-
not guarantee the correct mountain-valley assignment
for each crease, i.e., a mountain fold can become a val-
ley fold or vice versa. Recently, Tachi [8] proposed an
interactive simulator for rigid origami model (known as
Rigid Origami Simulator (ROS)) which generates folding
motion of origami by calculating the trajectory by pro-
jection to the constrained space based on rigid origami
model, global self-intersection avoidance and stacking
order problems are not considered in his work. An et
al. [2] proposed a new type of self-reconfiguration sys-
tem called self-folding sheet. They first construct the
corresponding folded state for a given crease pattern
and angle assignment then continuously unfold the pa-
per using local repulsive energies (via a modification
of ROS [8]). By reversing the unfolding sequence, they
obtained the path starting from a flat sheet and end-
ing with the desired folded state. Akitaya et al. [13]
proposed a method for generating folding sequences
of origami, however, their system can only handle flat-
foldable origami. More recently, Xi and Lien [9] pro-
posed an randomized search algorithm via nonlinear
optimization (FROCC) to find the intermediate folding
steps which guarantees the rigid foldability and self-
intersection free.

3 Preliminaries: Rigid Origami
Model

3.1 Crease Pattern

We use a crease pattern to represent the rigid origami
model. A crease pattern is a straight-edged graph em-
bedded in the plane. An edge of this graph correspond
to the location of a crease line in an unfolded sheet. A
crease line can be either mountain folded or valley folded.
A mountain fold forms a convex crease at top with both
sides folded down. On the other hand, a valley fold
forms a concave crease. Examples of crease pattern are
shown in Fig. 3. For a crease pattern with non-triangular
faces, we will triangulate it first before planning the
motion, newly added diagonals are called virtual edges
whose folding angles should always be zero.
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(a) Waterbomb 5% Deformation Tolerance (b) Waterbomb 1% Deformation Tolerance (c) Waterbomb 0.1% Deformation Tolerance

(d) Miura 5% Deformation Tolerance (e) Miura 1% Deformation Tolerance (f) Miura 0.1% Deformation Tolerance

Figure 2: Random sample one million configurations uniformly for a Waterbomb crease pattern (top) and a Miura
crease pattern (bottom) under different deformation tolerances. The crease patterns of these origami can be found in
Fig. 3. Red: has self-intersection, invalid. Yellow: deformation is larger than tolerance, invalid. Magenta: within
deformation tolerance but actual folding angles are different from assigned ones, invalid. Blue: valid.

3.2 Configuration

We use the folding angles of crease lines to represent
the configuration of an origami model. For an origami
with n crease lines, its configuration is represented as
C = [ρ1, ρ2, · · · , ρn]T where ρi is the folding angle of the
i-th crease line.

3.3 Folding Map

Folding map [14] is function that defined on each face
which maps a point in that face from <2 (on the crease
pattern plane) to the corresponding point of folded state
in <3. For a given foldable configuration C, we can
compute the folding map, and with the folding map, the
crease pattern can be folded to the 3D shape represented
by the configuration C instantaneously [9]. However, the
intermediate motion remains unknown.

3.4 Valid Configurations

Given a configuration C, C can be classified according to
its foldability and feasibility.

Foldability For a vertex v in the crease pattern, we use
Cv = [ρv1 , ρv2 , · · · , ρvk ]

T to denote a configuration of v
where ρvj is the folding angles of the j-th crease line
incident to v. It is obvious that Cv is a subset of C. The
necessary condition for guaranteeing foldability requires
every vertex v in the crease pattern to satisfy the closure
constraint [14]

F(v, Cv) =
k

∏
i=1

χ(ρi) = I (1)

where χ(ρi) is a folding matrix for folding the i-th crease
line by ρi. Due to page limit, please refer to [9] for details
about the folding matrix χ.

During the folding process, [9] tries to minimize the
objective function |F(v, Cv) − I| to find a valid config-
uration. However, computing the error between the
mapping function and identity matrix usually does not
give us a quantitative measure of how much an invalid
configuration deviates from the manifold of foldable
configurations [15]. Thus, in this paper, we propose two
new metrics: deformation and angle inconsistency (dis-
cussed below). With these new metrics, we say that a
configuration is rigid foldable if both deformation and
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angle inconsistency of the folded shape are under user
specified tolerances.

Deformation A rigid foldable configuration should be
deformation free. Deformation is measured on ev-
ery edge including virtual edges and it is defined as
(||e f olded|| − ||eorg||)/||eorg||. If the maximum deforma-
tion of a shape folded by apply the folding map of a
configuration C is larger than a user given deformation
tolerance, we say that C is non-foldable.

Angle inconsistency We measure the folding angles of
each crease line on the folded shape and compare it to
the assigned angle in the configuration. The angle in-
consistency is defined as |ρ f olded − ρassigned|. In most of
the cases, angle inconsistency is caused by deformation
which means the configuration is non-foldable. How-
ever, sometimes we noticed that there are huge differ-
ences between two angles even though the folded shape
is deformation free. Vertices shared by faces have mul-
tiple folding maps, whose coordinates may be override
later depends on the order of applying the folding maps.
For a configuration C, if a vertex was mapped to differ-
ent positions and its final position happen to be valid
and deformation free, angle inconsistency can be used to
find out those vertices, and C will be regarded as invalid.

Feasibility There are several properties that a rigid
origami should have during folding: (1) unstretchable,
(2) flat (planar) for all faces, and (3) free of self intersec-
tion. However, a foldable configuration only guarantees
the first two properties. Collision detection needs to be
applied on the folded shape to determine the feasibility.

Finally, we classify a configuration into one the following
4 categories according to deformation and angle incon-
sistency tolerances:

1. Invalid: deformation is larger than tolerance.

2. Self-intersected: deformation is within the tolerance
but self-intersection occurs.

3. Inconsistent: deformation is within the tolerance
but folding angle is inconsistent.

4. Valid: otherwise.

3.5 Continuous Foldability

Given two valid configuration C1 and C2, it is impor-
tant to determine whether or not C1 can be continuously
folded to C2. We say that C1 can be continuously folded
to C2 if a set of valid intermediate configurations (within
user given resolution) exists.

4 Folding Multi-Dof Rigid Origami

We say an origami is Multi-DOF if there exists a configu-
ration that under which one or more crease lines can be
folded/unfolded independently, i.e. its rigidity can be
maintained without folding other crease lines.

4.1 Sampling In Discrete Domain

Traditional sampling strategies have difficult to effec-
tively generate valid samples in the configuration space
for rigid origami with closure constraints even in lower
dimensional space. Some crease patterns have been
shown to be 1-DOF mechanism such as the Miura crease
pattern [16] which means the valid configurations form a
curve in the configuration space, thus the probability of
a random configuration to be valid is zero. Although we
could tolerant certain amount of deformation, the config-
uration space is still mostly occupied by “obstacles” as
shown in Fig. 2, only 0.044% of the configuration space
is valid under 0.1% deformation tolerance for the Miura
crease pattern with number of crease lines reduced to
2 by taking symmetry into consideration [15]. And sit-
uation will become even worse in higher dimensional
configuration space.

To address this problem, instead of sampling in the con-
tinues domain with zero probability to generate a valid
configuration, we propose the idea of sampling in the
discrete domain. For a crease line with target folding
angle ρ, we only sample the folding angle from its impor-
tant angle set: {0, π, ρ} which are corresponding to the
flat state, the fully folded state and its target state. The
total number of unique configurations for the origami
with n crease lines is 3n. For 1-DOF origami, usually it
has only two continuous foldable configurations in the
discrete domain which represent the initial state and the
target state. And for Multi-DOF origami we expect to
find more valid and continuous foldable configurations.

4.2 Connecting Two Valid Configurations

Given two valid configurations, it is usually unknown
whether a rigid foldable and collision free path exist or
not due to closure constraints which usually result in
highly nonlinear path. In order to connect two config-
urations, we employ two connection methods: linear
connection and nonlinear connection.

Linear connection An intuitive but turns out the most
efficient way to connects two valid configurations is by
linearly interpolating the intermediate configurations.
Two configurations are rigid foldable to each other if
all interpolated intermediate configurations are rigid
foldable and collision free.
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Nonlinear connection If linear connection failed to con-
nect two configurations which means the path has to be
nonlinear or even does not exist. We use a randomized
search method proposed in [9] to connect two valid con-
figurations, which could find a nonlinear, rigid foldable
and collision free path. A folding path for the Water-
bomb crease pattern found by [9] is shown in Fig. 7(c),
from which we can see that the entire path is nonlinear.

4.3 Path Planning

We propose a folding path planner for a Multi-DOF
origami under the Lazy-PRM framework [17]. First, we
sample configurations in the discrete domain by adding
valid configurations to the roadmap. We then connect
all pairs of the configurations initially and add the edges
to the roadmap. Then a graph query is answered to
find a path from start node to target node. Connectivity
checking will be applied only on the consecutive nodes
in the path. If two nodes cannot be connected, i.e., they
are not continuous foldable to each other, their corre-
sponding edge is removed from the roadmap and a new
path is extracted. We repeat this process until all edges
that connect consecutive nodes in the path are validated.
Finally, the rigid foldable and self-intersection free path
is obtained by combining all the path segments.

5 Experiments And Discussions

5.1 Experiment Setup

We implemented the proposed method in C++, which
will be opened to the public after this work is published.
All data reported in this paper were collected on a Mac-
Book Pro with a 2.9 GHz Intel Core i7 CPU and 16GB
Memory running Mac OS X Yosemite. Crease patterns
used in the experiments are shown in Fig. 3 with their
target shapes. In the following experiments, without no-
tice we use 1% as the deformation tolerance, 0.0174 rad
(≈1◦) as folding angle inconsistency tolerance. A con-
figuration is regarded as valid if it falls into the “Valid”
category.

5.2 Visualization of the Configuration
Space

We observed that some crease lines will have almost the
same folding angles during entire folding process. For
example, in the folding path of the Waterbomb crease
pattern as shown in Fig. 7(c), 8 trajectories of folding
angles overlapped into 2 groups. This is due to those
crease lines are symmetric to each other in the crease
pattern. By assuming corresponding crease lines have

(a) L2 (b) Waterbomb (c) Miura (d) Sailboat

(e) L2 (f) Waterbomb (g) Miura (h) Sailboat

(i) Target shapes

Figure 3: Top: Crease patterns used in our experiments.
Mountain creases are shown as solid lines in red, valley
creases are show as dashed lines in blue. Middle: Crease
patterns with crease lines in groups. crease lines in the
same group are shown in the same color. Bottom: Target
shapes of above crease patterns.

the same motion in the folding process, we can gather
them into groups. As shown in Fig. 3, crease lines in the
same group are displayed in the same color. By using
symmetry property of the crease pattern, dimensionality
of the configuration space could be reduced significantly
[15], and visualization of the configuration space become
possible.

Configuration spaces of Waterbomb and Miura crease
patterns under different deformation tolerances are
shown in Fig. 2, from which we can see that the majority
of the configuration space is invalid since configurations
that do not satisfy closure constraints will generate large
deformation which makes the origami become unfold-
able. Also we can see from Fig. 2 that there are curves
that connect the initial state [0, 0]T and some extreme
states (one or more crease lines/groups are fully folded).
For the Waterbomb crease pattern, we can clearly see
that there are two extreme states, the one with the con-
figuration [π,−π/2]T represents the target shape of the
Waterbomb crease pattern as shown in Fig. 3(i), another
one with the configuration [π/2,−π]T happens to repre-
sent the bi-stable state [18] of Fig. 3(i). Shapes that those
two extreme states represent to are shown in Fig. 4.
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Figure 4: Shapes represented by the extreme states of
Waterbomb.

5.3 Continuous V.S. Discrete Sampling
Strategy

In order to evaluate our method, we conduct an experi-
ment on the crease patterns shown in Fig. 3. The number
of crease lines n in the crease pattern we used are from 2
to 12 shown in Table 1, which equal to the dimensionality
of the configuration space.

We uniformly sample one million random configurations
in the configurations space and compare the number of
valid samples and their running time.

Sampling in continuous domain As we can see from
Table 1, even in lower dimensional space (e.g., 2D) it can
generate only a few valid configurations, for Waterbomb
and Miura crease pattern in 2D, the valid configurations
are only about 1.02% and 0.13% respectively. With the
increase of dimensionality, it failed to find any valid
configuration even though the origami is Multi-DOF
due to closure constraints.

Sampling in discrete domain For the proposed method,
folding angles are sampled only from each crease
line’s important angle set: {0, π, ρ} as Discrete3. For
comparison we also sampled from another angle set:
{0, π/2, π, ρ} as Discrete4. From Table 1 we can see that,
this strategy finds several intermediate configurations
efficiently since we can filter out duplicated configura-
tions in constant time using a hashtable, and effectively
as we will see later those intermediate configurations are
very important.

In this experiment we show that sampling in discrete
domain is a powerful strategy to generate valid samples
for rigid origami with closure constraints. This strategy
works even when the sampling domain is small (in our
case only three values) and enables us to discover fold-
able states while sampling in continuous domain was
not able to find any.

5.4 Linear Connection V.S. Nonlinear Con-
nection

Let us look at the L2 crease pattern shown in Fig. 3(a)
first. L2 crease pattern has 4 crease lines, two vertical
crease lines in the middle are both mountain creases
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Figure 5: Folding paths of L2 crease pattern. (a) Linear
connection with one intermediate state. (b) Nonlinear
connection.

which need to be fold first since the horizontal ones have
opposite folding angles (π/2 and −π/2). L2 has two
folding steps hidden in the crease pattern, we say it has
implicit folding orders. Using the proposed method, we
are able to discover one valid intermediate state, which
makes the connections from start to the intermediate
state and from the intermediate state to goal both be-
come linear, though the entire folding process is non-
linear. Folding path found by the proposed method
are shown in Fig. 5(a). In this case, FROCC was also
able to find the folding path as shown in Fig. 5(b). Both
paths look identical to each other except the path find by
nonlinear connection has a little turbulence. If no defor-
mation is allowed in the system, the only valid folding
path has to be Fig. 5(a) exactly. The total running time
for proposed method to find the path is 11.784ms, in
which sampling takes 0.971ms to generate 3 valid con-
figurations among 192 random samples in the discrete
domain and connecting takes 10.582ms. While FROCC
costs 209.747ms which is about 18x slower than the pro-
posed method, since it uses nonlinear connection, the
NLopt library it used will generate much more samples
in order to find valid ones.

In this experiment we show that sampling in the discrete
domain allow us to discover some intermediate states
of the origami, which may make one or more path seg-
ments become linear. Thus we could find the folding
path much faster and more accurate than using nonlinear
connection alone.

5.5 Alternative Paths for Multi-DOF
Origami

Figure 6: Continuous foldable shapes folded from Wa-
terbomb crease pattern.
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Table 1: Comparison Between sampling strategies

Model n Continuous Discrete3 Discrete4
Valid Time Valid Time Valid Time

Waterbomb∗ 2 10161 12.10 5 0.35 6 0.42
Miura∗ 2 1305 17.48 3 0.36 3 0.43

L2 4 1 10.31 5 0.45 6 0.52
Sailboat∗ 6 0 33.70 48 0.57 118 0.74

Waterbomb 8 0 10.97 71 0.73 114 0.89
Miura 12 0 17.35 7 0.94 7 7.13

Running time is measured in second. ∗ indicates that symmetry property is used.

For 1-DOF origamis such as the Miura crease pattern
shown in Fig. 3(c), sampling in the discrete domain may
not help since typically they have only two continuous
foldable configurations which represent the initial state
and goal state and nonlinear connection has to be used
to connect those two configurations. However, for Multi-
DOF origamis, at least one valid intermediate configu-
ration can be sampled using the proposed method, and
we can expect much more. Here we use the Waterbomb
crease pattern shown in Fig. 3(b) as an example. The
Waterbomb crease pattern has 8 crease lines: 4 moun-
tain creases and 4 valley creases, and it is a Multi-DOF
origami. Previous methods like ROS or FROCC could
find at most one folding path even though the origami
is a Multi-DOF system and has many folding paths. The
folding path found by FROCC for the Waterbomb crease
pattern is shown in Fig. 7(c), and the folding process
is shown in Fig. 7(a). Using the proposed method, we
found 71 valid configurations on the Waterbomb crease
pattern. In Fig. 6, we show 5 continuous foldable shapes
in which 3 three of them represent intermediate states.
Via intermediate configurations, we found alternative
folding path for the Waterbomb crease pattern, folding
path and folding process are shown in Fig. 7(b) and
Fig. 7(d) respectively. As we can see from Fig. 7(b), the
origami folds to goal state via an intermediate state and
one of the path segments is linear.

In this experiment we show that intermediate states of
Multi-DOF origamis sampled from the discrete domain
allow us to capture the connectivity of the configura-
tion space of the origami and a roadmap could be built
and queries can be answered. The proposed method
could find multiple paths from start to goal, user can
choose their favorite one(s) according to the applications.
Such as finding the path that has the minimum energy
requirement to actuate the origami from flat to folded
state.

5.6 Global Connectivity

Local Minima and Self-Intersection Avoidance Previ-
ous methods like ROS or FROCC could find only one
folding path even though the origami is a Multi-DOF

system and has many folding paths. And both methods
are deterministic even though FROCC employs some
randomness, however, its greedy choice property dom-
inants the path globally, randomness only impacts the
path locally (small turbulences). Single path and de-
terminacy make pervious methods easily trapped at lo-
cal minima or lead to self-intersection and would not
able to fold any further. An interesting example is to
use FROCC to fold sailboat crease pattern as shown in
Fig. 3(d) without specified intermediate configurations,
it folds the origami to the very end but it can not fold any
further, since the next optimal, closer to goal and fold-
able configuration it tries to reach has self-intersection
as shown in Fig. 8(a), and the folding path is shown in
Fig. 8(b). On contrast, sampling in the discrete domain
gives us many valid intermediate configurations which
enables us to capture the global connectivity of the con-
figuration space. And we can easily fold the origami
from flat sheet to target shape without being trapped
at local minima and could avoid self-intersection re-
gions. The folding path found by the proposed method
is shown in Fig. 8(c) from which we can see that the
origami fold from start to goal via 3 intermediate states.

Connectivity of the Configuration Space With the sam-
pled valid configurations by the proposed method, we
could capture the connectivity of the configuration space
by checking the connectivity of all pairs of configura-
tions. A visualization of the connectivity of the Water-
bomb crease pattern is shown in Fig. 9, in which each
node represents a valid configurations, and an edge con-
nects two configurations if they are directly connected
(either via linear or nonlinear connection). There are
71 nodes and 412 edges in the graph, 180 linear paths
and 232 nonlinear paths. Nonlinear paths are shown as
bolded lines. Node 0 represents the initial state while
Node 70 represents the target state. As we can see from
Fig. 9, initial state and goal state are connected via a non-
linear path (the only path FROCC can find), however,
many alternative paths exist. One thing need to be no-
ticed is that there are two connected components in the
graph, which means there are a set of nodes (5 of them
are shown in Fig. 10(a)) that the shapes they represent
are not able to be continuously folded from flat sheet
while they can be folded to each other continuously (via
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(a) FROCC failed to fold sailboat
due to self-intersection
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(c) Proposed method

Figure 8: Folding paths of the sailboat crease pattern.

zero or more intermediate configurations).

5.7 Non-continuous Foldable Configura-
tions

By sampling in discrete domain, we would able to dis-
cover many valid intermediate configurations, however,
some of them may not able to be folded from flat sheet
or folded to goal state while they can fold to other config-
urations continuously as we can see from Fig. 9. We call
those configurations as non-continuous foldable config-
urations from flat sheet. More detailed discussion about
continuous foldability can be found in [19]. Here we
show some non-continuous foldable shapes folded from
valid configurations in Fig. 10, from which we can see
all of the folded shapes are rigid, deformation and self-
intersection free. Some of them (e.g., the last three shapes
of Miura crease pattern) are even continuous foldable if
mountain/valley creases are not restrictedly enforced.
Although they cannot be folded from flat sheet, unique
shapes that they can reach, their flat-foldability, etc. will
be interesting to explore and remain as the future work.

5.8 Limitation and Future Work

Even though we sample from a finite set, the configu-
ration space is still exponential to the number of crease
lines. Thus, discrete sampling doesn’t make the problem
much easier, and it remains challenging to fold complex
crease patterns.

During the experiment we notice that different config-
urations may represent the same shape. These shapes
can be perfectly aligned via rigid transformation. How
those “duplicated” configurations can be removed while
still maintaining the connectivity remains as the future
work.

6 Conclusion

Instead of uniformly sampling in the continuous domain
that has zero probability of generating a valid configu-
ration for rigid origami with closure constraints, in this
paper, we proposed a novel method that samples in the
discrete domain: folding angle of a crease line is sam-
pled from the finite angle set of that crease line. Our
experimental results show that the proposed method is
effective and efficient to generate important intermedi-
ate configurations for origamis, in particular for those
Multi-DOF with closure constraints. With these valid
intermediate configurations, the proposed motion plan-
ner has the following advantages: (1) Globally nonlinear
path could be replaced by the combination of linear path
segments and nonlinear ones, which significantly speed
up the path finding process, (2) Multiple folding paths
could be found for Multi-DOF origamis, and (3) Local
minima and self-intersection regions could be avoided.
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