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EXECUTIVE SUMMARY

This report presents results for the Rockwell Collins Inc. sponsored project on generating test
data from requirements/speci�cations, which started January 1, 2000. The purpose of this project
is to improve our ability to test software that needs to be highly reliable by developing formal
techniques for generating test cases from formal speci�cational descriptions of the software. Formal
speci�cations give software developers the opportunity to describe exactly what services the soft-
ware should provide, providing information to software designers in a clear, unambiguous manner.
Formal speci�cations give test engineers information about the expectations of the software in a
form that can be automatically manipulated.

This Phase IV, 2000 report presents progress on an empirical evaluation of the e�cacy of the
transition-pair criterion developed in previous years. Transition-pair tests have been developed for
the Flight Guidance System (FGS) and they were run on the faulty versions of FGS developed
last year. These tests and the results are summarized in this preliminary report. This report also
presents progress in our test data generation tool. This tool has been signi�cantly expanded to
handle multiple SCR tables, recursively de�ned tables, event and condition tables, non-boolean
variables, and multiple-variable expressions. It is integrated with the Naval Research Laboratory's
SCRTool and Rational Software Corporation's Rational Rose tool.

Technical Report ISE-TR-01-03, Department of Information and Software Engineering, George
Mason University, Fairfax VA, July 2001.



1 INTRODUCTION

There is an increasing need for e�ective testing of software for safety-critical applications, such
as avionics, medical, and other control systems. These software systems usually have clear high
level descriptions, sometimes in formal representations. Unfortunately, most system level testing
techniques are only described informally. This project is attempting to provide a solid foundation for
generating tests from system level software speci�cations via new coverage criteria. Formal coverage
criteria o�er testers ways to decide what test inputs to use during testing, making it more likely
that the testers will �nd faults in the software and providing greater assurance that the software
is of high quality and reliability. Such criteria also provide stopping rules and repeatability. This
research project is attempting to establish formal criteria and processes for generating system-level
tests from functional requirements/speci�cations.

In previous years, this work has resulted in a general model for developing test inputs from state-
based speci�cations, speci�c criteria for de�ning tests, algorithms for generating and optimizing
sets of test cases, empirical evaluation of the test techniques, and a preliminary proof-of-concept
automatic test data generator. These criteria provide a formal process, a method for measuring
tests, and a basis for full automation of test data generation.

The principal results in this report are from two parallel activities: A signi�cant expansion of
the proof-of-concept test data generation tool and an empirical evaluation of the transition-pair
criterion on Rockwell Collin's research version of the Flight Guidance Mode Logic System (FGS).
The preliminary report also summarizes previous results (during 1997 [O�98, OXL99], 1998 [O�99]
and 1999 [O�00]), and reiterates the current year goals.
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2 SUMMARY OF PHASES I, II AND III

Phase I of this project was carried out during Summer 1997, and established the long term goal
of improving our ability to test software that needs to be highly reliable by developing formal
techniques for generating test cases from formal speci�cational descriptions of the software [O�98].
This research addressed the problem of developing formalizable, measurable criteria for generating
test cases from speci�cations.

During Phase I a general model for developing test inputs from state-based speci�cations was
developed. This model includes a derivation process for obtaining the test cases and criteria
for generating tests. There are four separate criteria: the complete transition sequence level, the
transition-pair level, the transition level, and full predicate level. These techniques are novel in
that they provide coverage criteria that are based on the speci�cations. It is thought that these
are the �rst formal coverage criteria for functional speci�cations. The tests are made up of several
parts, including test pre�xes that contain inputs necessary to put the software into the appropriate
state for the test values. A test generation process was also developed, which includes several steps
for transforming speci�cations to tests.

Results from applying the model and process to a small example were presented in the Phase
I �nal report. This case study was evaluated using Atac [HL92] to measure decision coverage, and
the technique was found to achieve a high level of coverage. This result indicates that this technique
can bene�t software developers who construct formal speci�cations during development.

As an additional validation, initial tests were generated for speci�cations of a research version
of an industrial software system supplied by Rockwell Collins, the Flight Guidance Mode Logic
System (FGS). Construction of these tests resulted in several modi�cations to this technique, and
found at least one problem with the speci�cation.

Phase II of this project was carried out during Spring and Summer 1998 [O�99]. Algorithms
for test case development were developed and a small empirical evaluation of the test criteria was
carried out.

One signi�cant problem in speci�cation-based test data generation is that of reaching the proper
program state necessary to execute a particular test case. Given a test case that must start in a
particular state S, the test case pre�x is a sequence of inputs that will put the software into state
S. This problem was addressed in two ways. The �rst was to combine various test cases to be run
in test sequences that are ordered in such a way that each test case leaves the software in the state
necessary to run the subsequent test case. An algorithm was developed that attempts to �nd test
case sequences that are optimal in the sense that the fewest possible number of test cases are used.
Second, to handle situations where it is desired to run each test case independently, an algorithm
for directly deriving test sequences was created.

The �nal report for Phase II also presented procedures for removing redundant test case values,
and developed the idea of \sequence-pair" testing into a more general idea of \interaction-pair"
testing. A small case study was also carried out. This case study applied the test criteria of
transition coverage and full predicate coverage to the well known cruise control example. The
results were that the speci�cation-based criteria covered most of the blocks and decisions in the
program source code, and found a high percentage of faults that were inserted into the source code.

Phase III of this project was carried out during Spring and Summer 1999 [O�00]. An em-
pirical evaluation of the full predicate speci�cation-based testing criterion was performed, and a
preliminary proof-of-concept test data generation tool was developed.

The evaluation used a comparative study on a large industrial system, a research version of
the Flight Guidance Mode Logic System (FGS) provided by Rockwell Collins. Full predicate tests
were generated for FGS and compared against the T-Vec generation scheme. T-Vec tests for FGS
were also provided by Rockwell Collins. While creating and running the tests, one problem was
found in the SCR speci�cations for FGS, and one problem was found in the already well tested
implementation of FGS. Both T-Vec and the full predicate tests found similar numbers of faults,
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but T-Vec required more than �ve times as many tests, thus the full predicate tests were more
e�cient.

The proof-of-concept test data generator is designed to create full predicate and transition-
pair tests from an SCR speci�cation. During Phase III, enough of the tool was implemented to
generate tests from single mode transition table SCR speci�cations with all boolean variables, and
single-variable expression transition predicates.

2.1 Summary of Phase IV Goals

The current year research carries the previous results forward in two directions, building directly on
the results from 1999 to move the speci�cation-based testing technique developed during the �rst
two phases of this project towards practical feasibility. The �rst direction is to expand the proof-
of-concept tool created during Phase III to remove the restrictions so that it can be used with
arbitrary SCR speci�cations. This includes allowing multiple tables, recursively de�ned tables,
event and condition tables, non-boolean variables, and multiple-variable expressions. The �nal
version of the tool now generates speci�cation-based tests more cheaply, allowing it to be used in
practical situations. The �nal tool was to be evaluated in two primary ways: (1) it must be able to
handle the FGS SCR speci�cation, and (2) the full predicate tests it generates are being compared
with the already existing hand-generated tests from Phase III.

Second, the empirical evaluation carried out during Phase III is being extended. Speci�cally,
the experiment is being expanded to include the transition-pair criterion. Tests are being created,
the analysis of fault �nding e�ectiveness carried out in Phase III for T-Vec tests and full predicate
tests will be repeated for the transition-pair tests, and the results will be compared with the results
for the previous tests. It is hoped that the transition-pair tests will �nd faults that were not found
by the full predicate and the T-Vec tests. Some encouragement for this was found by a separate
smaller scale experiment that compared full predicate tests and transition-pair tests with another
speci�cation-based testing technique [ADO00].

2.2 Publications From This Project

Thus far, this project has resulted in the following publications. All publications acknowledge
Rockwell Collins as complete or partial sponsor (related support has also been provided by the
National Science Foundation and the Government of Japan). All publications (except the technical
reports) are completely refereed. Two journal papers and an additional conference paper are also
currently in preparation.

1. Aynur Abdurazik and Je� O�utt. Using UML Collaboration Diagrams for Static Checking
and Test Generation. Third International Conference on the Uni�ed Modeling Language
(UML '00), pages 383-395, York, England, October 2000.

2. Aynur Abdurazik, Paul Ammann, Wei Ding and A. Je�erson O�utt. Evaluation of Three
Speci�cation-based Testing Criteria. The Sixth IEEE International Conference on Engineer-
ing of Complex Computer Systems (ICECCS '00), pages 179{187, Tokyo, Japan, September
2000.

3. Aynur Abdurazik, Zhenyi Jin, Liz White and Je� O�utt. Analyzing Software Architecture
Descriptions to Generate System-level Tests. Workshop on Evaluating Software Architectural
Solutions (WESAS '00), http://www.isr.uci.edu/events/wesas2000/, Irvine, CA, May 2000.

4. Je� O�utt and Aynur Abdurazik. Generating Tests from UML Speci�cations. Second Inter-
national Conference on the Uni�ed Modeling Language (UML '99), Fort Collins, CO, October
1999.

4



5. Je� O�utt, Yiwei Xiong and Shaoying Liu. Criteria for Generating Speci�cation-based Tests.
Fifth IEEE International Conference on Engineering of Complex Computer Systems (ICECCS
'99), pages 119-131, Las Vegas, NV, October 1999.

6. Zhenyi Jin and Je� O�utt. Coupling-based Integration Testing. Second IEEE International
Conference on Engineering of Complex Computer Systems, pages 10{17, Montreal, Canada,
October 1996. (Outstanding Paper Award).

7. Je� O�utt, Generating Test Data From Requirements/Speci�cations: Phase III Final Report,
January 2000, George Mason University Department of ISE Technical Report ISE-TR-00-02,
http://www.ise.gmu.edu/techrep/.

8. Je� O�utt, Generating Test Data From Requirements/Speci�cations: Phase II Final Report,
January 1999, George Mason University Department of ISE Technical Report ISSE-TR-99-01,
http://www.ise.gmu.edu/techrep/.

9. Je� O�utt, Generating Test Data From Requirements/Speci�cations: Phase I Final Report,
April 1998, George Mason University Department of ISE Technical Report ISSE-TR-98-01,
http://www.ise.gmu.edu/techrep/.
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3 TEST DATA GENERATION TOOL

SpecTest is a proof-of-concept tool that generates test cases from SCR speci�cations and UML
statecharts according to the speci�cation-based test criteria. The SCR speci�cations are generated
by the SCR* Toolset [HKL97], which is developed by the Naval Research Laboratory. The UML
statecharts are generated by Rational Software Corporation's Rational Rose, hereafter Rose [Cor98].
This report is concerned with the SCR portion of SpecTest, which is the portion that is funded
by Rockwell Collins.

SpecTest parses SCR speci�cation �les into a consistent intermediate form. This intermediate
form is then analyzed and tests are generated. The tester can select which testing criterion to satisfy.

SpecTest was described in detail in the 1999 �nal report. This report describes a major update
to SpecTest. As of the end of the last year's project in August 1999, SpecTest had the following
restrictions:

� SpecTest could only process mode class tables.

� The speci�cation could only contain one table.

� Variables were restricted to be of type Boolean.

� Trigger event expressions were restricted to having one variable.

We have removed all these restrictions for full predicate test generation. SpecTest now creates
full predicates tests for SCR speci�cations that contain all SCR tables and dictionaries (type dictio-
naries, mode class dictionaries, constant dictionaries, variable dictionaries, enumerated monitored
variable dictionaries, controlled variable dictionaries, mode class tables, and term variable tables),
and can handle an arbitrary number of tables. Two types of dictionaries, speci�cation assertion
dictionaries and environmental assertion dictionaries, are not needed for test generation and thus
are not used. It also can handle SCR speci�cations containing variables of all numeric, enumerated,
and boolean types, and expressions with multiple variables.

The complexity of the problem was signi�cantly greater than expected, involving substantial
changes to the base underlying data structures used by SpecTest.

The high level design of SpecTest is shown in Figure 1, with a UML context diagram and
a high level UML class diagram in Figures 2 and 3. The main component, SpecTest, invokes
one of the two parsers to parse either SCR speci�cations (ScrSpecParser) or UML speci�cations
(UMLSpecParser). The parsers read a �le created by either the SCRTool [HKL97] or Rose [Cor98],
and store the information into a standard format that reects the speci�cation graph and the
transition predicates (Dictionaries & Specification Graph). After the speci�cation graph is
built, either full predicate tests or transition-pair tests are created. The main component calls either
FullPred or TransPair to perform this operation, and the tests are saved in the �le TestCaseFiles.
FullPred and TransPair include the algorithms from Phase II to create pre�x values and to
optimize tests.

The SpecTest tool is written completely in Java 1.2. Currently, the SpecTest component con-
tains 20 Java classes, and uses the class package SpecTree, which contains another 6 classes. The
primary 10 classes, which are SpecTest, SCRSpecParser, FullPred, FullPredSCR, Predicate, Con-
junctElem, DisjunctElem, TermCondition, TestSetElem, PredProcessor, and the package SpecTree,
which contains classes BinaryTree and BinaryNode, are shown in the partial summary class diagram
in Figure 4. The class SpecTest contains two constructors and three methods, ScrSpecParser
contains one constructor and 17 methods, FullPred contains one constructor and 11 methods,
FullPredSCR contains one constructor and four methods, Predicate contains two constructors
and three methods, ConjunctElem contains one constructor and two methods, DisjunctElem con-
tains one constructor and two methods, TermCondition contains one constructor and four methods,
TestSetElem contains two constructors and two methods, PredProcessor contains one constructor

6



SCRSpecFile

UMLSpecFile

TestCaseFiles

input

output

input

Dictionaries &
Specification
Graph

Transition
Pair

UML
Parser

SCR
Parser

Full
Predicate

output

Figure 1: SpecTest Component Design
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Figure 2: SpecTest Context Diagram

and 14 methods, BinaryTree contains three constructors and 16 methods, and BinaryNode con-
tains three constructors and 19 methods. As can be seen, SpecTest can generate tests from either
SCR or UML, and to satisfy either the full predicate or the transition-pair criterion. This research
is concerned with testing for SCR, and the portion of the tool devoted to UML has been funded
separately. This year's report is primarily concerned with updates to the full predicate component
of the tool.

3.1 Assumptions

The following assumptions were made about the SCR speci�cation text �le:

� @T, @F denote trigger events

� AND denotes logical and

� OR denotes logical or

� NOT denotes logical negation

� Arbitrary number of mode classes

� Boolean, Float, Integer, and Enumeration type variables

� Multiple variable change in event

� None/Single/Multiple variables in condition

� State transitions are deterministic
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Figure 3: High Level SpecTest Class Diagram

3.2 Architecture

Figure 4 is a UML class diagram that describes SpecTest. Classes are represented as boxes, each
of which have three parts, the class name, data members that are declared in the class, and methods
of the class. Data members and methods of classes are omitted from the diagram to allow it to �t on
one page. The main entry point (SpecTest) has four main objects, (1) a UML speci�cation parser,
(2) a SCR speci�cation parser, (3) a full predicate test case generator, and (4) a transition-pair
test case generator.

This report describes the classes that participate in parsing the SCR speci�cation and generating
tests for the full predicate criterion. There are two categories of classes, algorithmic classes and
data structure classes.

1. Algorithmic Classes: There are three major tasks in generating tests from SCR speci�cations.
First, the speci�cation text �le is scanned, then the speci�cation is parsed and a predicate tree
generated for each mode transition predicate, and �nally tests are generated for each variable
in the predicate tree. SpecTest parses the SCR speci�cation according to the following
grammar:

****************************************************************
* The Grammar of the SCR Predicates:
*
* <predicate> -> <disjunct elem><disjunct><predicate>
* <predicate> -> lambda
* <disjunct> -> OR
* <disjunct> -> lambda
* <disjunct elem> -> <conjunct head><conjunct elem><conjunct><disjunct
* elem>
* <disjunct elem> -> lambda
* <conjunct head> -> NOT
* <conjunct head> -> lambda
* <conjunct> -> AND
* <conjunct> -> lambda
* <conjunct elem> -> (<predicate>)
* <conjunct elem> -> <NBVar><ROP><NBVar>
* <conjunct elem> -> BVarId
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Figure 4: Partial Summary Class Diagram for SpecTest Tool

* <NBVar> -> NBVarID <==> NonBoolean(NB)MonVar, NBConVar,
* NBTerm, ModeClassName
* <NBVar> -> constant
* <NBVar> -> (<NBVar><COP><NBVar>)
* <ROP> -> =
* <ROP> -> !=
* <ROP> -> >
* <ROP> -> >=
* <ROP> -> <
* <ROP> -> <=
* <COP> -> +
* <COP> -> -
* <COP> -> *
* <COP> -> /
****************************************************************

The algorithmic classes category includes the following classes:

� SCRSpecParser: Reads in a SCR speci�cation �le, parses the speci�cation, and gener-
ates the Mode Class Dictionary, the Variable Dictionary, the Constant Dictionary, and
the Event and Condition Tables. Figures 5 through 8 shows the inner structure of the
dictionaries.
These tables show the abstract structure of each dictionary. In the implementation, each
table is stored using Java Hashtables. The objects of Hashtables are represented by
other classes. Figure 5 shows the overall view of Mode Class Dictionary structure. For
each mode class, all transitions are represented twice. One is with pre and next modes,
and the other is with next and pre modes. Each predicate is represented as a binary tree.
It also includes the initial mode for a mode class and comments from the speci�cation.
The other tables are fairly simple in form, and resemble tables in the SCR speci�cation.
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� PredProcessor: Processes mode transitions in mode class tables. PredProcessor gener-
ates a predicate tree for each mode transition predicate, and saves it in the Mode Class
Dictionary.

� FullPredSCR: Takes processed mode class dictionary and walks through all the mode
transition tables. For each transition predicate, FullPredSCR invokes FullPred to gen-
erate tests for the full predicate criterion.

� FullPred: Takes a binary predicate tree and walks through the tree from each leaf
node that is a variable to generate test cases. FullPred generates two test cases for each
variable { one for the true case and one for the false case.

� Predicate: Generates a predicate tree from a given condition that is described with
a string. As shown in the grammar, Predicate collaborates with ConjunctElem and
DisjunctElem to generate a predicate tree for a given predicate.

� ConjunctElem: See Predicate.

� DisjunctElem: See Predicate.

2. Data Structure Classes: There are eight data structure classes. These all have a simple
structure and have methods to set values, get values, and constructors.

� Var

� Type

� ECTable

� Constant

� Trans

� ModeClass

� TestSetElem

� VarvaluePair

3.3 Decisions in Algorithms

There are a number of decisions that were made for this tool that need to be documented. Some
of the decisions are complicated, and were made for extremely technical reasons, and others may
need to be re-visited in the future.

� Correlated variables (A > 0 and A < 0).
When the same variable appears twice in an expression, those two variables are said to be
correlated, and the test data generator must recognize that both occurrences need to have
the same variable.

This is a common problem in software testing that has been discussed as far back as Myers'
early textbook [Mye79], and appears in almost every testing technique. In fact, it is related
to the well known aliasing problem in compilers and software analysis. Although the problem
is theoretically undecidable, the correlated variable problem has less impact in speci�cation-
based testing, because it happens less often and we usually have more degrees of freedom
when selecting values for variables.

Figure 9 gives an algorithm for a partial solution to the problem of correlated variables in
a predicate. The inputs are a variable in the predicate, the test set that contains already
chosen test values for the current variable that is being tested, the status ID of the variable,
a value that the variable must be compared with, and the name of a relational operator. The
output is the value assigned to the variable.
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algorithm: CorVar (testSet, var, ID, cmpVal, relOpName)
input: A test set, a variable, the status ID of the

variable, e.g. before or after value, a value to be compared

and the name of a relational operator.

output: Value to the given variable.

output criteria: Value satisfies the predicate.

declare: curTC: Current test case in the testSet.

curVarName: Name of variable of the current

test case in the testSet.

curVarID: Status ID of variable of the current test case.

inc: An incrementor to calculate the value of a variable.

from the given value.

CorVar (testSet, var)
BEGIN -- Algorithm CorVar

WHILE (testSet has more test cases) LOOP
curTC = testSet.nextElement();

curVarName = curTC.varName;

curVarID = curTC.varID;

curVarVal = curTC.varValue;

IF ((curVarName equals varName)
V

(curVarID equals ID)) THEN
IF ((relOpName equals �)

W
(relOpName equals <)) THEN

varValue = cmpVal - inc;

IF (curVarVal < varValue) THEN
varValue = curVarVal;

END IF
ELSE IF (repOpName equals =) THEN

varValue = cmpVal;

ELSE IF ((repOpName equals >)
W

(repOpName equals �)) THEN
varValue = cmpVal + inc;

IF (curVarVal > varValue) THEN
varValue = curVarVal;

END IF
ELSE

Report error
EXIT

END IF
END IF

END LOOP
END Algorithm CorVar

Figure 9: The Correlated Variable Algorithm
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� Infeasible predicates.
Occasionally, there are predicates or combinations of predicates in the speci�cation that
cannot be satis�ed. Infeasible speci�cations often result when term variables are substituted
with corresponding conditions or events from event or condition tables.

This is a speci�c instance of a more general problem, commonly called the feasible path prob-
lem, which says that for certain structural testing criteria some of the test requirements are
infeasible in the sense that the semantics of the program imply that no test case satis�es the
test requirements. Equivalent mutants, unreachable statements in path testing techniques,
and infeasible DU-pairs in data ow testing are all instances of the feasible path problem.
Goldberg, Wang, and Zimmerman [GWZ94] de�ne the problem as follows: \given a descrip-
tion of a set of control ow paths through a procedure, feasible path analysis (FPA) determines
if there is input data that causes execution to ow down some path in the collection". O�utt
and Pan [OP97] generalized it to the feasible test problem (FTP): given a requirement for a
test case, the feasible test problem is to determine if there is input data that can satisfy the
requirement. Infeasible predicate analysis is one instance of this problem.

Although good partial solutions exist for this problem, we have not implemented them in
our tool. Again, this problem occurs less often in speci�cation-based testing than code-based
testing, primarily because the predicates tend to be simpler in nature.

� Poorly chosen values.
The general problem of choosing values to satisfy predicates is undecidable, thus, like any
test data generator, SpecTest must occasionally make choices of values based on incomplete
information. This means that SpecTest will occasionally fail to satisfy a test requirement.
SpecTest does not yet have the ability to verify the consistency and correctness of values
that are chosen, and does not use a search process to re�ne invalid choices. It is interesting
to note that SpecTest did not fail even once on the FGS speci�cations.

3.4 Results

One of the mechanisms used to evaluate SpecTest was to use it to generate tests for Rockwell-
Collins' Flight Guidance System (FGS) SCR speci�cation. This has been successfully accomplished,
and tests for the 14 mode transition tables are provided in subsections 3.4.1 through 3.4.14. There
is still one outstanding anomaly. In a number of cases, the expected output and actual outputs are
di�erent. Examples are supplied below, and we are still exploring this problem.

3.4.1 Aircraft Data Sources - Table 7

Table Aircraft Data Sources has two states and four state transitions. SpecTest generated 24 full
predicate test cases for this mode transition class. The actual outputs of all the test cases are the
same as the expected outputs.

3.4.2 Autopilot Modes Disengaged Submode - Table 12

Mode Class Autopilot Modes Disengaged Submode has three states: NORMAL, WARNING, and
CLEARED. There are three transitions in total. SpecTest generated 24 test cases for this mode
class. The actual outputs of four test cases are not the same as the expected output. Although we
have checked the predicates and the test cases, this problem is still unresolved.

An example test case that gives anomalous results is:

// t12tc006
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// Table 12: Autopilot_Modes_Disengaged_Submode
// Previous Mode: CLEARED
// Expected Mode: CLEARED

// Transition Predicate: @T(Autopilot_Modes_Engage = DISENGAGED) AND
// NOT ((@T(Crew_Interface_Throttles_term_GA_Pressed) AND (NOT
// Aircraft_Data_Sources_term_Overspeed')))

// Expanded Predicate: (Autopilot_Modes_Engage = ENGAGED AND
// (Crew_Interface_Flight_Control_Panel_mon_AP_Disconnect_Bar != DOWN)
// AND (Crew_Interface_Flight_Control_Panel_mon_AP_Disconnect_ Bar' =
// DOWN)) AND (((Crew_Interface_Throttles_term_GA_Pressed) OR
// NOT Crew_Interface_Throttles_term_GA_Pressed' OR
// (Aircraft_Data_Sources_term_Overspeed')))

Table 12
PreviousMode CLEARED
Crew_Interface_Throttles_term_GA_Pressed F
Autopilot_Modes_Engage ENGAGED
Crew_Interface_Flight_Control_Panel_mon_AP_Disconnect_Bar C DOWN
Crew_Interface_Flight_Control_Panel_mon_AP_Disconnect_Bar P UP
Aircraft_Data_Sources SPEED_OK
Crew_Interface_Throttles_mon_GA_Switch_right C ON
Crew_Interface_Throttles_mon_GA_Switch_left C ON

The expanded predicate is derived from the given transition predicate, then the test case is
generated for the expanded predicate. If the expanded predicate is evaluated with the above test
case, the predicate evaluates to FALSE, thus the actual output should be CLEARED. However,
when the test case is on the implementation, the actual output is WARNING.

3.4.3 Autopilot Modes Engage

Mode Class Autopilot Modes Engage has two states and four transitions. SpecTest generated 20
full predicate test cases for this mode class, and all of them have the same actual and expected
outputs.

3.4.4 Autopilot Modes Engaged Submode - Table 17

Mode Class Autopilot Modes Engage Submode has three states and four transitions. SpecTest
generated 18 full predicate test cases for this mode class, and all of them have the same actual and
expected outputs.

3.4.5 Flight Modes Flight Director Cues - Table 31

Mode Class Flight Modes Flight Director Cues has three states and four transitions. SpecTest
generated 52 full predicate test cases for this mode class. Four of the test cases have di�erent actual
and expected outputs.

Following is one of the test cases that demonstrates the problem.

// t31tc050
// Table 31: Flight_Modes_Flight_Director_Cues
// Previous Mode: Cues
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// Expected Mode: Cues

// Transition Predicate: @F(Flight_Modes_Flight_Director_Mode = ON)

// Expanded Predicate: (Flight_Modes_Flight_Director_Mode = ON AND
// (Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left != ON AND
// Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right ! = ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left' = ON OR
// Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right' = ON) AND
// (NOT Aircraft_Data_Sources_term_Overspeed AND
// NOT Autopilot_Modes_Engage_term_AP_Engaged))

Table 31
PreviousMode Cues
Autopilot_Modes_Engage_term_AP_Engaged T
Flight_Modes_Flight_Director_Mode ON
Aircraft_Data_Sources_term_Overspeed F
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right C ON
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left C ON
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right P OFF
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left P OFF

3.4.6 Flight Modes Flight Director Mode - Table 33

Mode Class Flight Modes Flight Director Mode has two states and �ve transitions. SpecTest

generated 52 full predicate test cases for this mode class. Four of test cases have di�erent actual
and expected outputs.

Following is one of the test cases that exhibits the problem.

// t33tc051
// Table 33: Flight_Modes_Flight_Director_Mode
// Previous Mode: OFF
// Expected Mode: ON

// Transition Predicate: @T(Crew_Interface_Flight_Control_Panel_mon_VS_Switch = ON)
// OR @T(Crew_Interface_Flight_Control_Panel_mon_ALT_Switch = ON) OR
// @T(Crew_Interface_Flight_Control_Panel_mon_FLC_Switch = ON) OR
// @T(Crew_Interface_Throttles_term_GA_Pressed) OR
// @T(Crew_Interface_Flight_Control_Panel_mon_HDG_Switch = ON) OR
// @T(Crew_Interface_Flight_Control_Panel_mon_NAV_Switch = ON) OR
// @T(Crew_Interface_Flight_Control_Panel_mon_APPR_Switch = ON) OR
// @T(Crew_Interface_Throttles_term_GA_Pressed)

// Expanded Predicate: (Crew_Interface_Flight_Control_Panel_mon_VS_Switch != ON)
// AND (Crew_Interface_Flight_Control_Panel_mon_VS_Switch' = ON) OR
// (Crew_Interface_Flight_Control_Panel_mon_ALT_Switch != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_ALT_Switch' = ON) OR
// (Crew_Interface_Flight_Control_Panel_mon_FLC_Switch != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_FLC_Switch' = ON) OR
// (NOT Crew_Interface_Throttles_term_GA_Pressed) AND
// Crew_Interface_Throttles_term_GA_Pressed' OR
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// (Crew_Interface_Flight_Control_Panel_mon_HDG_Switch != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_HDG_Switch' = ON) OR
// (Crew_Interface_Flight_Control_Panel_mon_NAV_Switch != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_NAV_Switch' = ON) OR
// (Crew_Interface_Flight_Control_Panel_mon_APPR_Switch != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_APPR_Switch' = ON) OR
// (NOT Crew_Interface_Throttles_term_GA_Pressed) AND
// Crew_Interface_Throttles_term_GA_Pressed'

Table 33
PreviousMode OFF
Crew_Interface_Throttles_term_GA_Pressed F
Crew_Interface_Flight_Control_Panel_mon_APPR_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_APPR_Switch P ON
Crew_Interface_Flight_Control_Panel_mon_NAV_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_NAV_Switch P ON
Crew_Interface_Flight_Control_Panel_mon_HDG_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_HDG_Switch P ON
Crew_Interface_Throttles_term_GA_Pressed T
Crew_Interface_Flight_Control_Panel_mon_FLC_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_FLC_Switch P ON
Crew_Interface_Flight_Control_Panel_mon_ALT_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_ALT_Switch P ON
Crew_Interface_Flight_Control_Panel_mon_VS_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_VS_Switch P ON
Crew_Interface_Throttles_mon_GA_Switch_left C ON
Crew_Interface_Throttles_mon_GA_Switch_right C OFF
Crew_Interface_Throttles_mon_GA_Switch_right C OFF
Crew_Interface_Throttles_mon_GA_Switch_left C OFF

3.4.7 Flight Modes Lateral Active - Table 34

Mode Class Flight Modes Lateral Active has six states and 14 transitions. SpecTest generated
194 full predicate test cases for this mode class. 31 test cases have di�erent actual and expected
outputs.

Following is one of the test cases that exhibits the problem.

// t34tc125
// Table 34: Flight_Modes_Lateral_Active
// Previous Mode: NAV
// Expected Mode: ROLL

// Transition Predicate:
// @C(Navigation_Sources_mon_Selected_Nav_Source) OR
// (@C(Navigation_Sources _term_Nav_Source_Frequency) AND
// ((Navigation_Sources_term_Selected_Nav_Type = VOR) OR
// (Navigation_Sources_term_Selected_Nav_Type = LOC)))

// Expanded Predicate: Navigation_Sources_mon_Selected_Nav_Source !=
// Navigation_Sources_mon_Selected_Nav_Source' OR
// (Navigation_Sources_term_Nav_Source_Frequency !=
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// Navigation_Sources_term_Nav_Source_Frequency' AND
// ((Navigation_Sources_term_Selected_Nav_Type = VOR) OR
// (Navigation_Sources_term_Selected_Nav_Type = LOC)))

Table 34
PreviousMode NAV
Navigation_Sources_term_Nav_Source_Frequency 108.0
Navigation_Sources_term_Nav_Source_Frequency' 109.0
Navigation_Sources_term_Selected_Nav_Type LOC
Navigation_Sources_term_Selected_Nav_Type VOR
Navigation_Sources_mon_Selected_Nav_Source P FMS_1
Navigation_Sources_mon_Selected_Nav_Source C FMS_1

3.4.8 Flight Modes Lateral Approach - Table 40

Mode Class Flight Modes Lateral Approach has three states and three transitions. SpecTest

generated 22 full predicate test cases for this mode class. Seven of test cases have di�erent actual
and expected outputs.

Following is one of the test cases that exhibits the problem.

// t40tc007
// Table 40: Flight_Modes_Lateral_Approach
// Previous Mode: Armed
// Expected Mode: CLEARED

// Transition Predicate: @F(Flight_Modes_Lateral_Active = APPR)

// Expanded Predicate: (Flight_Modes_Lateral_Active = APPR AND
// Navigation_Sources_mon_Selected_Nav_Source !=
// Navigation_Sources_mon_Selected_Nav_Source' OR
// (Navigation_Sources_term_Nav_Source_Frequency !=
// Navigation_Sources_term_Nav_Source_Frequency' AND
// ((Navigation_Sources_term_Selected_Nav_Type = VOR) OR
// (Navigation_Sources_term_Selected_Nav_Type = LOC))))

Table 40
PreviousMode Armed
Navigation_Sources_term_Nav_Source_Frequency 108.0
Navigation_Sources_term_Nav_Source_Frequency' 109.0
Flight_Modes_Lateral_Active APPR
Navigation_Sources_term_Selected_Nav_Type LOC
Navigation_Sources_term_Selected_Nav_Type VOR
Navigation_Sources_mon_Selected_Nav_Source P FMS_1
Navigation_Sources_mon_Selected_Nav_Source C FMS_1

In this example, the expected output is CLEARED, but the actual output was ARMED.

3.4.9 Flight Modes Lateral Navigation - Table 41

Mode Class Flight Modes Lateral Navigation has three states and three transitions. SpecTest

generated 10 full predicate test cases for this mode class. One of the test cases have di�erent actual
and expected outputs.
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Following is the test case that exhibits the problem.

// t41tc005
// Table 41: Flight_Modes_Lateral_Navigation
// Previous Mode: Armed
// Expected Mode: Track

// Transition Predicate:
// @T(Flight_Modes_Lateral_Active_term_Lateral_NAV_Track_Cond_Met)

// Expanded Predicate:
// (NOT Flight_Modes_Lateral_Active_term_Lateral_NAV_Track_Cond_Met)
// AND Flight_Modes_Lateral_Active_term_Lateral_NAV_Track_Cond_Met'

Table 41
PreviousMode Armed
Flight_Modes_Lateral_Active_term_Lateral_NAV_Track_Cond_Met F
Navigation_Sources_mon_Selected_Nav_Source_Status C Valid
Flight_Modes_Lateral_Active_term_Within_Lateral_NAV_Capture_Window T

The expected output is Track, but the actual output is Armed.

3.4.10 Flight Modes Lateral Roll - Table 42

Mode Class Flight Modes Lateral Roll has three states and eight transitions. SpecTest generated
54 full predicate test cases for this mode class. 10 test cases have di�erent actual and expected
outputs.

Following is one of the test cases that exhibits the problem.

// t42tc024
// Table 42: Flight_Modes_Lateral_Roll
// Previous Mode: CLEARED
// Expected Mode: CLEARED

// Transition Predicate: @T(Flight_Modes_Lateral_Active = ROLL) AND
// (NOT Flight_Modes_Lateral_Active_term_Roll_LE_Threshold AND
// NOT Aircraft_Data_Sources_mon_On_Ground)

// Expanded Predicate: (Flight_Modes_Lateral_Active = APPR AND
// Navigation_Sources_mon_Selected_Nav_Source !=
// Navigation_Sources_mon_Selected_Nav_Source' OR
// (Navigation_Sources_term_Nav_Source_Frequency !=
// Navigation_Sources_term_Nav_Source_Frequency' AND
// ((Navigation_Sources_term_Selected_Nav_Type = VOR) OR
// (Navigation_Sources_term_Selected_Nav_Type = LOC)))) AND
// (NOT Flight_Modes_Lateral_Active_term_Roll_LE_Threshold AND
// NOT Aircraft_Data_Sources_mon_On_Ground)

Table 42
PreviousMode CLEARED
Aircraft_Data_Sources_mon_On_Ground P T
Flight_Modes_Lateral_Active APPR
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Flight_Modes_Lateral_Active_term_Roll_LE_Threshold F
Navigation_Sources_term_Selected_Nav_Type LOC
Navigation_Sources_term_Selected_Nav_Type VOR
Navigation_Sources_term_Nav_Source_Frequency 108.0
Navigation_Sources_term_Nav_Source_Frequency' 109.0
Navigation_Sources_mon_Selected_Nav_Source P FMS_1
Navigation_Sources_mon_Selected_Nav_Source C FMS_2

The expected output is CLEARED, but the actual output is HDG HOLD.

3.4.11 Flight Modes Vertical Active - Table 44

Mode Class Flight Modes Vertical Active has nine states: (PITCH, ALTHOLD, VS, FLC, GA,
APPR, CLEARED, ALTSEL CAPTURE, ALTSEL TRACK) and 25 transitions. SpecTest gen-
erated 348 full predicate test cases for this mode class. 64 test cases have di�erent actual and
expected outputs.

Following is one of the test cases that exhibits problem.

// t44tc348
// Table 44: Flight_Modes_Vertical_Active
// Previous Mode: PITCH
// Expected Mode: PITCH

// Transition Predicate: @T(Crew_Interface_Flight_Control_Panel_mon_VS_Switch = ON)
// AND (Aircraft_Data_Sources_term_Overspeed')

// Expanded Predicate: (Crew_Interface_Flight_Control_Panel_mon_VS_Switch != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_VS_Switch' = ON)
// AND Aircraft_Data_Sources_term_Overspeed'

Table 44
PreviousMode PITCH
Crew_Interface_Flight_Control_Panel_mon_VS_Switch C OFF
Crew_Interface_Flight_Control_Panel_mon_VS_Switch P OFF
Aircraft_Data_Sources TOO_FAST

The expected output is PITCH, but the actual output is FLC.

3.4.12 Flight Modes Vertical Altitude Select - Table 45

Mode Class Flight Modes Vertical Altitude Select has three states (CLEARED, ACTIVE, ARMED)
and four transitions. SpecTest generated 64 full predicate test cases for this mode class. 27 test
cases have di�erent actual and expected outputs.

Following is one of the test cases that exhibits the problem.

// t45tc003
// Table 45: Flight_Modes_Vertical_Altitude_Select
// Previous Mode: CLEARED
// Expected Mode: ARMED

// Transition Predicate: @F((Flight_Modes_Vertical_Active = APPR) OR
// (Flight_Modes_Vertical_Active = GA) OR
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// (Flight_Modes_Vertical_Active = ALTHOLD) OR
// (Flight_Modes_Vertical_Active = CLEARED))

// Expanded Predicate: (Flight_Modes_Vertical_Active = APPR AND
// (Flight_Modes_Lateral_Approach = Track AND (Flight_Modes_Lateral_Active = APPR
// AND
// Navigation_Sources_mon_Selected_Nav_Source
// != Navigation_Sources_mon_Selected_Nav_Source' OR
// (Navigation_Sources_term_Nav_Source_Frequency !=
// Navigation_Sources_term_Nav_Source_Frequency' AND
// ((Navigation_Sources_term_Selected_Nav_ Type = VOR) OR
// (Navigation_Sources_term_Selected_Nav_Type = LOC))))) AND
// (((Crew_Interface_Throttles_term_GA_Pressed) OR NOT
// Crew_Interface_Throttles_term_GA_Pressed')) AND
// (NOT Aircraft_Data_Sources_term_Overspeed'))

Table 45
PreviousMode CLEARED
Navigation_Sources_term_Nav_Source_Frequency 108.0
Navigation_Sources_term_Nav_Source_Frequency' 109.0
Flight_Modes_Vertical_Active APPR
Flight_Modes_Lateral_Approach Track
Flight_Modes_Lateral_Active APPR
Navigation_Sources_term_Selected_Nav_Type LOC
Navigation_Sources_term_Selected_Nav_Type VOR
Navigation_Sources_mon_Selected_Nav_Source P FMS_1
Navigation_Sources_mon_Selected_Nav_Source C FMS_1
Crew_Interface_Throttles_term_GA_Pressed T
Aircraft_Data_Sources SPEED_OK
Crew_Interface_Throttles_mon_GA_Switch_right C OFF
Crew_Interface_Throttles_mon_GA_Switch_left C OFF

The expected output is ARMED, but the actual output is CLEARED.

3.4.13 Flight Modes Vertical Approach - Table 47

Mode Class Flight Modes Vertical Approach has three states (CLEARED, ARMED, TRACK) and
3 transitions. SpecTest generated 44 full predicate test cases for this mode class. 12 test cases
have di�erent actual and expected outputs.

Following is one of the test cases that exhibits the problem.

// t47tc044
// Table 47: Flight_Modes_Vertical_Approach
// Previous Mode: TRACK
// Expected Mode: TRACK

// Transition Predicate: @F(Flight_Modes_Lateral_Approach = Track) OR
// @T(Flight_Modes_Vertical_Active = CLEARED)

// Expanded Predicate: (Flight_Modes_Lateral_Approach = Track AND
// (Flight_Modes_Lateral_Active = APPR AND
// Navigation_Sources_mon_Selected_Nav_Source !=
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// Navigation_Sources_mon_Selected_Nav_Source' OR
// (Navigation_Sources_term_Nav_Source_Frequency !=
// Navigation_Sources_term_Nav_Source_Frequency' AND
// ((Navigation_Sources_term_Selected_Nav_Type = VOR) OR
// (Navigation_Sources_term_Selected_Nav_Type = LOC))))) OR
// (Flight_Modes_Vertical_Active = PITCH AND
// (Flight_Modes_Flight_Director_Mode = ON AND
// (Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left != ON AND
// Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left' = ON OR
// Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right' = ON) AND
// (NOT Aircraft_Data_Sources_term_Overspeed AND
// NOT Autopilot_Modes_Engage_term_AP_Engaged)))

Table 47
PreviousMode TRACK
Autopilot_Modes_Engage_term_AP_Engaged T
Flight_Modes_Lateral_Approach Track
Flight_Modes_Lateral_Active APPR
Flight_Modes_Vertical_Active PITCH
Flight_Modes_Flight_Director_Mode ON
Aircraft_Data_Sources_term_Overspeed F
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right C ON
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left C ON
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right P OFF
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left P OFF
Navigation_Sources_term_Selected_Nav_Type FMS
Navigation_Sources_term_Selected_Nav_Type FMS
Navigation_Sources_term_Nav_Source_Frequency 108.0
Navigation_Sources_term_Nav_Source_Frequency' 108.0
Navigation_Sources_mon_Selected_Nav_Source P FMS_1
Navigation_Sources_mon_Selected_Nav_Source C FMS_1

The expected output is TRACK, but the actual output is CLEARED.

3.4.14 Flight Modes Vertical Flight Level Change - Table 50

Mode Class Flight Modes Vertical Flight Level Change has three states (Track, Overspeed, CLEARED)
and �ve transitions. SpecTest generated 32 full predicate test cases for this mode class. Five test
cases have di�erent actual and expected outputs.

Following is one of the test cases that exhibits the problem.

// t50tc030
// Table 50: Flight_Modes_Vertical_Flight_Level_Change
// Previous Mode: Track
// Expected Mode: Track

// Transition Predicate: @F(Flight_Modes_Vertical_Active = FLC)

// Expanded Predicate: (Flight_Modes_Vertical_Active = FLC AND
// (Flight_Modes_Flight_Director_Mode = ON AND
// (Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left != ON AND
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// Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right != ON) AND
// (Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left' = ON OR
// Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right' = ON) AND
// (NOT Aircraft_Data_Sources_term_Overspeed AND
// NOT Autopilot_Modes_Engage_term_AP_Engaged)))

Table 50
PreviousMode Track
Autopilot_Modes_Engage_term_AP_Engaged T
Flight_Modes_Vertical_Active FLC
Flight_Modes_Flight_Director_Mode ON
Aircraft_Data_Sources_term_Overspeed F
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right C ON
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left C ON
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_right P OFF
Crew_Interface_Flight_Control_Panel_mon_FD_Switch_left P OFF

The expected output is Track, but the actual output is CLEARED.
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4 EMPIRICAL EVALUATION

The current year's project has extending the empirical evaluation from the previous year to include
the transition-pair criterion. During Phase III, a comparative study on a large industrial system
was carried out with the goal of assessing the practical usefulness of the speci�cation-based testing
criteria. The subject program was a research version of the Flight Guidance Mode Logic System
(FGS) provided by Rockwell Collins. A comparison was made between full predicate tests and tests
created by the T-Vec tool [BB96, BB97] (provided by Rockwell Collins).

The test techniques were compared on the basis of fault detection ability and cost. Fault
detection was measured by placing 155 faults into FGS. The faults were hand-inserted by creating
a separate Java source �le for each fault. To reduce the possibility of bias, faults and tests were
created independently; the faults were inserted by O�utt and the tests were created by a graduate
student supported on this project.

We have extended this experiment to include transition-pair tests in addition to full predicate
and T-Vec tests. Encouragement for this e�ort comes from a separate experiment carried out
in collaboration with another faculty member at George Mason University, Paul Ammann, and
two graduate students [ADO00]. Three speci�cation-based testing criteria were compared using
Mathur and Wong's ProbSubsumes measure [MW94]. This measure is a \cross scoring", where
tests generated for each criterion are measured against the other. The three criteria are Ammann
and Black's speci�cation-mutation coverage [ABM98], full predicate coverage, and transition-pair
coverage. Tests were generated for the common Cruise control example. A novel aspect of the
work is that each criterion was encoded in a model checker, and the model checker was used �rst
to generate test sets for each criterion and then to evaluate test sets against alternate criteria. The
results from this study are summarized in Table 1. As can be seen, neither the full predicate tests
nor the speci�cation mutation tests had high transition-pair scores, and the transition-pair tests
did not have high full predicate or speci�cation mutation scores. Thus, it can be inferred that
transition-pair tests o�er something di�erent from full predicate and speci�cation mutation tests.

Full Predicate Transition-pair Mutation

Test Case Set Score Score Score

Full Predicate TCs 100 32 86

Transition-pair TCs 50 100 82

Mutation TCs 88 38 100

Table 1: Coverage Scores of Test Criteria.

We have generated 1102 tests to satisfy the transition-pair criterion. Again, to avoid bias in the
experiment, these tests were generated independently from the faults and full predicate tests by a
di�erent graduate student. These 1102 tests compare to 735 full predicate tests and 3732 T-Vec
tests. Table 2 summarizes the number of test requirements and test cases generated for each mode
transition table.

4.1 Transition-pair Tests

The 1102 transition-pair tests were generated by hand according to the following process:

1. Develop a speci�cation graph for each mode

2. Identify transition-pairs from the speci�cation graph

3. Generate test case requirements for each transition pair according to the predicates on the
transitions
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# Test # Test

Table Number Table Name Requirements Cases

Table 1 Aircraft Data Sources 8 8
Table 2 Autopilot Modes Disengaged Submode 8 8
Table 3 Autopilot Modes Engage 8 8
Table 4 Autopilot Modes Engaged Submode 7 8
Table 5 Flight Modes Flight Director Cues 24 25
Table 6 Flight Modes Flight Director Mode 23 44
Table 7 Flight Modes Lateral Active 73 210
Table 8 Flight Modes Lateral Approach 5 5
Table 9 Flight Modes Lateral Navigation 5 5
Table 10 Flight Modes Lateral Roll 25 26
Table 11 Flight Modes Vertical Active 224 701
Table 12 Flight Modes Vertical Altitude Select 25 25
Table 13 Flight Modes Vertical Approach 9 9
Table 14 Flight Modes Vertical Flight Level Change 12 12

Table 2: Transition Test Summary for FGS.

4. Generate test cases based on the test requirements

The speci�cation graphs, transition-pairs, and test requirements are included in a separate
companion document, \Transition-pair Tests for FGS".

All but 90 of the tests were executed successfully on FGS and the expected outputs were
generated. For the remaining 90 tests, there are discrepancies between the actual and expected
outputs. Each of these tests exhibit the same behavior. Assume the test is designed to cause
transitions from state S1 to S2 and then to S3 (S1 ! S2 ! S3). If each component of the tests
is run independently, the outputs are as expected. That is, if the �rst part of the test is run, the
correct transition from S1 to S2 is taken. Then, if the second part of the test is run separately,
the correct transition from S2 to S3 is taken. But when the two test components are run together,
state S3 is not reached.

Analysis of the problem revealed a problem with the design of the test driver from last year's
e�ort. Speci�cally, the test driver calls both setPreviousValue and setCurrentValue for the
�rst inputs and then only setCurrentValue for subsequent inputs. Whereas this worked for full
predicate tests, where only one transition was being tested, this method fails when transition-pair
testing requires two subsequent transitions to be taken. Modi�cations to the driver are ongoing,
however they could not be made in time to support this experimentation, so the 90 tests in question
were removed from the experiment, leaving 1012.

4.2 Faults Inserted Into FGS

We used the same faults that were used in the 1999 experiment [O�00]. The faults were inserted
by hand. The strategy was to insert faults that are (1) similar to naturally occurring faults, and
(2) not trivial to detect. A total of 155 faults were created, all of which passed the Java compiler
(Sun JDK 1.2.10).

To gather the results, each fault was inserted into a separate Java source �le, creating 155 incor-
rect versions of FGS. This simpli�es data gathering by making it clear which fault is detected when
the faulty program fails. One complication from using this strategy with a Java implementation is
that the Java compiler does not create complete executables, rather it compiles each Java source
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Figure 10: Directory Structure Showing FGS Faults.

�le to a class bytecode �le, and the class �les are then interpreted during execution. Thus, to
execute the multiple faulty versions of FGS, each Java �le was compiled to a faulty class �le, and
we developed a shell script that copied the faulty class �le into the appropriate directory before
running FGS. Although this was entirely automated, it was quite slow (taking over 30 hours to
run all 1012 TP tests on all faulty versions of FGS).

Figure 10 shows the directory structure of FGS and location of the faulty Java classes. All
faulty classes are stored in subdirectories called BuggyVersions/. In Figure 10, each Java �le is
annotated with the number of faults created for it, and the BuggyVersions/ directories are anno-
tated with the total number of faults in the directory. No faults were placed into the BusLayer,
AircraftDSOLayer, or the ControlsDSOLayer classes. This is because tests generated from the
SCR mode transition tables could not cause methods in those classes to be executed. In addition,
CommonTypes contains classes that are not directly described or modeled in the functional speci�-
cations. Faults were added for CommonTypes as a measure of how well the speci�cation-based tests
are able to test code that is not directly described by the speci�cations.

4.3 Results and Analysis

All transition-pair tests were run on all faulty versions of FGS. The data from running these tests
on FGS are shown in Table 3. For each mode transition table in FGS, the table shows the total

25



Mode Transition Full Predicate T-Vec Transition-pair

Table # Tests Faults Found # Tests Faults Found # Tests Faults Found

Table 1 24 18 50 17 8 15

Table 2 20 17 20 23 8 12

Table 3 16 10 41 10 8 7

Table 4 15 16 22 16 7 14

Table 5 30 15 63 23 24 10

Table 6 44 12 2763 76 23 8

Table 7 138 29 237 34 47 19

Table 8 12 18 18 16 4 6

Table 9 12 19 18 17 5 13

Table 10 43 19 130 21 22 16

Table 11 301 53 266 57 165 42

Table 12 42 45 49 37 24 29

Table 13 18 25 30 22 9 13

Table 14 20 22 25 30 12 21

TOTAL 735 133 3732 128 1012 117

Percentage 86% 83% 75%

Table 3: Faults Found per Mode Transition Table.

number of tests for each test technique, and the faults found by each set of tests. The mode
transition table names are given in Table 4; they are the same names used in Miller and Hoech's
FGS report [MH97]. The TOTAL row shows the total number of tests and the total number of
faults found by each test technique. Note that the total faults found are not the sum of the number
of faults found. The tests from the di�erent tables found overlapping sets of faults, so the TOTAL
line does not contain the sums of the columns. Rather, it is the number of unique faults found.

As mentioned before, a prior experiment [ADO00] found that transition-pair tests found a
substantially di�erent set of faults from full predicate tests on a much smaller program. To check
whether this result held true for FGS, the individual faults found by each technique was analyzed.
The data is shown in Table 5. In the table, the columns headed by FP, TV, and TP indicate that
the fault was found by full predicate, T-Vec, and transition-pair tests, respectively. SUM indicates
how many of the techniques detected the fault, and ZER, ONE, TWO, and THR separates these
out for convenience. F# is the number of the fault; the numbers are not continuous because 43
faults were removed from consideration.

As can be seen, the results were quite di�erent from our previous experiment. Only one fault
(# 196) was found exclusively by transition-pair tests. Four faults were found exclusively by full
predicate tests, and two by the T-Vec tests. The di�erences are not signi�cant, and provides no
evidence for supporting the hypothesis that transition-pair tests somehow test something di�erent
from the other two techniques. We have no explanation for why this data di�ers from that of the
previous experiment.
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Table Number Table Name

Table 1 Aircraft Data Sources
Table 2 Autopilot Modes Disengaged Submode
Table 3 Autopilot Modes Engage
Table 4 Autopilot Modes Engaged Submode
Table 5 Flight Modes Flight Director Cues
Table 6 Flight Modes Flight Director Mode
Table 7 Flight Modes Lateral Active
Table 8 Flight Modes Lateral Approach
Table 9 Flight Modes Lateral Navigation
Table 10 Flight Modes Lateral Roll
Table 11 Flight Modes Vertical Active
Table 12 Flight Modes Vertical Altitude Select
Table 13 Flight Modes Vertical Approach
Table 14 Flight Modes Vertical Flight Level Change

Table 4: Mode Transition Table Names.

5 CONCLUSIONS

This report presents signi�cant enhancements to a tool for automatically generating test cases from
requirements/speci�cations. This tool is now su�cient to generate tests based on all features of
SCR tables.

This report also presents results from an expanded empirical evaluation of the speci�cation-
based testing criteria. Speci�cally, 1012 transition-pair tests have been generated for FGS and
evaluated on their fault detection ability using 155 faulty versions of FGS. The results were not
very positive. The transition-pair tests were only able to detect one fault that the full predicate
tests did not, and the full predicate tests found 17 faults that the transition-pair tests did not. Thus,
with some reluctance, it is concluded that the transition-pair technique cannot be recommended as
a viable alternative to the full predicate testing technique.
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F# FP TV TP Sum ZER ONE TWO THR
134 129 120 383 60 7 16 115

31 1 1 1 3 3
32 1 1 1 3 3
33 1 1 1 3 3
34 1 1 1 3 3
35 1 1 1 3 3
36 1 1 1 3 3
37 1 1 1 3 3
38 1 1 1 3 3
39 1 1 1 3 3
40 1 1 1 3 3
41 1 1 1 3 3
42 1 1 1 3 3
43 1 1 1 3 3
44 1 1 1 3 3
45 1 1 1 3 3
46 1 1 1 3 3
47 1 1 0 2 2 FP & TV
48 1 1 1 3 3
49 1 1 1 3 3
50 1 1 1 3 3
51 1 0 1 2 2 FP & TP
52 0 0 0 0 0
53 0 0 0 0 0
54 1 0 1 2 3
55 1 1 1 3 3
56 1 1 1 3 3
57 1 1 1 3 3
58 1 1 1 3 3
59 1 1 1 3 3
60 1 1 1 3 3
61 1 1 1 3 3
62 1 1 1 3 3
63 1 1 1 3 3
64 1 1 0 2 2 FP & TV
65 1 1 1 3 3
66 1 0 0 1 1 FP
67 1 1 1 3 3
68 1 1 0 2 2 FP & TV
69 1 1 0 2 2 FP & TV
70 1 1 1 3 3
71 1 1 1 3 3
72 1 1 0 2 2 FP & TV
73 1 1 1 3 3

Table 5: Comparison of Faults Found by Three Testing Techniques (1 of 4).
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F# FP TV TP Sum ZER ONE TWO THR
134 129 120 383 60 7 16 115

74 1 1 0 2 2 FP & TV
75 1 1 1 3 3
76 1 1 1 3 3
77 1 1 1 3 3
78 1 1 0 2 2 FP & TV
79 1 1 1 3 3
80 0 1 0 1 1 TV
81 1 1 1 3 3
82 1 1 1 3 3
83 1 1 1 3 3
84 1 1 0 2 2 FP & TV
85 1 1 1 3 3
86 1 1 1 3 3
87 1 1 1 3 3
88 1 1 1 3 3
89 0 0 0 0 0
90 1 1 1 3 3
91 1 1 1 3 3
92 1 1 1 3 3
93 1 1 1 3 3
94 1 1 1 3 3
95 1 1 1 3 3
96 1 1 1 3 3
97 1 1 1 3 3
98 1 1 1 3 3
99 1 1 1 3 3
100 1 1 0 2 2 FP & TV
101 1 1 1 3 3
102 1 1 1 3 3
103 1 1 1 3 3
104 1 1 1 3 3
105 1 1 1 3 3
106 1 1 1 3 3
107 1 1 1 3 3
108 1 1 1 3 3
109 1 1 1 3 3
110 1 1 1 3 3
111 1 1 1 3 3
112 1 1 1 3 3
113 1 1 1 3 3
114 1 1 1 3 3
115 1 1 1 3 3
116 1 1 1 3 3

Table 5: Comparison of Faults Found by Three Testing Techniques (2 of 4).
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F# FP TV TP Sum ZER ONE TWO THR
134 129 120 383 60 7 16 115

117 1 1 1 3 3
118 1 0 0 1 1 FP
119 1 1 1 3 3
120 1 1 0 2 2 FP & TV
121 1 1 1 3 3
122 1 1 1 3 3
123 1 1 0 2 2 FP & TV
124 1 1 1 3 3
125 1 1 1 3 3
126 1 1 1 3 3
127 1 1 0 2 2 FP & TV
128 1 0 1 2 2 FP & TP
129 1 1 1 3 3
130 1 1 1 3 3
131 0 1 1 2 2 TV & FP
132 1 1 1 3 3
133 1 1 1 3 3
134 1 1 1 3 3
135 1 1 1 3 3
136 0 0 0 0 0
137 1 0 0 1 1 FP
138 1 1 1 3 3
139 1 1 1 3 3
140 0 0 0 0 0
141 1 1 1 3 3
142 1 0 0 1 1 FP
143 1 1 1 3 3
144 1 1 1 3 3
145 1 1 1 3 3
146 1 1 1 3 3
147 1 1 1 3 3
148 1 1 1 3 3
149 0 1 0 1 1 TV
150 1 1 1 3 3
151 0 0 0 0 0
152 1 1 1 3 3
153 1 1 1 3 3
154 1 1 1 3 3
155 0 0 0 0 0
156 0 0 0 0 0
157 0 0 0 0 0
158 0 0 0 0 0
159 1 1 1 3 3

Table 5: Comparison of Faults Found by Three Testing Techniques (3 of 4).
30



F# FP TV TP Sum ZER ONE TWO THR
134 129 120 383 60 7 16 115

160 1 1 1 3 3
161 1 1 1 3 3
162 1 1 1 3 3
163 1 1 1 3 3
164 0 0 0 0 0
165 1 1 1 3 3
166 1 1 1 3 3
167 0 0 0 0 0
168 0 0 0 0 0
169 1 1 1 3 3
170 0 0 0 0 0
171 0 0 0 0 0
172 0 0 0 0 0
173 1 1 1 3 3
174 1 1 1 3 3
175 1 1 1 3 3
176 1 1 1 3 3
177 1 1 1 3 3
178 0 0 0 0 0
179 1 1 1 3 3
180 0 0 0 0 0
194 1 1 1 3 3
195 1 1 1 3 3
196 0 0 1 1 1 TP
197 0 0 0 0 0
198 1 1 1 3 3

134 129 120 383 60 7 16 115

Table 5: Comparison of Faults Found by Three Testing Techniques (4 of 4).
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6 FUTURE WORK

The immediate goal of this research was to demonstrate the practical feasibility of the test
generation criteria from the previous years. The tool and the experimentation that was carried
out has well satis�ed this goal. As a future goal, I'd like to recommend the following idea. Thus
far, all testing has been based on functional transitions between states and modes in a state-based
speci�cation description of the software. However, states also have data interactions, and these
interactions are unlikely to be adequately tested using these techniques. Thus, I suggest developing
a data-ow testing criterion for state-based speci�cations, similar to traditional code-based data
ow. De�nitions and uses of variables would be identi�ed in the states of the �nite state machine,
and a data ow graph could be developed from them.
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