
Weighted Cluster Ensembles:
Methods and Analysis

CARLOTTA DOMENICONI

and

MUNA AL-RAZGAN

Department of Computer Science

George Mason University, Fairfax, VA 22030

carlotta@ise.gmu.edu, malrazga@gmu.edu

December 2007

Technical Report ISE-TR-07-06

Cluster ensembles offer a solution to challenges inherent to clustering arising from its ill-posed
nature. Cluster ensembles can provide robust and stable solutions by leveraging the consensus
across multiple clustering results, while averaging out emergent spurious structures that arise
due to the various biases to which each participating algorithm is tuned. In this paper, we
address the problem of combining multiple weighted clusters which belong to different subspaces
of the input space. We leverage the diversity of the input clusterings in order to generate a
consensus partition that is superior to the participating ones. Since we are dealing with weighted
clusters, our consensus functions make use of the weight vectors associated with the clusters. We
demostrate the effectiveness of our techniques by running experiments with several real datasets,
including high dimensional text data. Furthermore, we investigate in depth the issue of diversity
and accuracy for our ensemble methods. Our analysis and experimental results show that the
proposed techniques are capable of producing a partition that is as good as or better than the
best individual clustering.

Categories and Subject Descriptors: ... [...]: ...

General Terms: Clustering, cluster ensembles, subspace clustering, consensus functions, accuracy
and diversity measures, text data.

1. INTRODUCTION

Recently, cluster ensembles have emerged as a technique for overcoming problems
with clustering algorithms. It is well known that off-the-shelf clustering methods
may discover different patterns in a given set of data. This is because each cluster-
ing algorithm has its own bias resulting from the optimization of different criteria.
Furthermore, there is no ground truth against which the clustering result can be
validated. Thus, no cross-validation technique can be carried out to tune input pa-
rameters involved in the clustering process. As a consequence, the user is equipped
with no guidelines for choosing the proper clustering method for a given dataset.

A cluster ensemble consists of different partitions. Such partitions can be ob-
tained from multiple applications of any single algorithm with different initializa-
tions, or on various bootstrap samples of the available data, or from the application
of different algorithms to the same dataset. Cluster ensembles offer a solution to
challenges inherent to clustering arising from its ill-posed nature: they can provide
more robust and stable solutions by making use of the consensus across multiple
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clustering results, while averaging out emergent spurious structures that arise due
to the various biases to which each participating algorithm is tuned, or to the
variance induced by different data samples.

An orthogonal issue related to clustering is high dimensionality. High dimensional
data pose a difficult challenge to the clustering process. Various clustering algo-
rithms can handle data with low dimensionality, but as the dimensionality of the
data increases, these algorithms tend to break down. In high dimensional spaces,
it is highly likely that, for any given pair of points within the same cluster, there
exist at least few dimensions on which the points are far apart from each other. As
a consequence, distance functions that equally use all input features may not be
effective. As a result, many different subspace clustering methods have been pro-
posed [Parsons et al. 2004]. They all attempt to dodge the curse of dimensionality
which affects any clustering algorithm in high dimensional spaces.

A common scenario with high dimensional data is that several clusters may exist
in different subspaces comprised of different combinations of features. In many
real-world problems, points in a given region of the input space may cluster along
a given set of dimensions, while points located in another region may form a tight
group with respect to different dimensions. Each dimension could be relevant to at
least one of the clusters. Common global dimensionality reduction techniques are
unable to capture such local structure of the data. Thus, a proper feature selection
procedure should operate locally in input space. Local feature selection allows one
to estimate to which degree features participate to the discovery of clusters. Such
estimation is carried out using points within local neighborhoods, and it allows the
embedding of adaptive distance measures in different regions of the input space.

To cope with the high dimensionality of data, Domeniconi et al. [2004] and
Domeniconi et al. [2007] proposed a soft feature selection procedure (called LAC)
that depends on two input parameters. The first one is common to all clustering
algorithms: the number of clusters k to be discovered in the data. The second one
(called h) controls the strength of the incentive to cluster on more features. LAC
assigns weights to features according to the local variance of data along each di-
mension. Dimensions along which data are loosely clustered receive a small weight,
which has the effect of elongating distances along that dimension. Features along
which data manifest a small variance receive a large weight, which has the effect
of constricting distances along that dimension. Thus, the learned weights perform
a directional local reshaping of distances which allows a better separation of clus-
ters, and therefore the discovery of different patterns in different subspaces of the
original input space.

Although LAC proved to be an effective method for the discovery of subspace
clusters [Domeniconi et al. 2004; Domeniconi et al. 2007], the setting of the h
parameter is particularly difficult, as no domain knowledge for its tuning is likely
to be available. The setting of the h parameter is an open problem, and motivates
the combination of LAC-based clusterings in cluster ensembles. Here we focus
on setting the parameter h directly from the data. We utilize the diversity of
the clusterings produced by LAC when different values of h are used, in order to
generate a consensus clustering that is superior to the participating ones. The
major challenge we face is to find a consensus partition from the output of the LAC
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algorithm to achieve an “improved” overall clustering of the data. Since we are
dealing with subspace clusterings, we need to design a proper consensus function
that makes use of the weight vectors associated with the input clusters.

In our previous work Al-Razgan and Domeniconi [2006], we have designed two
new consensus functions (WSPA and WBPA) for an ensemble of subspace cluster-
ings obtained by means of the LAC algorithm. Our ensemble techniques reduce
the problem of defining a consensus function to a graph partitioning problem. This
paper is a major extension of our prior research on cluster ensembles. Besides
providing further motivation for the two previously proposed methods (WSPA and
WBPA), here we introduce an additional cluster ensemble technique (WSBPA) that
provides weighted clusters in output. The main advantage of WSBPA is that it pro-
vides in output, not only a partition of the data into k clusters, but also weight
vectors that reflect the relevance of features within each cluster. In other words,
the technique preserves the local nature of the structure discovered by LAC itself
from the data (while also improving the overall quality of such local structure).
This is important for the cluster prediction of future test points (especially in high
dimensions).

Overall, our three techniques define a consensus function that takes into account
not only how often points are grouped together across the various input clusterings,
but also the degree of confidence of the groupings. LAC produces partitions, where
each cluster is associated with a weight vector representative of the subspace the
cluster belongs to. To build a consensus function, such weight vectors are embedded
in the distance computation between points and clusters, so that individual features
participate with the proper strength in the assignment of points to clusters. This
characteristic is the main reason for the superior accuracy achieved by our weighted
clustering ensemble algorithms (e.g., with respect to CSPA and MCLA [Strehl and
Ghosh 2002]). To the best of our knowledge, our techniques provide a first attempt
to improving subspace clustering results by means of ensemble systems.

Specifically, our contributions are as follows:

(1) We introduce and analyze three consensus functions for subspace clusterings.
The ultimate goal of our consensus functions is to provide hard partitions of
the data, along with weight vectors that convey information regarding the sub-
spaces within which the individual clusters exist. This result is achieved by our
WSBPA algorithm.

(2) We demonstrate the effectiveness of our three techniques by running experi-
ments with several real datasets, including high dimensional text data. Fur-
thermore, we combine our techniques with both METIS and spectral clustering,
to compute the k-way partition of the resulting graphs (previously only METIS
was used [Al-Razgan and Domeniconi 2006]). Our results show the applicabil-
ity of spectral clustering in conjunction with our ensemble techniques, thus
enabling the use of our methods also with unbalanced data.

(3) We experimentally demonstrate the use of our subspace cluster ensemble tech-
nique for the categorization of unlabeled documents, spam/non-spam messages
in particular. The analysis of relevance values credited to features (i.e., terms)
reveals interesting findings, and provides insights on the nature of the spam
filtering problem, and the general classification case.
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(4) We investigate in great detail the issue of diversity and accuracy for our en-
semble techniques. We consider two different measures of diversity: a pairwise
diversity measure based on Normalized Mutual Information (NMI) that does
not depend on the ensemble methodology; and a non-pairwise diversity mea-
sure based on the Adjusted Random Index (ARI) that depends on the ensemble
methodology. Our objective is to determine which measure of diversity is the
best indicator of good ensemble accuracy, and what is the preferred level of
diversity. Such findings enable one to select, from a set of ensembles, the one
that is most likely to provide good results. Our results reveal that a diversity
measure based on ARI is more robust and consistent, and that high diversity
signifies large accuracy.

The rest of the paper is organized as follows. Section 2 discusses related work on
clustering ensembles. Section 3 provides a brief description of the Locally Adaptive
Clustering algorithm (LAC). Section 4 introduces and motivates our three cluster
ensemble algorithms. In Section 5, a motivating example is discussed. In Section 6,
we describe our experiments, and analyze the results. Section 7 investigates the use
of our subspace ensemble technique for the categorization of unlabeled documents.
Section 8 contains a discussion of diversity measures used in the literature, and
presents our investigation and findings with respect to accuracy/diversity issues for
cluster ensembles. Finally, Section 9 provides the final remarks and outlines future
research directions.

2. RELATED WORK

A cluster ensemble technique is characterized by two components: the mechanism
to generate diverse partitions, and the consensus function to combine the input
partitions into a final clustering.

Diverse partitions are typically generated by using different clustering algorithms,
or by applying a single algorithm with different parameter settings, possibly in com-
bination with data or feature sampling. The k-means algorithm with random ini-
tializations [Fred and Jain 2002; Kuncheva et al. 2006a], or with random number of
clusters [Kuncheva and Hadjitodorov 2004b] has been widely used in the literature
to generate diverse clusterings. Topchy et al. [2003] introduce two techniques, called
weak clustering algorithms, to produce different partitions. The first technique clus-
ters random one-dimensional projections of multidimensional data; the second one
splits the data using random hyperplanes. Random projection is used in Fern and
Brodley [2003]. A different approach is proposed in Topchy et al. [2004], where
the ensemble is modeled as a mixture of multivariate multinomial distributions. A
unified framework for producing multiple partitions is presented in Topchy et al.
[2005]. Greene et al. [2004] apply k-means, k-medoids, and fast weak clustering
as strategies to generate diversity in clustering results, while Minaei-Bidgoli et al.
[2004] propose a resampling technique that generates and then combines partitions
of subsets of the data, to obtain results that reflect the entire dataset.

One popular methodology to build a consensus function utilizes a co-association
matrix [Fred and Jain 2002; Greene et al. 2004; Minaei-Bidgoli et al. 2004; Topchy
et al. 2003]. Such matrix can be seen as a similarity matrix, and thus can be used
with any clustering algorithm which operates directly on similarities (e.g., hierarchi-
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cal clustering) [Topchy et al. 2003; Greene et al. 2004]. Kuncheva et al. [2006a] has
shown that good results can be obtained when the co-association matrix is used as
a data matrix in a new feature space, and k-means is ran on it. In alternative to the
co-association matrix, voting procedures have been considered to build consensus
functions in Topchy et al. [2004] and in Dudoit and Fridlyand [2003]. Gondek and
Hofmann [2005] derive a consensus function based on the Information Bottleneck
principle: the mutual information between the consensus clustering and the indi-
vidual input clusterings is maximized directly, without requiring approximation.

A different popular mechanism for constructing a consensus maps the prob-
lem onto a graph-based partitioning setting [Strehl and Ghosh 2002; Ayad and
Kamel 2003; Hu 2004]. In particular, Strehl and Ghosh [2002] propose three graph-
based approaches: Cluster-based Similarity Partitioning Algorithm (CSPA), Hyper-
Graph Partitioning Algorithm (HGPA), and Meta-Clustering Algorithm (MCLA).
In CSPA, a binary similarity matrix is constructed for each input clustering. Each
column corresponds to a cluster: an entry has a value of one if the corresponding
point belongs to the cluster, and zero otherwise. An entry-wise average of all the
matrices gives an overall similarity matrix, utilized to recluster the data using a
graph-partitioning based approach. The induced similarity graph, where vertices
correspond to data and edge weights to similarities, is partitioned using METIS
[Karypis and Kumar 1998]. HGPA seeks a partitioning of the hypergraph by cut-
ting a minimal number of hyperedges. (Each hyperedge represents a cluster of an
input clustering.) All hyperedges have the same weight. This algorithm looks for a
hyperedge separator that partitions the hypergraph into k unconnected components
of approximately the same size. It makes use of the package HMETIS [Karypis and
Kumar 1998]. MCLA is based on the clustering of clusters. It provides object-wise
confidence estimates of cluster membership. Hyperedges are grouped, and each
data point is assigned to the collapsed hyperedge in which it participates most
strongly.

We observe that all the ensemble methods discussed above take hard clustering as
input. A recent paper [Punera and Ghosh 2007] aims at combining soft partitionings
of data (e.g., produced by fuzzy k-mean) without hardening the partitions before
entering them into a consensus mechanism. The authors develop soft versions of
CSPA, HGPA, and MCLA.

Our work on ensembles for subspace clusterings differs from all the above ap-
proaches as it builds consensus functions that accept in input subspace clustering
results. Our work is related to the recent techniques discussed in [Punera and
Ghosh 2007]. Our mapping, though, encodes information provided by subspace
clusterings, rather than fuzzy clusterings. Fuzzy clustering, typically, produces
overlapping clusters that co-exist within the same space. On the other hand, LAC
produces hard partitions, where each cluster is associated with a weight vector rep-
resentative of the subspace the cluster belongs to. To build a consensus, such weight
vectors are embedded in the distance computation between points and clusters, so
that individual features participate with the proper strength in the assignment of
points to clusters. The ultimate goal of our consensus functions is to provide hard
partitions of the data, along with weight vectors that convey information regarding
the subspaces within which the individual clusters exist. This result is achieved by
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our WSBPA algorithm.

3. LOCALLY ADAPTIVE CLUSTERING

In this section we briefly describe the Locally Adaptive Clustering (LAC) algorithm
[Domeniconi et al. 2004; Domeniconi et al. 2007]. Let us consider a set of n points
in some space of dimensionality D. A weighted cluster is a subset of data points,
together with a vector of weights w = (w1, . . . , wD)t, such that the points in the
cluster are close to each other according to the L2 norm distance weighted using w.
The component wj measures the degree of participation of feature j to the cluster.
The problem is how to estimate the weight vector w for each cluster in the dataset.

In traditional clustering, the partition of a set of points is induced by a set of
representative vectors, also called centroids or centers. The partition induced by
discovering weighted clusters is formally defined as follows.
Definition: Given a set S of n points x ∈ �D, a set of k centers {c1, . . . , ck}, cj ∈
�D, j = 1, . . . , k, coupled with a set of corresponding weight vectors {w1, . . . ,wk},
wj ∈ �D, j = 1, . . . , k, partition S into k sets:

Sj = {x|(
D∑

i=1

wji(xi − cji)2)1/2 (1)

< (
D∑

i=1

wli(xi − cli)2)1/2, ∀l �= j}, j = 1, . . . , k

where wji and cji represent the ith components of vectors wj and cj respectively
(ties are broken randomly).

The set of centers and weights is optimal with respect to the Euclidean norm, if
they minimize the error measure:

E1(P,W ) =
k∑

j=1

D∑
i=1

(wji
1

|Sj |
∑
x∈Sj

(cji − xi)2) (2)

subject to the constraints: ∀j, ∑
iwji = 1. P and W are (D × k) matrices whose

columns are cj and wj respectively, i.e. P = [c1 . . . ck] and W = [w1 . . .wk].
For shortness of notation, we set Xji = 1

|Sj |
∑

x∈Sj
(cji − xi)2, where |Sj | is the

cardinality of set Sj . Xji represents the variance of the data in cluster j along
dimension i. The solution

(P ∗,W ∗) = arg min
(P,W )

E1(P,W )

will discover one-dimensional clusters: it will put maximal (unit) weight on the
feature with smallest dispersion Xji within each cluster j, and zero weight on all
other features. Our objective, instead, is to find weighted multidimensional clusters,
where the unit weight gets distributed among all features according to the respective
dispersion of data within each cluster. One way to achieve this goal is to add the
regularization term

∑D
i=1 wjilogwji, which represents the negative entropy of the

weight distribution for each cluster. It penalizes solutions with maximal weight on
the single feature with smallest variance within each cluster. The resulting error
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function is

E2(P,W ) =
k∑

j=1

D∑
i=1

(wjiXji + hwjilogwji) (3)

subject to the same constraints ∀j, ∑
iwji = 1. The coefficient h ≥ 0 is a parameter

of the procedure; it controls the relative differences between feature weights. In
other words, h controls how much the distribution of weight values will deviate from
the uniform distribution. This constrained optimization problem can be solved by
introducing the Lagrange multipliers. It gives the solution [Domeniconi et al. 2004]:

w∗
ji =

exp(−Xji/h)∑D
i=1 exp(−Xji/h)

(4)

c∗ji =
1

|Sj |
∑
x∈Sj

xi (5)

Solution (4) puts increased weights on features along which the dispersion Xji is
smaller, within each cluster. The degree of this increase is controlled by the value h.
Setting h = 0 places all weight on the feature i with smallest Xji, whereas setting
h = ∞ forces all features to be given equal weight for each cluster j.

We need to provide a search strategy to find a partition that identifies the solution
clusters. We propose an approach that progressively improves the quality of initial
centroids and weights, by investigating the space near the centers to estimate the
dimensions that matter the most. We start with well-scattered points in S as the
k centroids. We initially set all weights to 1/D. Given the initial centroids cj , for
j = 1, . . . , k, we compute the corresponding sets Sj as previously defined. We then
compute the average distance Xji along each dimension from the points in Sj to cj .
The smaller Xji, the stronger is the degree of participation of feature i to cluster
j. We use the value Xji in an exponential weighting scheme to credit weights to
features (and to clusters), as given in equation (4). The computed weights are used
to update the sets Sj , and therefore the centroids’ coordinates as given in equation
(5). The procedure is iterated until convergence is reached.

LAC has shown a highly competitive performance with respect to other state-of-
the-art subspace clustering algorithms [Domeniconi et al. 2007]. Despite its strong
performance, LAC’s dependence on the setting of h is a liability. Because no domain
knowledge is likely to be available, tuning h is difficult. Improving upon this aspect
of LAC’s performance is desirable, and we have sought such improvement through
the development of cluster ensemble techniques, which is the focus of the following
sections.

4. CLUSTERING ENSEMBLE TECHNIQUES

Consider a set S = {x1,x2, . . . ,xn} of n points. A clustering ensemble is a collection
of m clustering solutions: G = {G1, G2, ..., Gm}. Each clustering solution GL for
L = 1, . . . ,m, is a partition of the set S, i.e. GL = {G1

L, G
2
L, ..., G

Kl

L }, where
⋃

K

GK
L = S. Given a collection of clustering solutions C and the desired number of

clusters k, the objective is to combine the different clustering solutions and compute
a new partition of S into k disjoint clusters.
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Fig. 1. The clustering ensemble process

The challenge in cluster ensembles is the design of a proper consensus function
that combines the component clustering solutions into an “improved” final clus-
tering. In this section we introduce three consensus functions. In our ensemble
techniques we reduce the problem of defining a consensus function to a graph par-
titioning problem. This approach has shown good results in the literature [Dhillon
2001; Strehl and Ghosh 2002; Fern and Brodley 2004]. Moreover, the weighted
clusters computed by the LAC algorithm offer a natural way to define a similarity
measure to be integrated in the weights associated to the edges of a graph. The
overall clustering ensemble process is illustrated in Figure 1.

4.1 Weighted Similarity Partitioning Algorithm (WSPA)

LAC outputs a partition of the data, identified by the two sets {c1, . . . , ck} and
{w1, . . . ,wk}. Our aim here is to generate robust and stable solutions via a con-
sensus clustering method. We can generate contributing clusterings by changing
the parameter h (as illustrated in Figure 1). The objective is then to find a consen-
sus partition from the output partitions of the contributing clusterings, so that an
“improved” overall clustering of the data is obtained. Since LAC produces weighted
clusters, we need to design a consensus function that makes use of the weight vectors
associated with the clusters. The details of our approach are as follows.

For each data point xi, the weighted distance from cluster Cl is given by

dil =

√√√√ D∑
s=1

wls(xis − cls)2

Let Di = maxl{dil} be the largest distance of xi from any cluster. We want
to define the probability associated with cluster Cl given that we have observed
xi. At a given point xi, the cluster label Cl is assumed to be a random variable
from a distribution with probabilities {P (Cl|xi)}k

l=1. We provide a nonparametric
estimation of such probabilities based on the data and on the clustering result.
We do not make any assumption about the specific form (e.g., Gaussian) of the
underlying data distributions, thereby avoiding parameter estimations of models,
which are problematic in high dimensions when the available data are limited.

In order to embed the clustering result in our probability estimations, the smaller
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the distance dil is, the larger the corresponding probability credited to Cl should
be. Thus, we can define P (Cl|xi) as follows:

P (Cl|xi) =
Di − dil + 1

kDi + k − ∑
l dil

(6)

where the denominator serves as a normalization factor to guarantee∑k
l=1 P (Cl|xi) = 1. We observe that ∀l = 1, . . . , k and ∀i = 1, . . . , n P (Cl|xi) > 0.

In particular, the added value of 1 in (6) allows for a non-zero probability P (CL|xi)
when L = argmaxl{dil}. (Any small positive constant achieves this goal, with
the normalization factor properly adjusted.) In this last case P (Cl|xi) assumes its
minimum value P (CL|xi) = 1/(kDi + k − ∑

l dil). For smaller distance values dil,
P (Cl|xi) increases proportionally to the difference Di−dil: the larger the deviation
of dil from Di, the larger the increase. As a consequence, the corresponding clus-
ter Cl becomes more likely, as it is reasonable to expect based on the information
provided by the clustering process. Thus, equation (6) provides a nonparametric
estimation of the posterior probability associated to each cluster Cl.

We can now construct the vector Pi of posterior probabilities associated with xi:

Pi = (P (C1|xi), P (C2|xi), . . . , P (Ck|xi))t (7)

where t denotes the transpose of a vector. The transformation xi → Pi maps
the D dimensional data points xi onto a new space of relative coordinates with
respect to cluster centroids, where each dimension corresponds to one cluster. This
new representation embeds information from both the original input data and the
clustering result.

To compute the similarity between xi and xj we used both the cosine similarity
and the Kullback-Leibler (KL) divergence. The cosine similarity between probabil-
ity vectors associated to xi and xj is defined as:

s(xi,xj) =
P t

i Pj

‖Pi‖‖Pj‖ (8)

In alternative, we compute the distance between xi and xj using the symmetric
KL divergence [Kullback and Leibler 1951]:

d(xi,xj) =
1
2

k∑
l=1

Pil log2

Pil

Pjl
+

1
2

k∑
l=1

Pjl log2

Pjl

Pil
(9)

We then transform the distance into a similarity measure: s(xi,xj) = 1 −
d(xi,xj)/(maxp,q d(xp,xq)). Both versions of WSPA (with cosine similarity and
KL divergence) gave similar results. Thus, in this paper we report the results
obtained with cosine similarity.

We combine all pairwise similarities (8) into an (n×n) similarity matrix S, where
Sij = s(xi,xj). We observe that, in general, each clustering may provide a different
number of clusters, with different sizes and boundaries. The size of the similarity
matrix S is independent of the clustering approach, thus providing a way to align
the different clustering results onto the same space, with no need to solve a label
correspondence problem.

After running the LAC algorithm m times for different values of the h parameter,
we obtain the m similarity matrices S1, S2, . . . , Sm. The combined similarity matrix
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Ψ defines a consensus function that can guide the computation of a consensus
partition:

Ψ =
1
m

m∑
l=1

Sl (10)

Ψij reflects the average similarity between xi and xj (through Pi and Pj) across
the m contributing clusterings.

We now map the problem of finding a consensus partition to a graph partitioning
problem. We construct a complete graph G = (V,E), where |V | = n and the vertex
Vi identifies xi. The edge Eij connecting the vertices Vi and Vj is assigned the
weight value Ψij . We run METIS [Karypis and Kumar 1998] on the resulting
graph to compute a k-way partitioning of the n vertices that minimizes the edge
weight-cut 1. This gives the consensus clustering we seek. The size of the resulting
graph partitioning problem is n2. The steps of the algorithm, which we call WSPA
(Weighted Similarity Partitioning Algorithm), are summarized in the following.
Input: n points x ∈ RD, and k.

(1) Run LAC m times with different h values. Obtain m partitions:
{cν

1 , . . . , cν
k},{wν

1 , . . . ,wν
k}, ν = 1, . . . , m

(2) For each partition ν = 1, . . . , m:

(a) Compute dν
il =

√∑D

s=1
wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl{dν

il}
(c) Compute P (Cν

l |xi) =
Dν

i −dν
il

+1

kDν
i
+k−

∑
l

dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(e) Compute the similarity

sν(xi,xj) =
P ν

i P ν
j

‖P ν
i ‖‖P ν

j ‖
,∀i, j

(f) Construct the matrix Sν where Sν
ij = sν(xi,xj)

(3) Build the consensus function Ψ = 1
m

∑m

ν=1
Sν

(4) Construct the complete graph G = (V, E), where |V | = n and Vi ≡ xi. Assign Ψij as
the weight value of the edge Eij connecting the vertices Vi and Vj

(5) Run METIS (or spectral clustering) on the resulting graph G

Output: The resulting k-way partition of the n vertices

4.2 Weighted Bipartite Partitioning Algorithm (WBPA)

Our second approach (WBPA) maps the problem of finding a consensus partition
to a bipartite graph partitioning problem. This mapping was first introduced in
Fern and Brodley [2004]. In Fern and Brodley [2004], however, 0/1 weight values
are used. Here we extend the range of weight values to [0,1].

The technique described here has a conceptual advantage with respect to WSPA.
We observe that the consensus function ψ used in WSPA measures pairwise sim-
ilarities which are solely instance-based. On the other hand, the bipartite graph
partitioning problem, to which the WBPA technique reduces, partitions both cluster

1In our experiments we also apply spectral clustering to compute a k-way partitioning of the n
vertices
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vertices and instance vertices simultaneously. Thus, it also accounts for similarities
between clusters. Consider, for example, four instances x1, x2, x3, and x4. Sup-
pose that x1 and x2 are never clustered together in the input clusterings, and the
same holds for x3 and x4. However, the groups to which x1 and x2 belong often
share the same instances, but this is not the case for the groups x3 and x4 belong
to. Intuitively, we would consider x1 and x2 more similar to each other than x3

and x4. But WSPA is unable to distinguish these two cases, and may assign low
similarity values to both pairs. On the other hand, WBPA is able to differentiate
the two cases by modeling both instance-based and cluster-based similarities.

The graph in WBPA models both instances (e.g., data points) and clusters, and
the graph edges can only connect an instance vertex to a cluster vertex, forming a
bipartite graph. In detail, we proceed as follows for the construction of the graph.
Suppose, again, that we run the LAC algorithm m times for different values of the
h parameter. For each instance xi, and for each clustering ν = 1, . . . ,m we then
can compute the vector of posterior probabilities P ν

i , as defined in equations (7)
and (6). Using the P vectors, we construct the following matrix A:

A =

⎛
⎜⎜⎝

(P 1
1 )t (P 2

1 )t . . . (Pm
1 )t

(P 1
2 )t (P 2

2 )t . . . (Pm
2 )t

...
...

...
(P 1

n)t (P 2
n)t . . . (Pm

n )t

⎞
⎟⎟⎠ (11)

Note that the (P ν
i )ts are row vectors (t denotes the transpose). The dimensionality

of A is therefore n × km, under the assumption that each of the m clusterings
produces k clusters. (We observe that the definition of A can be easily generalized
to the case where each clustering may discover a different number of clusters.)

Based on A we can now define a bipartite graph to which our consensus partition
problem maps. Consider the graphG = (V,E) with V and E constructed as follows.
V = V C ∪ V I , where V C contains km vertices, each representing a cluster of the
ensemble, and V I contains n vertices, each representing an input data point. Thus
|V | = km+ n. The edge Eij connecting the vertices Vi and Vj is assigned a weight
value defined as follows. If the vertices Vi and Vj represent both clusters or both
instances, then E(i, j) = 0; otherwise, if vertex Vi represents an instance xi and
vertex Vj represents a cluster Cν

j (or vice versa) then the corresponding entry of E
is A(i, k(ν − 1) + j). More formally:

—E(i, j) = 0 when ((1 ≤ i ≤ km) and (1 ≤ j ≤ km)) or ((km + 1 ≤ i ≤ km + n)
and (km+1 ≤ j ≤ km+n)) (This is the case in which Vi and Vj are both clusters
or both instances.)

—E(i, j) = A(i− km, j) when (km + 1 ≤ i ≤ km+ n) and (1 ≤ j ≤ km) (This is
the case in which Vi is an instance and Vj is a cluster.)

—E(i, j) = E(j, i) when (1 ≤ i ≤ km) and (km + 1 ≤ j ≤ km + n) (This is the
case in which Vi is a cluster and Vj is an instance.)

Note that the dimensionality of E is (km + n) × (km + n), and E can be written
as follows:

E =
(

0 At

A 0

)
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A partition of the bipartite graph G partitions the cluster vertices and the instance
vertices simultaneously. The partition of the instances can then be output as the
final clustering. Due to the special structure of the graph G (sparse graph), the
size of the resulting bipartite graph partitioning problem is kmn. Assuming that
(km) << n, this complexity is much smaller than the size n2 of WSPA.

The steps of the algorithm, which we call WBPA (Weighted Bipartite Partitioning
Algorithm), are summarized in the following.
Input: n points x ∈ RD, and k

(1) Run LAC m times with different h values. Obtain the m partitions:
{cν

1 , . . . , cν
k},{wν

1 , . . . ,wν
k}, ν = 1, . . . , m

(2) For each partition ν = 1, . . . , m:

(a) Compute dν
il =

√∑D

s=1
wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl{dν

il}
(c) Compute P (Cν

l |xi) =
Dν

i −dν
il

+1

kDν
i
+k−

∑
l

dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(3) Construct the matrix A as in (11)

(4) Construct the bipartite graph G = (V, E), where V = V C∪V I , |V I | = n and V I
i ≡ xi,

|V C | = km and V C
j ≡ Cj (a cluster of the ensemble). Set E(i, j) = 0 if Vi and Vj

are both clusters or both instances. Set E(i, j) = A(i − km, j) = E(j, i) if Vi and Vj

represent an instance and a cluster

(5) Run METIS (or spectral clustering) on the resulting graph G

Output: The resulting k-way partition of the n vertices in V I

We observe that WBPA captures instance-based similarity. Suppose, for exam-
ple, that x1 and x2 are always clustered together in the m input clusterings. Then,
the weights, P (Cν

i |x1) and P (Cν
i |x2), of the edges connecting x1 and x2 to the

same cluster vertex Cν
i have high values, for ν = 1, . . . ,m. As a consequence, the

k-way partitioning of the n instances will not cut such edges. As a result, x1 and
x2 will be grouped together in the final consensus clustering.

4.3 Weighted Subspace Bipartite Partitioning Algorithm (WSBPA)

The two algorithms WSPA and WBPA provide as output a partition of the data
into k clusters, with no information regarding feature relevance for each of the
clusters. Next, we discuss a clustering ensemble algorithm (WSBPA) that provides
weighted clusters in output. Our approach represents the first attempt in the litera-
ture to produce subspace clustering results within the context of ensemble research.
This technique advances the WBPA method (4.2) by adding to the final partition
weighted features associated with each cluster. By assigning a value to each dimen-
sion, WSBPA captures the local relevance of features within each cluster. Thus,
the structure of the output provided by a single run of LAC is preserved. The
output of WSBPA, then, becomes twofold, and has good potential to advance the
research on the label assignment problem, which is a difficult and open research
issue. For example, for text documents, the analysis of weights assigned to features
(i.e., terms) can guide the identification of keywords representative of the topics
discussed in the documents. Possibly, relevant keywords, combined with associated
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weight values, can be used to provide short summaries for clusters and to automat-
ically annotate documents (e.g., for indexing purposes). We will demonstrate this
further in Section 7.

As we mentioned in our discussion on WBPA, a partition of the bipartite graph
G partitions the cluster and the instance vertices simultaneously. However, only
the partition of the instance vertices is used to output the final result in WBPA;
the partition of the cluster vertices is discarded. WSBPA also uses the partition
of cluster vertices; such partition reflects cluster-based similarities. Specifically,
WSBPA utilizes the information associated with the partitioned cluster vertices to
compute weight vectors for the final clustering.

Let us consider the bipartite graph G = (V,E) as constructed by the algorithm
WBPA. We recall that V = V C ∪ V I , where V C contains km vertices, each rep-
resenting a cluster of the ensemble, and V I contains n vertices, each represent-
ing an input data point. A k-way partition of the bipartite graph G partitions
the cluster vertices and the instance vertices simultaneously into k sets. Further-
more, the k-way partition of G provides a one-to-one correspondence between the
k elements of the partition of V C and the k elements of the partition of V I . In
symbols, let PV C = {V C

1 , V C
2 , . . . , V C

k } be the partition of V C into k sets, and
let PV I = {V I

1 , V
I
2 , . . . , V

I
k } be the partition of V I into k sets. V C

j and V I
j , for

j = 1, . . . , k, are the sets of cluster vertices and instance vertices grouped together
by the k-way partitioning of graph G.

As in WBPA, the partition PV I provides the resulting clustering of the n input
data points x1, . . . ,xn. Each element in PV C is a set of cluster vertices: V C

l =
{vC

l1
, . . . , vC

l|V C
l

|
}, for l = 1, . . . , k. Each element in V C

l represents a cluster from a

run of the LAC algorithm. Thus, it has an associated weight vector. Let wC
li

be the
weight vector associated with the cluster vertex vC

li
. We average the weight vectors

wC
li

, for i = 1, . . . , |V C
l |, to obtain the weights for cluster V I

l , for l = 1, . . . , k:

wl =
1

|V C
l |

|V C
l |∑

i=1

wC
li (12)

We therefore obtain k clusters along with the associated weight vectors:
{(V I

l ,wl)}k
l=1. We observe that a k-way partitioning of G that minimizes the edge

weight-cut groups together instances x and clusters C with a high value for P (C|x).
This means that, according to LAC clustering, C is a likely cluster given that we
have observed x. Thus, the weight vector for the cluster containing x should be
close to the weight vector associated with C. The averaging in (12) gives each clus-
ter C (i.e., the corresponding weight) with high P (C|x) equal importance for the
computation of the weight of the cluster containing x. The steps of the algorithm,
which we call Weighted Subspace Bipartite Partitioning Algorithm (WSBPA) are
summarized in the following.

Input: n points x ∈ RD, and k

(1) Run LAC m times with different h values. Obtain the m partitions:
{cν

1 , . . . , cν
k},{wν

1 , . . . ,wν
k}, ν = 1, . . . , m

(2) For each partition ν = 1, . . . , m:
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Fig. 2. (Left): Two-Gaussian data. (Right): Random sampling of 100 points
(crosses and dots) from each cluster.

(a) Compute dν
il =

√∑D

s=1
wν

ls(xis − cν
ls)

2

(b) Set Dν
i = maxl{dν

il}
(c) Compute P (Cν

l |xi) =
Dν

i −dν
il

+1

kDν
i
+k−

∑
l

dν
il

(d) Set P ν
i = (P (Cν

1 |xi), P (Cν
2 |xi), . . . , P (Cν

k |xi))
t

(3) Construct the A matrix as in (11)

(4) Construct the bipartite graph G = (V, E) as in the algorithm WBPA

(5) Run METIS (or spectral clustering) on the resulting graph G. Consider the resulting
partitions PV C = {V C

1 , V C
2 , . . . , V C

k } and PV I = {V I
1 , V I

2 , . . . , V I
k } of the cluster and

instance vertices respectively

(6) Compute the average weight vector wl for each element V C
l in PV C , as given in

equation (12)

Output: The resulting weight vectors coupled with the corresponding cluster centroids:
{(cI

l ,wl)}k
l=1, where cI

l is the centroid of cluster V I
l

5. AN ILLUSTRATIVE EXAMPLE

Here we present and discuss an illustrative example to demonstrate that the rela-
tive coordinates P (C|x) provide a suitable representation for the computation of
pairwise similarities. We emphasize that this is an important point since the in-
formation provided by the subspace clustering is embedded into these coordinates,
and, in turn, the proposed consensus function is constructed upon such represen-
tation of the data. Thus, the efficacy of the consensus function itself relies on the
suitability of these coordinates.

We have designed one simulated dataset with two clusters distributed as bivariate
Gaussians (Figure 2 (Left)). The mean and standard deviation vectors for each
cluster are as follows: m1 = (0.5, 5), s1 = (1, 9); m2 = (12, 5), s2 = (6, 2). Each
cluster has 300 points. We ran the LAC algorithm on the Two-Gaussian dataset for
two values of the 1/h parameter (7 and 12). For (1/h) = 7, LAC provides a perfect
separation (the error rate is 0.0%); the corresponding weight vectors associated
to each cluster are w(7)

1 = (0.81, 0.19), w(7)
2 = (0.18, 0.82). For (1/h) = 12, the
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Fig. 3. (Left): Two dimensional probability vectors P = (P (C1|x), P (C2|x))t,
(1/h) = 7. LAC error rate is 0.0%. (Right): Two dimensional probability vectors
P = (P (C1|x), P (C2|x))t, (1/h) = 12.

error rate of LAC is 5.3%; the weight vectors in this case are w(12)
1 = (0.99, 0.01),

w(12)
2 = (0.0002, 0.9998).
For the purpose of plotting the two-dimensional posterior probability vectors

associated with each point x, we consider a random sample of 100 points from each
cluster (as shown in Figure 2 (Right)). The probability vectors (computed as in
equations (7) and (6)) of such sample points are plotted in Figure 3 (Left) and
Figure 3 (Right), respectively for (1/h) = 7 and (1/h) = 12. We observe that in
Figure 3 (Left) ((1/h) = 7) for points x of cluster 1 (green points square-shaped)
P (C1|x) > P (C2|x), and for points x of cluster 2 (red points diamond-shaped)
P (C2|x) > P (C1|x). Thus, there is no overlapping (in relative coordinate space)
between points of the two clusters, and LAC achieves a perfect separation (the error
rate is 0.0%). On the other hand, Figure 3 (Right) ((1/h) = 12) demonstrates that
for a few points x of cluster 1 (green points square-shaped) P (C1|x) < P (C2|x)
(overlapping region in Figure 3 (Right)). LAC misclassifies these points as members
of cluster 2, which results in an error rate of 5.3%.

Thus, the relative coordinates P (C|x) provide a suitable representation to com-
pute the pairwise similarity measure in our clustering ensemble approaches. By
combining the clustering results in the relative coordinate space obtained by differ-
ent runs of LAC, we aim at utilizing the consensus across multiple clusterings, while
averaging out emergent spurious structures. The experimental results obtained for
this dataset (presented in the next Section) corroborate our analysis. In fact, we
anticipate here that our three clustering ensemble methods WSPA, WBPA, and
WSBPA achieved 0.17%, 0.0%, and 0.0% error rates, respectively. Thus, they suc-
cessfully separated the two clusters, as the best input clustering provided by LAC
did (see Table III and Figure 4 for details).

6. EXPERIMENTAL DESIGN AND RESULTS

We have designed two simulated datasets to analyze the behavior of the proposed
techniques in a controlled setting. These datasets contain two and three clusters,
respectively, distributed as bivariate Gaussians (Figures 2 (Left) and 5). The mean



16 · Carlotta Domeniconi et al.

0 5 10 15
0

0.01

0.02

0.03

0.04

0.05

0.06

1/h
E

rr
or

 R
at

e

Two Gaussian dataset 

LAC
WSPA
CSPA
MCLA
WBPA
WSBPA

Fig. 4. Results on Two-Gaussian data. METIS was used in conjunction with WSPA, WBPA, and
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Table I. Characteristics of the datasets

Dataset k D n (points-per-clsss)

Two-Gaussian 2 2 600 (300-300)
Three-Gaussian 3 2 900 (300-300-300)

Iris 3 4 150 (50-50-50)
WDBC 2 31 424 (212-212)
Breast 2 9 478 (239-239)

Letter(A,B) 2 16 1555 (789-766)
SatImage 2 36 2110 (1072-1038)
Spam2000 2 2000 1284 ( 642- 642)
Spam5996 2 5996 1284 ( 642- 642)

and standard deviation vectors for the Two-Gaussian dataset are as described in
Section 5. The mean and standard deviation vectors for the Three-Gaussian dataset
are as follows: m1 = (2, 5), s1 = (1, 9); m2 = (12, 5), s2 = (6, 2); m3 = (23, 5),
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s3 = (1, 9). In our experiments, we also used seven real datasets. The character-
istics of all datasets are given in Table I. Iris, Breast, Letter(A,B), and SatImage
are from the UCI Machine Learning Repository [Newman et al. 1998]. WDBC is
the Wisconsin Diagnostic Breast Cancer dataset [Mangasarian and Wolberg 1990].
Spam2000 and Spam5996 are two high dimensional text (spam) datasets. The doc-
uments in each dataset were preprocessed by eliminating stop words (based on a
stop words list) and stemming words to their root source. As feature values in the
vector space model we have used the frequency of the terms in the corresponding
document. Both Spam2000 and Spam5996 belong to the Email-1431 dataset2. This
dataset consists of emails falling into three categories: conference (370), jobs (272),
and spam (786). We ran two different experiments with this dataset. In one case
we reduced the dimensionality to 2000 terms (Spam2000), and in the second case to
5996 (Spam5996). In both cases we consider two clusters by merging the conference
and jobs mails into one group (non-spam).

Since METIS [Karypis and Kumar 1998] requires balanced datasets, we per-
formed random sampling on Breast, WDBC, Spam2000 and Spam5996. In each
case, we sub-sampled the most populated class: from 357 to 212 for WDBC, from
444 to 239 for Breast , and from 786 to 642 for Spam2000 and Spam5996. For the
Letter dataset, we used the classes “A” and “B” (balanced), and for the SatImage
we used classes 1 and 7 (again balanced).

Besides METIS, we also used spectral clustering3 [Ng et al. 2002] to compute the
k-way partitioning of the resulting graph, for the three techniques WSPA, WBPA,
and WSBPA. The advantage of spectral clustering over METIS is that spectral
clustering does not require balanced data. Here, for comparison purposes, we apply
both METIS and spectral clustering on the same balanced data. Our objective
is to demonstrate the applicability of spectral clustering in conjunction with our
ensemble techniques, thus enabling the use of our methods also with unbalanced
data.

We compared our weighted clustering ensemble techniques (WSPA, WBPA, and
WSBPA) with the three methods CSPA, HGPA, and MCLA [Strehl and Ghosh
2002]. Like our methods, these three techniques transform the problem of finding
a consensus clustering into a graph partitioning problem, and make use of METIS.
Thus, it was a natural choice for us to compare our methods with these approaches.
We consider the partitions provided by LAC (and discard the weights) in order
to run CSPA, HGPA, and MCLA, since these methods are designed to accept
clusterings (not subspace clusterings). In this paper we report the accuracy achieved
by CSPA and MCLA, as HGPA was consistently the worst. The ClusterPack
Matlab Toolbox was used4.

To further analyzing the benefits of diverse results generated by means of sub-
space clustering, we also considered a consensus function not based on a graph
partitioning problem. The specific goals of these experiments are: (1) Test whether
the diverse clusterings produced by LAC can be effectively combined using a con-

2The Email-1431 dataset was created by Finn Arup Nielsen. It is available at:
http://www.imm.dtu.dk/∼rem/data/Email-1431.zip
3We used the Matlab Toolbox available at: http://www.cs.washington.edu/homes/sagarwal/code.html.
4Available at: www.lans.ece.utexas.edu/∼strehl/
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sensus function based on a co-association matrix; and (2) compare our approach
of generating diversity with alternate approaches available in the literature (e.g.,
varying k-means). To this end, we ran LAC with different values of h as before.
For each of the m resulting partitions (weights are discarded), we construct a co-
association matrix T of size n×n, where T (l)

ij = 1 if xi and xj are clustered together

in partition l, T (l)
ij = 0 otherwise. A final co-association matrix T is derived by aver-

aging the individual T (l), l = 1, . . . ,m: Tij = 1
m

∑m
l=1 T

(l)
ij , i, j = 1, . . . , n. Previous

work [Kuncheva et al. 2006b; Pekalska 2005] has shown that good results can be
obtained when T is used as a data matrix in a new feature space (rather then a
similarity matrix). Thus, we used T as data, and ran k-means on it [Kuncheva
et al. 2006b]. We identify the resulting method as LAC+Co-as. To account for the
subspace structure discovered by LAC, we also consider Ψ (as defined in (10)) as
data matrix. We call this approach LAC+wCo-as. In addition, we ran the same
consensus function on clusterings generated by k-means with random initializations
as well. The resulting approach is denoted as k-means+Co-as. We observe that the
consensus function has a random element (as it relies on k-means). Thus, we ran
it 10 times, and report average accuracies.

Evaluating the quality of clustering is in general a difficult task. Since class labels
are available for the datasets used here, we evaluate the results by computing
the error rate and the normalized mutual information (NMI). The error rate is
computed according to the confusion matrix. The NMI provides a measure that
is impartial with respect to the number of clusters [Strehl and Ghosh 2002]. It
reaches its maximum value of one only when the result completely matches the
original labels. The NMI is computed according to the average mutual information
between every pair of cluster and class [Strehl and Ghosh 2002]:

NMI =

∑k
i=1

∑k
j=1 ni,j log ni,jn

ninj√∑k
i=1 ni log ni

n

∑k
j=1 nj log nj

n

(13)

where ni,j is the number of agreement between cluster i and class j, ni is the
number of data in cluster i, nj is the number of data in class j, and n is the total
number of points.

We observe that the algorithm WSBPA outputs weight vectors coupled with the
corresponding cluster centroids: {(cI

l ,wl)}k
l=1. In order to compute the correspond-

ing partition, we assign each point to the closest centroid according to the locally
weighted Euclidean distance.

6.1 Analysis of the Results

For each dataset, we ran the LAC algorithm for several values of the input pa-
rameter h. The clustering results of LAC are then given as input to the consensus
clustering techniques being compared. (As the value of k, we input both LAC and
the ensemble algorithms with the actual number of classes in the data.) Figures 4
and 7 plot the error rate (%) achieved by LAC as a function of the 1/h parameter,
for each dataset considered. The error rates of our weighted clustering ensemble
methods (WSPA, WBPA, and WSBPA in conjunction with METIS), and of the
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Fig. 6. (Left): LAC: Clustering results for Three-Gaussian data, (1/h) = 1. The
error rate is 34.6%. (Right): LAC: Clustering results for Three-Gaussian data,
(1/h) = 4. The error rate is 1.3%

CSPA and MCLA techniques are also reported. Each figure clearly shows the sen-
sitivity of the LAC algorithm to the value of h. The trend of the error rate clearly
depends on the data distribution. Detailed results for all data are provided in Ta-
bles III-XI, where we report the NMI and error rate (ER) of the ensembles, and
the maximum, minimum, and average NMI and error rate values for the input clus-
terings. Eleven methods are being compared: our three methods WSPA, WBPA,
WSBPA, each combined with both METIS and spectral clustering (SPEC is short
for spectral clustering), CSPA and MCLA, and the three techniques based on a
co-association matrix.

We further illustrate the sensitivity of the LAC algorithm to the value of h for
the Three-Gaussian data (Figure 5). Figures 6 (Left) and 6 (Right) depict the
clustering results of LAC for (1/h) = 1 and (1/h) = 4, respectively. Figure 6
(Left) clearly shows that for (1/h) = 1, LAC is unable to discover the structure
of the three clusters, and gives an error rate of 34.6%. On the other hand, LAC
achieves a nearly perfect separation for (1/h) = 4, as shown in Figure 6 (Right).
The error rate in this case is 1.3%, which is also the minimum achieved in all the
runs of the algorithm. Results for the ensemble techniques on the Three-Gaussian
data are given in Figure 7 and in Table IV. We observe that the WSPA(-METIS)
technique perfectly separates the data (0.0% error), and that WBPA(-METIS)
gives a 0.44% error rate. In both cases, the error rate achieved is lower than the
minimum error rate among the input clusterings (1.3%). Moreover, WSBPA gives
an error rate of 1.3%, which is equal to the lowest error rate achieved by LAC.
We note that WSBPA(-METIS) and MCLA provide the same error rate for this
problem. However, WSBPA produces not only a partition of points as the final
result, but also relevance values of features associated with each cluster. In this
regard, WSBPA provides more information, and is therefore superior to MCLA.

In general, all three our ensemble techniques were able to filter out spurious
structures identified by individual runs of LAC, and provided a better error rate
than (or equal to) LAC’s minimum error rate. For all seven real datasets either
WBPA, WSPA, or WSBPA provided the lowest error rate among the methods
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being compared. For the Iris, WDBC, Breast, SatImage, and Spam5996 datasets
(five out of seven total), the error rate provided by the WBPA technique is as
good or better than the best individual input clustering. For the Letter(A,B) and
Spam2000 datasets, the error rate of WBPA is still below the average error rate
of the input clusterings. WSPA gave excellent results as well. For Iris, WDBC,
Breast, SatImage, and Spam5996 the error rate provided by WSPA is lower than
the best individual input clustering. For Spam2000 (with METIS) and Letter(A,B)
the error rate of WSPA is well below the average error rate of the input clusterings.

Also WSBPA performed quite well. It produced error rates comparable with,
and sometime better than, the other techniques. In addition, WSBPA provides in-
formation on the relevance of features associated with each cluster. In each dataset,
WSBPA achieved a result far superior to the average error rate of the input cluster-
ings. Furthermore, we note that for Iris, SatImage, Spam2000, and Spam5996 (four
out of seven total) WSBPA has provided a result superior to both the results pro-
vided by CSPA and MCLA. In particular, WSBPA (both with METIS and SPEC)
produced excellent results for the high dimensional data Spam2000 and Spam5996.
In these two cases, WSBPA produced better results than the four competing tech-
niques, and achieved a lower error rate than (or equal to) the minimum error rate
among the input clusterings.

Clearly, our weighted clustering ensemble techniques are capable of achieving
superior accuracy results with respect to the CSPA and MCLA techniques on the
tested datasets. This result is summarized in Table II, where we report the average
NMI and average error rate on all real datasets. We observe that, on average,
SPEC performed better than METIS. We also report the average values for the
LAC algorithm to emphasize the large improvements obtained by the ensembles
across the real datasets. Given the competitive behavior shown by LAC in the
literature [Domeniconi et al. 2007], this is a significant result.

We observe that the consensus function Ψ defined in (10) measures the similarity
of points in terms of how close the “patterns” captured by the corresponding proba-
bility vectors are. As a consequence, Ψ (as well as the matrix A for the WBPA and
WSBPA techniques) takes into account not only how often the points are grouped
together across the various input clusterings, but also the degree of confidence of
the groupings. On the other hand, the CSPA and MCLA approaches take as input
the partitions provided by each contributing clustering algorithm. That is, ∀ν and
∀i, P (Cν

l |xi) = 1 for a given l, and 0 otherwise. Thus, the information concerning
the degree of confidence associated with the clusterings is lost. This is likely the
reason for the superior performance achieved by our weighted clustering ensemble
algorithms.

In some cases, the WBPA technique gives a lower error rate compared to the
WSPA technique (WBPA-METIS performs slightly better than WSPA-METIS, on
average). This result may be due to the conceptual advantage of WBPA with re-
spect to WSPA discussed at the beginning of Section 4.2. The consensus function
ψ used in WSPA measures pairwise similarities which are solely instance-based. On
the other hand, the bipartite graph partitioning problem, to which the WBPA tech-
nique reduces, partitions both cluster vertices and instance vertices simultaneously.
Thus, it also accounts for similarities between clusters.
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Table II. Average NMIs and error rates

Avg-NMI Avg-Error

WSPA-METIS 0.693 7.07

WSPA-SPEC 0.729 6.04

WBPA-METIS 0.705 6.67

WBPA-SPEC 0.728 6.14

WSBPA-METIS 0.661 8.51

WSBPA-SPEC 0.669 8.32

CSPA 0.655 8.59

MCLA 0.647 9.36

LAC 0.576 13.59

LAC+Co-as. 0.646 10.07

LAC+wCo-as. 0.649 9.7

k-means+Co-as. 0.540 16.78

Table III. Results on Two-Gaussian data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.984 0.17 1 0.75 0.88 5.5 0 2.2

WSPA-SPEC 0.911 1.3 1 0.75 0.88 5.5 0 2.2

WBPA-METIS 1 0 1 0.75 0.88 5.5 0 2.2

WBPA-SPEC 0.911 1.3 1 0.75 0.88 5.5 0 2.2

WSBPA-METIS 1 0 1 0.75 0.88 5.5 0 2.2

WSBPA-SPEC 1 0 1 0.75 0.88 5.5 0 2.2

CSPA 1 0 1 0.75 0.88 5.5 0 2.2

MCLA 1 0 1 0.75 0.88 5.5 0 2.2

LAC+Co-as. 1 0 1 0.75 0.88 5.5 0 2.2

LAC+wCo-as. 0.983 0.18 1 0.75 0.88 5.5 0 2.2

k-means+Co-as. 0.91 1.3 0.91 0.91 0.91 1.3 1.3 1.3

The results obtained for LAC+Co-as. and LAC+wCo-as. show that the diverse
clusterings produced by LAC can be effectively combined using also a consensus
function based on a co-association matrix. LAC+wCo-as. gives on average lower
error rates than LAC+Co-as. This is expected since LAC+wCo-as. embeds the sub-
space structure discovered by LAC into the consensus function. The co-association
matrix is also effective when combined with k-means (note that the high error rate
of k-means+Co-as. on the WDBC data is due to the fact that k-means gave the
same high error rate on each single run. See Table VI.) Overall, though, LAC pro-
vides better accuracy/diversity trade-offs, which lead to more accurate ensembles
(see Table II).

We finally tested how the size of the ensemble affects the error rate. Figure
8 shows the results for WSPA-METIS and WBPA-METIS on the real data sets.
Each point corresponds to an average of ten ensembles of the corresponding size.
Ensemble components are randomly chosen from a collection of 50 partitions ob-
tained by running LAC with 1/h = 1, . . . , 50. Ensemble sizes between 10 and 45 are
considered. Overall, the error rate slowly decreases as the ensemble size increases.
An ensemble size of 25-30 components seems to be a reasonable choice in general.
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Table IV. Results on Three Gaussian data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 1 0 0.940 0.376 0.789 34.9 1.3 10.5

WSPA-SPEC 0.912 2.2 0.940 0.376 0.789 34.9 1.3 10.5

WBPA-METIS 0.976 0.44 0.940 0.376 0.789 34.9 1.3 10.5

WBPA-SPEC 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5

WSBPA-METIS 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5

WSBPA-SPEC 0.933 1.56 0.940 0.376 0.789 34.9 1.3 10.5

CSPA 0.893 2.3 0.940 0.376 0.789 34.9 1.3 10.5

MCLA 0.940 1.3 0.940 0.376 0.789 34.9 1.3 10.5

LAC+Co-as. 0.795 17.3 0.940 0.376 0.789 34.9 1.3 10.5

LAC+wCo-as. 0.899 2.7 0.940 0.376 0.789 34.9 1.3 10.5

k-means+Co-as. 0.834 17.2 0.949 0.945 0.946 1.2 1.1 1.17

Table V. Results on Iris data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.744 10.00 0.758 0.657 0.709 17.3 9.3 12.9

WSPA-SPEC 0.824 6.00 0.758 0.657 0.709 17.3 9.3 12.9

WBPA-METIS 0.754 9.3 0.758 0.657 0.709 17.3 9.3 12.9

WBPA-SPEC 0.813 6.6 0.758 0.657 0.709 17.3 9.3 12.9

WSBPA-METIS 0.727 11.3 0.758 0.657 0.709 17.3 9.3 12.9

WSBPA-SPEC 0.774 9.3 0.758 0.657 0.709 17.3 9.3 12.9

CSPA 0.677 13.3 0.758 0.657 0.709 17.3 9.3 12.9

MCLA 0.708 13.3 0.758 0.657 0.709 17.3 9.3 12.9

LAC+Co-as. 0.654 20.8 0.758 0.657 0.709 17.3 9.3 12.9

LAC+wCo-as. 0.715 15.7 0.758 0.657 0.709 17.3 9.3 12.9

k-means+Co-as. 0.699 19.9 0.758 0.590 0.705 33.3 10.6 17.6

Table VI. Results on WDBC data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.512 10.6 0.524 0.009 0.329 48.5 11.1 23.4

WSPA-SPEC 0.521 10.3 0.524 0.009 0.329 48.5 11.1 23.4

WBPA-METIS 0.573 8.7 0.524 0.009 0.329 48.5 11.1 23.4

WBPA-SPEC 0.521 10.3 0.524 0.009 0.329 48.5 11.1 23.4

WSBPA-METIS 0.482 12.5 0.524 0.009 0.329 48.5 11.1 23.4

WSBPA-SPEC 0.480 12.7 0.524 0.009 0.329 48.5 11.1 23.4

CSPA 0.498 11.1 0.524 0.009 0.329 48.5 11.1 23.4

MCLA 0.457 13.4 0.524 0.009 0.329 48.5 11.1 23.4

LAC+Co-as. 0.464 12.9 0.524 0.009 0.329 48.5 11.1 23.4

LAC+wCo-as. 0.469 12.7 0.524 0.009 0.329 48.5 11.1 23.4

k-means+Co-as. 0.0005 49.7 0.0005 0.0005 0.0005 49.7 49.7 49.7
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Fig. 7. Clustering Ensemble Results. METIS was used in conjunction with WSPA,
WBPA, and WSBPA.



24 · Carlotta Domeniconi et al.

Table VII. Results on Breast data
Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.779 3.6 0.700 0.197 0.422 34.1 5.9 20.5

WSPA-SPEC 0.772 3.77 0.700 0.197 0.422 34.1 5.9 20.5

WBPA-METIS 0.779 3.6 0.700 0.197 0.422 34.1 5.9 20.5

WBPA-SPEC 0.772 3.77 0.700 0.197 0.422 34.1 5.9 20.5

WSBPA-METIS 0.585 9.6 0.700 0.197 0.422 34.1 5.9 20.5

WSBPA-SPEC 0.574 10.0 0.700 0.197 0.422 34.1 5.9 20.5

CSPA 0.722 4.8 0.700 0.197 0.422 34.1 5.9 20.5

MCLA 0.575 10.3 0.700 0.197 0.422 34.1 5.9 20.5

LAC+Co-as. 0.624 8.2 0.700 0.197 0.422 34.1 5.9 20.5

LAC+wCo-as. 0.561 11.0 0.700 0.197 0.422 34.1 5.9 20.5

k-means+Co-as. 0.722 5.2 0.737 0.722 0.728 5.2 4.8 5.1

Table VIII. Results on Letter(A,B) data

Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.579 8.6 0.707 0.001 0.514 47.9 6.4 13.6

WSPA-SPEC 0.698 6.6 0.707 0.001 0.514 47.9 6.4 13.6

WBPA-METIS 0.592 8.2 0.707 0.001 0.514 47.9 6.4 13.6

WBPA-SPEC 0.698 6.6 0.707 0.001 0.514 47.9 6.4 13.6

WSBPA-METIS 0.537 9.9 0.707 0.001 0.514 47.9 6.4 13.6

WSBPA-SPEC 0.551 9.4 0.707 0.001 0.514 47.9 6.4 13.6

CSPA 0.579 8.6 0.707 0.001 0.514 47.9 6.4 13.6

MCLA 0.512 10.8 0.707 0.001 0.514 47.9 6.4 13.6

LAC+Co-as. 0.512 10.8 0.707 0.001 0.514 47.9 6.4 13.6

LAC+wCo-as. 0.534 10.0 0.707 0.001 0.514 47.9 6.4 13.6

k-means+Co-as. 0.512 11.9 0.658 0.321 0.489 18.0 7.3 12.6

Table IX. Results on SatImage data

Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.392 14.9 0.433 0.400 0.423 16.5 15.4 15.8

WSPA-SPEC 0.467 13.2 0.433 0.400 0.423 16.5 15.4 15.8

WBPA-METIS 0.389 15.0 0.433 0.400 0.423 16.5 15.4 15.8

WBPA-SPEC 0.467 13.2 0.433 0.400 0.423 16.5 15.4 15.8

WSBPA-METIS 0.416 14.5 0.433 0.400 0.423 16.5 15.4 15.8

WSBPA-SPEC 0.426 15.2 0.433 0.400 0.423 16.5 15.4 15.8

CSPA 0.273 20.3 0.433 0.400 0.423 16.5 15.4 15.8

MCLA 0.427 15.6 0.433 0.400 0.423 16.5 15.4 15.8

LAC+Co-as. 0.427 15.6 0.433 0.400 0.423 16.5 15.4 15.8

LAC+wCo-as. 0.428 16.1 0.433 0.400 0.423 16.5 15.4 15.8

k-means+Co-as. 0.424 15.7 0.426 0.423 0.424 15.7 15.6 15.7
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Table X. Results on Spam2000 data

Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.939 0.7 0.945 0.889 0.923 1.5 0.6 0.9

WSPA-SPEC 0.894 1.4 0.945 0.889 0.923 1.5 0.6 0.9

WBPA-METIS 0.939 0.7 0.945 0.889 0.923 1.5 0.6 0.9

WBPA-SPEC 0.894 1.4 0.945 0.889 0.923 1.5 0.6 0.9

WSBPA-METIS 0.946 0.6 0.945 0.889 0.923 1.5 0.6 0.9

WSBPA-SPEC 0.946 0.6 0.945 0.889 0.923 1.5 0.6 0.9

CSPA 0.939 0.7 0.945 0.889 0.923 1.5 0.6 0.9

MCLA 0.940 0.7 0.945 0.889 0.923 1.5 0.6 0.9

LAC+Co-as. 0.940 0.7 0.945 0.889 0.923 1.5 0.6 0.9

LAC+wCo-as. 0.936 0.8 0.945 0.889 0.923 1.5 0.6 0.9

k-means+Co-as. 0.677 9.7 0.751 0.054 0.472 47.9 5.4 22.3

Table XI. Results on Spam5996 data

Ens-NMI Ens-ER Max-NMI Min-NMI Avg-NMI Max-ER Min-ER Avg-ER

WSPA-METIS 0.908 1.17 0.873 0.003 0.714 49.7 1.9 7.9

WSPA-SPEC 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9

WBPA-METIS 0.908 1.12 0.873 0.003 0.714 49.7 1.9 7.9

WBPA-SPEC 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9

WSBPA-METIS 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9

WSBPA-SPEC 0.933 0.93 0.873 0.003 0.714 49.7 1.9 7.9

CSPA 0.898 1.3 0.873 0.003 0.714 49.7 1.9 7.9

MCLA 0.912 1.3 0.873 0.003 0.714 49.7 1.9 7.9

LAC+Co-as. 0.903 1.5 0.873 0.003 0.714 49.7 1.9 7.9

LAC-wCo-as. 0.899 1.6 0.873 0.003 0.714 49.7 1.9 7.9

k-means+Co-as. 0.749 5.4 0.749 0.006 0.39 49.7 5.4 41.2
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Fig. 8. Error rate as a function of the ensemble size.
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Fig. 9. Results on text datasets. (Left): Email-1431 dataset. (Right): 20 News-
groups dataset (electronic-medical)

7. CATEGORIZATION OF UNLABELED DOCUMENTS: AN APPLICATION

Here we investigate the use of our subspace cluster ensemble technique (WSBPA)
for the categorization of unlabeled documents. The output of WSBPA is twofold:
it provides a partition of the data and a measure of local feature relevance for each
identified group of data. For text documents, the analysis of relevance values (i.e.,
weights) credited to features (i.e., terms) can assist the identification of descriptive
words representative of topics discussed in the documents.

To demonstrate these concepts we performed experiments with two datasets:
spam Email-1431 and 20 Newsgroups. To reduce the dimensionality of the data,
we followed the procedure presented in [Kang et al. 2005]. Documents were first
preprocessed by eliminating stop and rare words, and by stemming words to their
root source. A global unsupervised feature selection procedure, based on frequent
itemset mining, was then applied. The objective of this step is to identify sets
of terms that co-occur frequently in the given corpus of documents. Such terms
become the features used in the final representation of documents.

Email-1431 is the same dataset used in the experiments described in Section
6. The original size of the dictionary is 38,713. After processing the data as
described above, the dictionary size was reduced to 285. As before, we ran a two-
class classification problem by merging the conference and jobs emails into one
group (non-spam). 20 Newsgroups is a collection of 20,000 messages collected from
20 different netnews newsgroups. One thousand messages from each of the 20
newsgroups were chosen at random and partitioned by newsgroups name. In our
experiments we consider the categories medical (990) and electronics (981). The
original size of the dictionary is 24,546; after processing the data, the dictionary
size was reduced to 321.

Tables XII and XIII report the results we obtained for these two datasets. We ran
our three methods (WSPA, WBPA, and WSBPA) using both METIS and spectral
clustering. We report the ensemble NMI, the ensemble error rate, and minimum,
maximum and average error rates of the input clusterings. (Figure 9 shows the
ranges of values for the parameter h used to construct the ensembles.)

WSBPA gives good results in both cases. We observe that for the Email-1431



28 · Carlotta Domeniconi et al.

dataset, WSBPA gives the same error rate (1.6%) when combined with either
METIS or spectral clustering (as shown in Figure 9 (Left) and in Table XII). Such
error rate is very close to the minimum error rate provided by the runs of LAC.
Moreover, WSBPA significantly outperforms WSPA and WBPA when METIS is
used. With SPEC, all three methods provide similar results. The fact that SPEC
performs better than METIS might be due to the slightly unbalanced data (786
spams vs. 642 non-spams). Also for the 20 Newsgroups dataset (electronic, med-
ical), WSBPA gives an error rate that is very close to the minimum error rate
provided by LAC (for both METIS and SPEC) (see Figure 9 (Right) and Table
XIII). In this case, METIS and SPEC give similar results (the dataset is balanced).

7.1 Analysis of Weights

We analyzed the weights credited to features by the algorithm WSBPA (combined
with METIS). The analysis of weights assigned to words provides some insights on
the nature of the spam filtering problem and the general classification case. As
Figures 10 and 11 show, the selected words (i.e., those words that receive largest
weight values) are representative of the underlying categories, which provides ev-
idence that our subspace cluster ensemble technique is capable of sifting relevant
words, while discarding (i.e., assigning a low weight value) spurious ones.

Let us consider the distribution of weights obtained for the Email-1431 dataset.
Figure 10 shows the weight values and corresponding words for the two class case
(the non-spam class corresponds to both conference and jobs emails). Here we plot
the top words that received highest weight for each class (discarding those without
a clear meaning, e.g., abbreviations, acronyms, etc.). We observe that words reflect-
ing the topic of a category receive a larger weight in the other class. For example,
the words “sales”, “money”, “marketing”, “credit”, etc. get a larger weight in the
non-spam category (their weights in the spam class are very close to zero). Sim-
ilarly, the words “computational”, “neuroscience”, “neural”, “algorithms”, “dead-
line”, etc. receive larger weights in the spam category. The weights for these words
in the non-spam class are very close to zero. While surprising at first, this trend
may be due to the nature of the spam and non-spam email distributions. Each of
these two categories is actually a combination of subclasses. The non-spam class in
this case is the union of conference and jobs emails (by construction). Likewise, the
spam messages can be very different in nature (sales, jokes, diets, fraud, etc.), and
therefore different in their word content. As a consequence, the variance of feature
values for words reflecting the general topic of a category is larger within the same
category than in the other one (e.g., the word “sales” appears only in half of the
spam messages, and does not appear in any of the non-spam emails). Since the
weights computed by the LAC algorithm are inversely proportional to a measure of
such variance of values (i.e., Xji), we obtain the “swapping phenomenon” depicted
in Figure 10. This analysis can be interpreted as the fact that the absence of a
certain term (e.g., absence of the word “sales” within the non-spam messages) is a
characteristic shared across the emails of a given category; whereas the presence of
certain words shows a larger variability across emails of a given category (e.g., the
word “sales” appears only in half of the spam messages).

Figure 11 shows the weight values and corresponding words for the 20 Newsgroups
(electronic, medical) dataset. In this case words receive largest weights within the
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Table XII. Results on Email-1431
Ens-NMI Ens-ER Min-ER Max-ER Avg-ER

WSPA-METIS 0.741 5.3 1.5 2.2 1.95

WBPA-METIS 0.741 5.3 1.5 2.2 1.95

WSBPA-METIS 0.880 1.6 1.5 2.2 1.95

WSPA-SPEC 0.889 1.5 1.5 2.2 1.95

WBPA-SPEC 0.880 1.6 1.5 2.2 1.95

WSBPA-SPEC 0.880 1.6 1.5 2.2 1.95

representative class (e.g., “system”, “noise”, “circuit”, “range”, for the electronic
class; “screen”, “hot”, “dead”, “cost”, “program” for the medical class). In this case,
categories represent focused topics, and therefore words reflecting the content of
documents show a small variance (e.g., the word “system” appears in all documents
on electronics, and thus its variance is zero).

For this dataset, we also analyzed the dictionary of the corpus, and noticed that
the majority of words is descriptive of the electronic category, while the medical
domain is under represented. This bias was also reflected within the words that
received larger weights: we could easily identify many words of the electronic do-
main, while words from the medical domains were less in number. Given the biased
dictionary, this result is expected.

The above results provide evidence that the weights computed by the WSBPA
algorithm are meaningful, that is the averaging of weights performed by Equation
(12) properly captures the local relevance of features. This is important for the
cluster prediction of future data. Local weights also provide information regarding
the subspace each cluster belongs to, thus allowing data interpretation, and possibly
data compression. Specifically, for text categorization, the analysis of weights can
be informative of the nature of the categorization problem, and can be used to
guide the process of text interpretation. Of course, we are not advocating that
local weights alone can solve the problem of automatic document annotation. Our
results simply show that they are useful for the identification of descriptive words.
Local weights alone, though, are not able to account for all possible configurations
and words’ distributions. For example, a word that appears in all documents of one
class and in zero documents of the other, receives large weight in both (its variance
is zero in both cases). Considering the frequency of occurrence within each class,
may clarify which class the word is descriptive of. While this phenomenon was not
observed in our data, one has to account for such instances in general. Considering
relative frequencies of words that receive large weight in both classes is a viable
solution.
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Table XIII. Results on 20 Newsgroups (electronic, medical)

Ens-NMI Ens-ER Min-ER Max-ER Avg-ER

WSPA-METIS 0.316 18.16 16.79 46.17 20.37

WBPA-METIS 0.344 16.95 16.79 46.17 20.37

WSBPA-METIS 0.353 16.89 16.79 46.17 20.37

WSPA-SPEC 0.343 17.15 16.79 46.17 20.37

WBPA-SPEC 0.344 17.09 16.79 46.17 20.37

WSBPA-SPEC 0.345 17.19 16.79 46.17 20.37
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Fig. 10. Email-1431: Words and corresponding weight values.
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8. MEASURES OF DIVERSITY AND ACCURACY

Diversity is an important aspect in building clustering ensembles. It is expected that
the accuracy of the ensemble improves when a larger number of input clusterings is
given, provided that the clusterings are diverse. Diversity in clustering ensembles
is under investigation by many researchers. Here we study the interplay between
accuracy and diversity for our ensemble techniques.

Fern and Brodley [2003] illustrate the importance of diversity for cluster ensemble
accuracy. They measure diversity using NMI, a pairwise similarity measure that
quantifies the information shared between two partitions, as defined in (13). Since
NMI measures the similarity between two partitions, (1−NMI) gives the pairwise
diversity. The pairwise measure of diversity, based on NMI, of an ensemble of L
partitions is then defined as follows:

DNMI =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

(1 −NMI(Pi, Pj)) (14)

where Pi and Pj are two of the L partitions.
Kuncheva and Hadjitodorov [2004a] and Hadjitodorov et al. [2005] discuss diver-

sity and accuracy measures in great depth. In particular, Hadjitodorov et al. [2005]
investigate which diversity measure gives more accurate results. In all, six measures
were examined. One is based on the Adjusted Rand Index (ARI), which measures
the amount of departure from the assumption that any two clustering results have
occurred by chance. ARI is a measure of similarity between two partitions, and is
defined as follows:

t1 =
cA∑
i=1

(
nA

i

2

)
, t2 =

cB∑
j=1

(
nB

j

2

)
, t3 =

2t1t2
n(n− 1)

,

ar(A,B) =

∑cA

i=1

∑cB

j=1

(
nij

2

)
− t3

1
2 (t1 + t2) − t3

, (15)

where
(
a
b

)
is the binomial coefficient. A and B are two partitions of a dataset with

n points, cA and cB are the number of clusters in partitions A and B respectively,
nA

i is the number of points in cluster i of partition A, nB
j is the number of points in

cluster j of partition B, and nij is the number of points cluster i of A and cluster
j of B have in common. Since ar() measures the similarity between two partitions,
to compute the pairwise diversity one would consider (1 − ar()). Therefore, the
measure of diversity, based on ARI, of an ensemble is defined as follows:

Dp =
2

L(L− 1)

L−1∑
i=1

L∑
j=i+1

(1 − ar(Pi, Pj))

Dp measures the diversity of an ensemble with L partitions, where Pi, Pj are two
such partitions.

Other measures evaluate individual (i.e, non-pairwise) diversities, by comparing
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individual clustering results with the ensemble result. One such measure is:

Dnp1 =
1
L

L∑
i=1

(1 − ar(Pi, P
∗))

where Pi and P ∗ are the individual clustering result and the ensemble result re-
spectively, and L is the number of clustering members.

An additional measure focuses on the spread of diversity (with respect to P ∗) of
individual clusterings. It is defined as follows:

Dnp2 =

√√√√ 1
L− 1

L∑
i=1

(1 − ar(Pi, P ∗) −Dnp1)2

Using this measure, Hadjitodorov et al. [2005] discover that a larger spread is not
strongly related to the ensemble accuracy. To take this result into account, another
measure was introduced:

DARI =
1
2
(1 −Dnp1 +Dnp2) (16)

which considers both variability and accuracy. Assuming that the ensemble result
is close to the true labeling, we can measure the accuracy of individual clusterings
by measuring how close they are to the ensemble result. Thus, a larger value of
(1−Dnp1) means higher accuracy. At the same time, variability within the ensemble
can be measured using Dnp2 . Equation (16) achieves a tradeoff between accuracy
and variability.

Hadjitodorov et al. [2005] indicate that the most stable measures are Dnp1 and
DARI . The study focuses on the co-association approach to construct consensus
functions. The authors conclude that an ensemble selected through medium di-
versity will fare better than either randomly selected ensembles or those selected
through maximum diversity.

Based on the findings discussed above, we investigate here the issue of diver-
sity and accuracy in more detail for our ensemble techniques (WSPA, WBPA, and
WSBPA). Our objective is to investigate which measure of diversity is the best
indicator for a good ensemble accuracy, and what is the preferred level of diversity
(high, medium, or low). Such findings would enable one to select, from a set of
ensembles, the one that is most likely to provide good results. We consider two
measures of diversity, one based on NMI as defined in (14), and one based on ARI
as defined in (16). We observe that DNMI is a pairwise diversity measure that does
not depend on the ensemble methodology, while DARI is a non-pairwise diversity
measure that depends on the ensemble methodology. Furthermore, we experiment
with two methods to build a cluster ensemble: we run LAC with different values
of h in one case, and with initial random centroids in the second case. In the
following, we provide the details of the experiments, and discuss the results. The
results obtained with random centroids are consistent with those obtained by vary-
ing h. Therefore, in the following, we omit the accuracy/diversity plots for random
centroids.
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8.1 Building cluster ensembles by varying h

To study how accuracy relates with the chosen measures of diversity, we created
50 ensembles of size 15 by varying the value of h. As clustering algorithm, we
always used LAC. For each of the 50 ensembles, we computed both measures of
diversity DNMI and DARI , and corresponding accuracy values. In details, we ran
the following procedure:

(1) Run the LAC algorithm for 1/h = 1, . . . , 50;
(2) Repeat the following 50 times:

(a) Sample 15 clusterings out of the 50 generated in 1;
(b) Run WBPA, WSPA, WSBPA (using METIS) on the selected 15 clusterings;
(c) Compute the diversity measures DNMI as in (14) and DARI as in (16), for

L = 15;
(d) Compute the average accuracy of the ensemble components, both based on

NMI and ARI, as follows:

AccNMI =
1
15

15∑
i=1

NMI(Pi, P
T ) (17)

AccARI =
1
15

15∑
i=1

ar(Pi, P
T ) (18)

where PT is the target partition (according to the ground truth);
(e) Compute the accuracy of the ensemble decision, both based on NMI and

ARI, as follows:

Acc∗NMI = NMI(P ∗, PT ) (19)

Acc∗ARI = ar(P ∗, PT ) (20)

where P ∗ is the ensemble partition, and PT is the target partition.

Figures 12-20 show the results of accuracy vs. diversity for our nine datasets.
To construct the plots, we proceeded as follows. We sorted the 50 DNMI val-
ues in increasing order. Each DNMI value was associated with the corresponding
AccNMI and Acc∗NMI values. We plotted the collection of two dimensional points
(DNMI , AccNMI) and (DNMI , Acc

∗
NMI), and connected them with a line. We pro-

ceeded similarly for the measures based on ARI. This procedure was performed
for each of the three ensemble techniques WSPA, WBPA, and WSBPA. In Figures
12-20, the points marked with a “∗” symbol correspond to (DNMI , AccNMI) and
(DARI , AccARI). The points marked with an “open square” symbol correspond to
(DNMI , Acc

∗
NMI) and (DARI , Acc

∗
ARI). From the plots, we observe the following:

(1) Larger DNMI (DARI) values give larger AccNMI (AccARI) values, and larger
Acc∗NMI (Acc∗ARI) values, for all datasets and all the three ensemble methods.
This result suggests that, to obtain good ensemble accuracy, a high level
of diversity should be preferred. (The same trend was obtained when
diversity was generated by means of random centroids.)
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(2) For a given value of diversity DNMI (DARI), the accuracy of the ensemble
decision, Acc∗NMI (Acc∗ARI), is typically larger than the average accuracy of the
ensemble components, AccNMI (AccARI), for all three methods and all datasets
(with few exceptions discussed below). This demonstrates the efficacy
of our ensemble methods. Furthermore, the gain in accuracy, Acc∗NMI −
AccNMI (Acc∗ARI −AccARI), in many cases is larger for larger diversity values
(DNMI and DARI , respectively). Again, this confirms that a high level of
diversity should be preferred.

(3) WDBC dataset and WSBPA ensemble method: For lower values of diversity
(both based on NMI and ARI), the accuracy of the ensemble decision is very
low, and slightly below the average accuracy of the ensemble components. As
diversity increases, the ensemble accuracy improves rapidly, and achieves sig-
nificant improvement upon the components. This case stresses the importance
of high diversity. Note that, for this dataset, also the WSPA and WBPA tech-
niques show a much larger accuracy gain for larger diversity values.

(4) Results similar to WDBC are observed for the Letter(A,B) dataset, and accu-
racy/diversity measures based on NMI.

(5) In general, given an ensemble of partitions, the average accuracy value of the
components computed according to NMI (AccNMI) is higher than the average
accuracy value computed according to ARI (AccARI). This is due to the fact
that NMI() ∈ [0, 1], while ar() ∈ [−1, 1]. Thus, the summation in (18) may
contain negative values, which lead to smaller averages than in (17) (where the
smallest components are zeros). On the other hand, the values Acc∗NMI and
Acc∗ARI , which measure the accuracy of the ensemble partitions, are in general
closer to each other. This happens because the largest value both for NMI()
and ar(), in (19) and (20) respectively, is 1. This different scaling of the ac-
curacy/diversity measures causes the values (DNMI , Acc

∗
NMI) to lie below the

(DNMI , AccNMI) values for the SatImage dataset (while the opposite trend is
observed for the measures based on ARI) (see Figure 18). We also observe
that the range for the diversity values is very narrow in this case, suggesting
the presence of correlated partitions in the ensembles. According to Table IX,
our three ensemble techniques provide a smaller error rate than the minimum
error rate of the input clusterings. This suggests that a measure of ac-
curacy/diversity based on ARI might be more robust and consistent
than a measure based on NMI. The results obtained in Hadjitodorov et al.
[2005] corroborate our conclusions. In fact, Hadjitodorov et al. [2005] also indi-
cate that the most stable measures of diversity are based on ARI. Furthermore,
their study focuses on the co-association approach to construct consensus func-
tions. This provides evidence that DARI is a good measure of diversity for both
co-association based and graph partitioning based ensemble scenarios. This is
an interesting and relevant result since DARI does depend on the ensemble
methodology.

9. CONCLUSIONS

This paper discusses the challenges related to clustering due to its ill-posed nature.
In particular, we address problems which arise from high dimensional data, and
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Fig. 12. Two Gaussian dataset: Accuracy vs. Diversity

issues due to parameter tuning. Our solutions make use of the ensemble method-
ology.

We have introduced three cluster ensemble techniques for subspace clustering.
The experimental results show that our weighted clustering ensembles can provide
solutions that are as good as or better than the best individual clustering, provided
that the input clusterings are diverse. We have also demonstrated the use of our
methods for the categorization of unlabeled documents. Furthermore, we addressed
in depth the issue of diversity and accuracy. Our findings show that, typically,
a high level of diversity should be preferred. Moreover, our results reveal that a
diversity measure based on ARI is more robust and consistent. We finally note that
“universal” rules for choosing the preferred level of diversity should be used with
caution, as the “optimal” level clearly depends on the consensus function and on the
dataset. Our future research effort will focus on achieving a better understanding
on which consensus function and which diversity-based ensemble selection method
is more appropriate for which dataset.
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Fig. 13. Three Gaussian dataset: Accuracy vs. Diversity
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Fig. 14. Iris dataset: Accuracy vs. Diversity
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Fig. 15. WDBC dataset: Accuracy vs. Diversity
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Fig. 16. Breast dataset: Accuracy vs. Diversity
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Fig. 17. Letter(A,B) dataset: Accuracy vs. Diversity
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Fig. 18. SatImage dataset: Accuracy vs. Diversity
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Fig. 19. Spam2000 dataset: Accuracy vs. Diversity
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Fig. 20. Spam5996 dataset: Accuracy vs. Diversity
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