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ABSTRACT

GENERATING TEST CASES FROM UML SPECIFICATIONS

Aynur Abdurazik, M.S.

George Mason University, 1999

Thesis Director: Dr. A. Je�erson O�utt

Uni�ed Modeling Language (UML) is a third generation modeling language in object-

oriented software engineering. It provides constructs to specify, construct, visualize, and

document artifacts of software- intensive systems.

This paper presents a technique that uses O�utt's state-based speci�cation test data genera-

tion model to generate test cases from UML statecharts. A tool TCGen has been developed

to demonstrate this technique with speci�cations written in Software Cost Reduction (SCR)

method and Uni�ed Modeling Language (UML). Experimental results from using this tool

are presented.



1 INTRODUCTION

Uni�ed Modeling Language (UML) is a third-generation method for specifying, visualizing,

and documenting artifacts of object-oriented systems [BRJ98]. UML uni�es the Booch

[Boo94], Objectory [Jac92], and OMT [RBP+91] methods, and incorporates ideas from a

number of other methodologists. One of UML's goals is to provide the basis for a common,

stable, and expressive object-oriented development method. However, UML still cannot

help to develop fault free software. Software developed with UML has to be tested to

assure its quality, and also to prevent faults. This thesis provides a model for generating

test cases from state charts in UML speci�cations.

1.1 Software Testing

Software testing typically ranges from 40% to 70% of the development e�ort [Bei90]. Beizer

de�nes six levels at which software testing occurs, unit test, module test, integration test,

subsystem test, system test and acceptance test. There are two general testing approaches,

black box and white box. Black box testing approaches create test data without using any

knowledge of the structure of the software under test, whereas white box testing approaches

explicitly use the program structure to develop test data. Black box testing is usually

based on the requirements and speci�cations, while white box testing is usually based on

the source code. White box testing approaches are typically applied during unit test, and

black box testing approaches are typically applied during integration test and system test.

Software testing includes executing a program on a set of test cases and comparing the actual

results with the expected results. Testing and test design, as parts of quality assurance,

1
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should also focus on fault prevention. To the extent that testing and test design do not

pevent faults, they should be able to discover symptoms caused by faults. Finally, tests

should provide clear diagnoses so that faults can be easily corrected [Bei90].

A central question of software testing is \what is a test criterion?" A test criterion is a

rule or collection of rules that impose requirements on a set of test cases. Test engineers

measure the extent to which a criterion is satis�ed in terms of coverage, which is the percent

of requirements that are satis�ed [O�98b].

There are various ways to classify adequacy criteria. One of the most common is by the

source of information used to specify testing requirements and in the measurement of test

adequacy. Hence, an adequacy criterion can be speci�cation-based or program-based.

A speci�cation-based criterion speci�es the required testing in terms of identi�ed features of

the speci�cations of the software, so that a test set is adequate if all the identi�ed features

have been fully exercised. Here the speci�cations are used to produce test cases, as well

as to produce the program. An abstract view of the speci�cation-based testing process is

shown in Figure 1.

A program-based criterion speci�es testing requirements in terms of the program under test

and decides if a test set is adequate according to whether the program has been throughly

exercised. An abstract view of the program-based testing process is shown in Figure 2.

It should not be forgotten that for both speci�cation-based and program-based testing, the

correctness of program outputs must be checked against the speci�cation or requirements.

However, in both cases, the measurement of test adequacy does not depend on the results

of this checking. Also, the de�nition of speci�cation-based criteria given previously does

not presume the existence of a formal speci�cation.
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1.2 Speci�cation-based Software Testing

Speci�cation-based testing derives testing information from a speci�cation of the software

under test, rather than from the implementation. Even fully formal developments should

be subjected to testing [BH95]. However, when the implementation is developed informally

from a formal speci�cation, the speci�cation can play a major role in the testing process by

allowing us to derive test inputs and the expected outputs from these inputs. There are two

main roles a speci�cation can play in software testing [RAO92]. The �rst is to provide the

necessary information to check whether the output of the program is correct [PC89, PC90].

Checking the correctness of program outputs is known as the oracle problem. The second

is to provide information to select test cases and to measure test adequacy [ZHM97].

Speci�cation-based testing (SBT) o�ers many advantages in software testing. The (formal)

speci�cation of a software product can be used as a guide for designing functional tests for

the product. The speci�cation precisely de�nes fundamental aspects of the software, while

more detailed and structural information is omitted. Thus, the tester has the essential

information about the product's functionality without having to extract it from inessential

details.

SBT from formal speci�cations o�ers a simpler, structured, and more formal approach

to the developmet of functional tests than non-speci�cation based testing techniques do.

The strong relationship between speci�cation and tests helps �nd faults and can simplify

regression testing. An important application of speci�cations in testing is to provide test

oracles. The speci�cation is an authoritative description of system behavior and can be

used to derive expected results for test data. Other bene�ts of SBT include developing

tests concurrently with design and implementation, using the derived tests to validate the

original speci�cation, and simpli�ed auditing of the testing process. Speci�cations can also
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be analyzed with respect to their testability [SC91].

There are three major approaches to formal software functional speci�cations: (1) model-

based speci�cations, (2) property-oriented speci�cations such as axiomatic and algebraic

speci�cations, and (3) state-based speci�cations [O�98b].

Model-based speci�cation languages, such as Z and VDM, attempt to derive formal spec-

i�cations of the software based on models of real world objects. Algebraic speci�cation

languages describe software by making formal statements, called axioms, about relation-

ships among operations and the functions that operate on them. State-based speci�cations

describe software in terms of state transitions. Typical state-based speci�cations de�ne

preconditions on transitions, which are values that speci�c variables must have for the tran-

sition to be enabled, and triggering events, which are changes in variable values that cause

the transition to be taken.

This thesis focuses on generating test cases from state-based speci�cations. Methods and

languages for developing state-based speci�cations are discussed in the next section.

1.3 Methods for State-based Speci�cations

There are several methods for specifying state-based systems. O�utt has de�ned speci�cation-

based testing criteria, and developed a test case generation model for SCR and CoRE spec-

i�cations. The goal of this paper is generalize the model to UML speci�cations. Therefore,

we introduce the SCR, CoRE, and UML methods in the next sub-section.
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1.3.1 SCR Method

The Software Cost Reduction (SCR) speci�cation uses structured tables to specify the

behavioral requirements for real-time embedded software systems. One bene�t of the SCR

method is that its well-de�ned structure allows structural analysis to be used to check the

consistency, completeness of the speci�cation. Also, SCR applications provide traceability

from the software requirements to the source code [FBWK92]. Various types of formal

analysis have been applied to SCR speci�cations [HKL97, AG93].

In an SCR speci�cation, a modeclass is a state machine whose states are called system modes

or modes. Complex systems' behavior may be de�ned by several modeclasses operating in

parallel. Each modeclass describes one aspect of the system's behavior, and the global

behavior of the entire system is de�ned by the composition of the system's modeclasses.

The system`s environment is represented by a set of boolean environmental conditions.

An event occurs when the values of a condition change from TRUE to FALSE or vice

versa. Events therefore specify instants of time, while conditions specify intervals of time.

Formally, a conditioned event is an event that occurs when certain conditions hold.

Modes and mode transitions specify system properties that hold under certain conditions.

A mode invariant must be TRUE when the system enters the mode, must remain TRUE

while the system stays in the mode, and can either be TRUE or become FALSE when

the system leaves the mode. Mode invariants are the invariant properties of a system

mode. If certain conditions hold then either the system is in a particular mode or the next

system transition will be into that mode. Whenever the system is in a particular mode,

certain system conditions have invariant values. SCR speci�cations specify software system

functional behavior. System invariants are implicitly or sometimes explicitly speci�ed in

the speci�cation. An SCR speci�cation may include a set of invariants as safety assertions,
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but these system invariants are not additional constraints on the required behavior, they

are included only as the goals that the tabular requirements are expected to imply. Also,

if these invariants are not explicitly listed, then we should be able to derive them from

the speci�cation. The derived invariants can be compared with the explicit invariants as

veri�cation criteria.

1.3.2 CoRE

Consortium Requirement Engineering (CoRE) is a method for capturing, specifying, and

analyzing real-time software requirements [MH97]. CoRE integrates the formal model of

SCR with object-oriented and graphical techniques to de�ne a methodology for generating

a software requirements speci�cation. A CoRE speci�cation has two parts: a behavioral

(formal) model and a class model. The behavioral model provides a standard structure for

analyzing and capturing the behavioral requirements of an embedded system. The behav-

ioral model is based on a four-variable model. The four variables are monitored, controlled,

input, and output variables. Figure 3 illustrates the four-variable model. A monitered

variable represents an environmental quantity that system responds to, a controlled vari-

able is an environmental quantity that the system controls. An �input variable is a variable

through which the software senses the monitered variables. An output variable is a variable

the software uses to change the controlled variables.

The behavioral model de�nes the required, externally visible behavior in terms of two re-

lations from monitored variables to controlled variables called NAT (for nature) and REQ

(for required). The NAT relation describes those constraints placed on the software system

by the external environment. The REQ relation describes the additional constraints on the

controlled variables that must be enforced by the software. REQ also describes properties

that the software system is required to maintain between the monitored and controlled
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variables. CoRE treats the software system's actual inputs and outputs as resources avail-

able to the software to determine the values of monitored and controlled quantities. The

relationship between the software software system input and output and the environmental

variables is expressed in two additional relations called IN (for input) and OUT (for output).

The class model provides a set of facilities for packaging the behavioral model as a set of

objects, classes, and superclasses. Classes group together portions of the speci�cation logi-

cally related and likely to change. Each class has an interface section and an encapsulated

section. The interface section contains all constants, monitored variables, modes, and terms

that can be referenced by other classes. The encapsulated section contains information that

can only be referenced by the enclosing class. A class is allowed to reference names on

the interfaces of other classes, creating dependencies between classes. Dependencies are

the primary relationships between classes and often depicted graphically as labeled arrows

between classes. CoRE classes are categorized into boundary classes, mode classes, and

term classes. Boundary classes group together the de�nitions of the monitored variables

and controlled variables, and possibly encapsulate the corresponding input variables, output

variables, REQ, IN, and OUT relations that are expected to change together. Boundary

classes are often associated with a single external entity, such as a control panel or user
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display. Boundary classes serve to de�ne and encapsulate monitored and controlled vari-

ables. Mode classes export the system modes used by several classes and encapsulate the

rules transitioning among them. Mode classes export the modes associated with that class

by placing the mode name on its interface. The rules for transitioning among modes are

hidden within the encapsulated section. Terms are usually de�ned in the class they are

most closely related with, but term classes can be created for terms not clearly associated

with any single boundary or mode class. Term classes are used to collect in one location the

de�nition of related terms that do not belong in a speci�c boundary or mode class. Terms,

like monitored and controlled variables, are continuous functions of time.

1.3.3 UML

The Uni�ed Modeling Language (UML) is a language for specifying, constructing, visualiz-

ing, and documenting artifacts of software-intensive systems. The artifacts include require-

ments, architecture, design, source code, project plans, tests, prototypes, and releases etc.

The UML provides a language for expressing, modeling and documenting a software sys-

tem's architecture, requirements, tests, project planning activities and release management.

The UML is not limited to modeling software, it is expressive enough to model nonsoftware

systems.

The UML has three major elements that form a conceptual model of the language: the

UML's basic building blocks, the rules that dictate how those building blocks may be

put together, and some common mechanisms that apply throughout the UML. Things,

relationships, and diagrams are the building blocks of UML. Things are the abstractions

that are �rst-class citizens in a model, relationships tie these things together, and diagrams

group interesting collections of things.
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There are four kinds of things in the UML: structural, behavioral, grouping, and annota-

tional.

Structural things are the nouns of the UML model. There are seven kinds of structural

things: class, interface, collaboration, use case, active class, component, and node. A class

is a description of a set of objects that share the same attributes, operations, relationships,

and semantics. A class implements one or more interfaces. Graphically, a rectangle that

includes name, attribute, and operation compartments represents a class.

An interface describes complete or part of the externally visible behavior of a class or

component. An interface de�nes the speci�cation of operations, but not implementations.

Graphically, a circle with a name represents an interface.

A collaboration de�nes an interaction; it has structural and behavioral dimensions. A

collaboration represents the implementation of patterns that make up a system. Graphically,

an ellipse with dashed lines, including a name, represents a collaboration.

A use case is a description of a set of sequence of actions. A use case is used to structure

the behavioral things in a model, and realized by collaboration. Graphically, an ellipse with

solid lines, including a name, represents a use case.

The remaining three things - active classes, components, and nodes - are all class-like, but

they have slight di�erences.

An active class is a class for which its objects represent elements whose behavior is concur-

rent with other elements. Graphically, an active class is presented in the same way with

class, except the border lines of rectangle are bold.

A component represents the physical packaging of logical elements, such as classes, interfaces,
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and collaborations. Graphically, a rectangle with tabs, including a name, represents a

component.

A node exists at run time, and represents a computational resource, generally memory and

processing capability. Graphically, a cube with a name represents a node.

Behavioral things are the dynamic parts of UML model, they represent behavior over time

and space. There are two kinds of behavioral things: interaction and state machine.

An interaction comprises a set of messages exchanged among a set of objects in a particular

context. An interaction involves a number of other elements, including messages, action

sequences, and links. Graphically, a directed line with an operation name represents a

message.

A state machine speci�es the sequences of states an object or an interaction goes through

during its lifetime in response to events, together with its responses to those events. The

behavior of an individual class or a collaboration of classes can be speci�ed with a state

machine. A state machine has states, transitions (the ow from state to state), events

(things that trigger a transition), and activities (the response to a transition). Graphically,

a round rectangle with a name represents a state.

Interactions and state machines are connected to structural elements, mainly classes, col-

laborations, and objects.

Grouping things are the organizational parts of UML models. The package is the only kind

of grouping thing in the UML. A package is a general-purpose mechanism for organizing

elements into groups. Graphically, a tabbed folder with a name represents a package.

Annotational things are the comments to elements in a model. There is one main kind of
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annotational thing, a note. A note includes constraints and comments that are attached

to an element or a group of elements. Graphically, a dog-eared rectangle with textual or

graphical comment represents a note.

There are four kind of relationships in the UML: dependency, association, generalization,

and realization.

A dependency is a semantic relationship between two things. The change in the independent

thing may a�ect the semantics of the dependent thing. Graphically, a directed dashed line

represents a dependency.

An association is a structural relationship that describes a set of links, a link being a

connection among objects. Aggregation is a special kind of association, representing a

structural relationship between a whole and its parts. Graphically, a solid line, possibly

directed, occasianlly including a label, and often containing other adornments, such as

multiplicity and role names, represents an association.

A generalization is a specialization/generalization relationship in which objects of the spe-

cialized element (the child) are substitutable for objects of the generalized element (the

parent). This relation is also referred as inheritance - the child inherits the structure and

behavior of parent. Graphically, a solid line with a hollow arrowhead pointing to the parent

represents a generalization.

A realization is a semantic relationship between classi�ers { one classi�er speci�es a contract

that another classi�er carries out. It is also referred as instantiation. It is a special type

of dependency that exists between a parameterized class and the class that is created as a

result of instantiation. Realization relationships exist in two places, between interfaces and

the classes or components that realize them, and between uses cases and the collaborations
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that realize them. The realization relationship is a cross between a generalization and a

dependency. Graphically, a realization relationship is shown with a dashed line with a

hollow arrowhead pointing to the specifying classi�er.

UML supports the following kinds of diagrams:

1. Class diagrams

2. Object diagram

3. Use-case diagram

4. Interaction diagram

Sequence diagram

Collaboration diagram

5. Statechart diagram

6. Activity diagram

7. Component diagram

8. Deployment diagram

Each type of diagram captures a di�erent perspective. A class diagram shows a set of classes,

interfaces, collaborations, and their relationships. Class diagrams address the static design

view of a system. A object diagram shows a set of objects and their relationships. Object

diagrams represent static snapshots of instances of the things found in class diagrams. A

use case diagram shows a set of use cases and actors (a special kind of class) and their

relationships. An interaction diagram shows an interaction, consisting of a set of objects

and their relationships, including the messages that are sent among them. Interaction

diagrams address the dynamic view of a system. A sequence diagram emphasizes the time-

ordering of messages. A collaboration diagram emphasizes the structural organization of the

objects that send and receive messages. Sequence diagrams and collaboration diagrams can

be transformed into each other. A statechart diagram shows a state machine, consisting of

states, transitions, events, and activities. Statechart diagrams address the dynamic behavior



14

of a system, they are especially important in modeling the behavior of an interface, class, and

collaboration. Statechart diagrams emphasize the event-ordered behavior of an object, and

this is particularly useful in modeling reactive systems. An activity diagram is a variation of

the statechart diagram, in which states are activities representing operations, and transitions

are triggered by completion of actions within states. Activity diagrams model the function

of a system, and emphasize the ow of control among objects. A component diagram

models development time relationships among components. A deployment diagram shows

the con�guration of run-time processing nodes and the components that live on them.

The interaction, state and deployment diagrams have features specially intended for the

modelling of real-time systems.

The UML has semantic rules for names, scope, visibility, integrity, and execution of its

models.

The common mechanisms in the UML are speci�cations, adornments, common divisions,

and extensibility mechanisms. A speci�cation provides a detailed textual statement of the

syntax and semantics of a graphical notation. An adornment is a textual or graphical

symbol added to the basic graphical notation. A common division mehanism divides the

class and object, as well as interface and implementation. An extensibility mechanism

provides means to extend the UML in controlled ways, thus makes the UML an open-

ended language. The UML's extension mechanisms include stereotypes, tagged values, and

constraints. A stereotype extends the vocabulary of the UML, it is used to establish new

kinds of elements. A tagged value extends the properties of a UML building block, it allows

to create new information in an element's speci�cation. A constraint extends the semantics

of a UML building block, it allows users to add new rules or modify existing ones of a

building block.
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1.3.4 Comparison of UML with SCR and CoRE

There are several major di�erences among UML, SCR, and CoRE:

1. UML is a modeling language, but SCR and CoRE are methods. A modeling language

has model elements, notation, and guidelines. It does not have a standard process. A

method consists of guidelines and rules, it has a set of modeling concepts, views and

notations. A method usually has a standard process.

2. UML and CoRE support object-orientation, SCR does not.

3. All three of them support modeling object behavior through state machines.

4. UML supports hierarchical state machines, while SCR and CoRE do not.

5. UML is exible, it is used to describe di�erent artifacts of a software system. It is

closer to natural language, yet has mechanisms for formal speci�cation. SCR and

CoRE are formal methods, which can be harder to understand.

The UML uni�ed three prominent methodoligies in object-oriented software development

�eld. Besides being used to specify, construct, visualize,and document software artifacts,

the various UML notations help with comunication among people who are involved in the

software development process. Obviously, UML has the capability to become a standard

notation. This project studies the artifacts of UML to see if they can be used to generate

test data. If the UML artifacts can be used to help generate tests, the results will help to

make UML useful in practice.

The next chapter presents a model for generating test case from SCR speci�cations. The

modi�cation of the test case generation model for SCR speci�cation to UML speci�cation

will be described in Chapter 3; a proof of concept tool that uses the models for SCR and

UML speci�cations will be provided in Chapter 4; we will give our analytical results of these

tools in Chapter 5; and �nally, conclusions and recommendations are in Chapter 6.



2 TEST CASE GENERATION TECHNIQUE FOR SCR
SPECIFICATION

Software system level tests have traditionally been created based on informal, ad-hoc anal-

yses of the software requirements. This leads to inconsistent results, problems in under-

standing the goals and results of testing, and an overall lack of e�ectiveness in testing.

Formal speci�cations represent a signi�cant opportunity for testing because they precisely

describe what functions the software is supposed to provide in a form that can be automat-

ically manipulated. O�utt has carried out a research project to establish formal criteria

and processes for generating system-level tests from functional requirements/speci�cations

[O�98a]. His work presents a general model for developing test inputs from state-based

speci�cations. This model includes several related criteria for generating test data from for-

mal speci�cations. These criteria provide a formal process, a method for measuring tests,

and a basis for full automation of test data generation.

This chapter uses the following de�nitions. Test requirements are speci�c things that must

be satis�ed or covered during testing; e.g., reaching statements are the requirements for

statement coverage. Test speci�cations are speci�c descriptions of test cases, often associ-

ated with test requirements or criteria. For statement coverage, test speci�cations are the

conditions necessary to reach a statement. A testing criterion is a rule or collection of rules

that impose test requirements on a set of test cases. A testing technique guides the tester

through the testing process by including a testing criterion and a process for creating test

case values.

16
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A test or test case is a general software artifact that includes test case input values, expected

outputs for the test case, and any inputs that are necessary to put the software system into

the state that is appropriate for the test input values. A test speci�cation language (TSL) is

a language that can be used to describe all components of a test case. The components that

we consider are test case values, pre�x values, verify values, exit commands, and expected

outputs. Test case values directly satisfy the test requirements, and the other components

supply supporting values. A test case value is the essential part of a test case, the values

that come from the test requirements. It may be a command, user inputs, or software

function and values for its parameters. In state-based software, test case values are usually

derived directly from triggering events and preconditions for transitions. A test case pre�x

value includes all inputs necessary to reach the pre-state and to give the triggering event

variables their before-values. Any inputs that are necessary to show the results are verify

values, and exit commands depend on the system being tested. Expected outputs are created

from the after-values of the triggering events and any postconditions that are associated

with the transition.

2.1 Testing Model

Predicate satisfaction uses preconditions, invariants, and postconditions to create predi-

cates, and then generates test cases to satisfy individual clauses within the predicates. This

is closely related to previous code-based automatic test generation research [DO91]. The

model presented here extends the promising ideas of predicate satisfaction in several ways.

Instead of just covering the pre and postconditions, it is important to use the tests to relate

the preconditions to the postconditions. Tests should also be created to �nd faults, as well

as to cover the input domain. This report presents examples using Software Cost Reduction

speci�cations (SCR) [Hen80, AG93] and CoRE [FBWK92].
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In this model, tests are generated as multi-part, multi-step, multi-level artifacts. The multi-

part aspect means that a test case is composed of several components. Input values are

the values for the test case; these are the values needed to directly satisfy the test require-

ments. The other components supply supporting values, including expected outputs, inputs

necessary to get to the appropriate pre-state, and inputs necessary to observe the e�ect of

the test case. The multi-step aspect means that tests are generated in several steps from

the functional speci�cations by a re�nement process. The functional speci�cations are re-

�ned into test speci�cations, which are then re�ned into test scripts. The multi-level aspect

means that tests are generated to test the software at several levels of abstraction.

The multiple parts of the test case are based on research in test case speci�cations [BHO89,

SC93]. The category-partition method includes a test speci�cation language called TSL

[BHO89], which was designed for command-line interface software. A test case in TSL is

a command or software function and values for its parameters and relevant environment

variables. A test speci�cation in TSL consists of the operations necessary to create the envi-

ronmental conditions (called the SETUP portion), the test case itself, whatever command

is necessary to observe the a�ect of the operation (VERIFY in TSL), and any exit com-

mand (CLEANUP in TSL). Test speci�cations written in TSL can be used to automatically

generate executable test scripts that are ready for input to the software.

In this state-based approach, the test case operation of TSL is replaced by Test case

values, which are derived directly from a triggering event and the preconditions for the

transition. The setup operation is called a Prefix, and includes all inputs necessary to

reach the pre-state and to give the triggering event variable its before-value. Any inputs

that are necessary to show the results are Verify operations, and Exit commands depend

on the system being tested. Expected outputs are created from the after-values of the

triggering events and any postconditions that are associated with the transition.
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The model currently de�nes test cases at four levels: (1) the transition coverage level, (2)

the full predicate coverage level, (3) the transition-pair coverage level, and (4) the complete

sequence level. These are de�ned in the next four subsections. To apply these, a state-based

requirement/speci�cation is viewed as a directed graph, called the speci�cation graph. Each

node represents a state (or mode) in the requirement/speci�cation, and edges represent

possible transitions.

It is possible to apply all levels, or to choose a level based on a cost/bene�t tradeo�. The

�rst two are related; the transition coverage level requires many fewer test cases than the

full predicate coverage level, but if the full predicate coverage level is used, the tests will

also satisfy the transition coverage level (full predicate coverage subsumes transition cov-

erage). Thus only one of these two should be used. The latter two levels are meant to

be independent; transition-pair coverage is intended to check the interfaces among states,

and complete sequence testing is intended to check the software by executing the software

through complete execution paths. As it happens, transition-pair coverage subsumes tran-

sition coverage, but they are designed to test the software in very di�erent ways.

2.1.1 Transition Coverage Level

This level is analogous to the branch coverage criterion in structural testing. The require-

ment is that each transition in the speci�cation graph is taken at least once. This is another

way of requiring that each precondition in the speci�cation is satis�ed at least once.

Transition coverage: Each transition in the speci�cation graph is taken at

least once.
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2.1.2 Full Predicate Coverage Level

One question during testing is whether the predicates in the speci�cations are formulated

correctly. Small inaccuracies in the speci�cation predicates can lead to major problems

in the software. The full predicate coverage level takes the philosophy that to test the

software, we should at least provide inputs to test each clause in each predicate. This level

requires that each clause in each predicate on each transition is tested independently, thus

attempting to address the question of whether each clause is necessary and is formulated

correctly. Following the de�nitions in DO178B [SC-92], the Boolean operators are AND,

OR, and NOT, and clause and predicate are de�ned as follows (DO178B uses the terms

\condition" and \decision"):

� A clause is a Boolean expression that contains no Boolean operators. For example,

relational expressions and Boolean variables are clauses.

� A predicate is a Boolean expression that is composed of clauses and zero or more

Boolean operators. A predicate without a Boolean operator is also a clause. If a

clause appears more than once in a predicate, each occurrence is a distinct clause.

The concept of full predicate coverage is based on the structural testing criterion of modi�ed

condition/decision coverage (MC/DC) [CM94], which requires that every decision and every

condition within the decision has taken every outcome at least once, and every condition

has been shown to independently a�ect its decision. The full predicate coverage level is

de�ned as follows:

Full predicate coverage: Each clause in turn takes the values of True and False

while all other clauses in the predicate have values

such that the value of the predicate will always be

the same as the clause being tested.
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This de�nition ensures that each clause is tested without being inuenced by the other

clauses. Note that if full predicate coverage is achieved, transition coverage will also be

achieved. To satisfy the requirement that the test clause controls the value of the predicate,

other clauses must be either True or False. If the predicate is (X ^Y ), and the test clause

is X, then Y must be True. Likewise, if the predicate is (X _ Y ), Y must be False.

The simplest way to satisfy full predicate is to use an expression parse tree. An expression

parse tree is a binary tree that has binary and unary operators for internal nodes, and

variables or constants at leaf nodes. The relevant binary operators are and (^), or (_),

and the relational operators f>, <, �, �, =, 6=g; the relevant unary operator is not. For

example, the expression parse tree for (A _B) ^ C is:

A B

CC(A B)

Given a parse tree, full predicate coverage is satis�ed by walking the tree. First, a test

clause is chosen. Then the parse tree is walked from the test clause up to the root, then

from the root down to each clause. If its parent is _, its sibling must have the value of

False, if its parent is ^, its sibling must have the value of True. If a node is the inverse

operator not, the parent node is given the inverse value of the child node. This is repeated

for each node between the test clause and the root.

Once the root is reached, values can be propagated back down using a simple tree walk. If a

^ node has the value of True, then both children must have the value True; if a ^ node has
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Figure 4: Constructing Test Case Requirements From an Expression Parse Tree

the value of False, then either child must have the value False (which one is arbitrary). If

a _ node has the value of False, then both children must have the value False; if a _ node

has the value of True, then either child must have the value True (which one is arbitrary).

If a node is the inverse operator not, the parent node is given the inverse value of the child

node.

Figure 4 illustrates the process for the expression above, showing both B and C as test

clauses. In the top sequence, B is the test clause (shown with a dashed box). In tree 2, its

sibling, A, is assigned the value False, and in tree 3, C is assigned the value True. In the

bottom sequence, C is the test clause. In tree 2, C's sibling is a _ node, and is assigned

the value True. In tree 3, A is assigned the value True. Note that in tree 3, either A or B

could be given the True value; the choice is arbitrary.

Although this may seem complicated, it is easy to automate and relatively straightforward

to apply by hand. It has also been our experience that most speci�cation predicates tend

to be fairly small and simple in form.
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Full predicate test cases sample from both valid and invalid transitions, with only one

transition being valid at a time. In addition, the test engineer may choose semantically

meaningful combinations of conditions. Testing with invalid inputs can help �nd faults in

the implementation as well as the formulation of the speci�cations. Of course, this brings

up a philosophical question about responsibility. Many developers believe that if a software

component has well-stated preconditions, it is the responsibility of the user to ensure that

the preconditions are met. This can be taken to imply that the component does not need to

be tested with inputs that violate the preconditions (as in the design-by-contract approach

[MM92]). Without taking a side on this issue, the technique described here provides a

mechanism for developing invalid inputs; they can be used or discarded as the tester sees

�t.

As a concrete example, consider the formula whose parse tree was given above, (A_B)^C.

The following partial truth table provides the values for the test clauses:

(A _ B) ^ C

1 T
2 F
3 T
4 F
5 T
6 F

To ensure the requirement that the test clause must control the �nal result, the partial

truth table must be �lled out as follows (for the last two entries, either A or B could have

been True, both were assigned the value True):
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(A _ B) ^ C

1 T F T
2 F F F
3 F T T
4 F F F
5 T T T

6 T T F

Some speci�cation languages, such as SCR and CoRE, treat triggering event variables dif-

ferently from other variables in transition predicates. When this is the case, the clause that

corresponds to the triggering event should be given a di�erent value, but should remain

the triggering event. If it is no longer a triggering event, it is equivalent to not executing

a test case. Moreover, a triggering event actually speci�es two values, a before-value and

an after-value. To fully test predicates with triggering events, both before- and after-values

should be tested. This is done by assuming two versions of the triggering event, A and A0,

where A represents the before-value of A and A0 represents its after-value.

2.1.3 Transition-Pair Coverage Level

The previous testing levels test transitions independently, but do not test sequences of state

transitions. This level requires that pairs of transitions be taken.

Transition-pair coverage level: For each state S, form test requirements such that

for each incoming transition and each outgoing tran-

sition, both transitions must be taken sequentially.

Consider the following state:

S

1

2

i

ii

iii

p
1

p
2

p
i

p
ii

p
iii
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To test the state S at the transition-pair level, six tests are required: (1) from 1 to i, (2)

2 to i, (3) 1 to ii, (4) 2 to ii, (5) 1 to iii, and (6) 2 to iii. These tests require inputs that

satisfy the predicates: P1:Pi, P1:Pii, P1:Piii, P2:Pi, P2:Pii, and P2:Piii.

2.1.4 Complete Sequence Level

It seems very unlikely that any successful test method could be based on purely mechanical

methods; at some point the experience and knowledge of the test engineer must be used.

Particularly at the system level, e�ective testing probably requires detailed domain knowl-

edge. A complete sequence is a sequence of state transitions that form a complete practical

use of the system. This use of the term is similar to that of \use cases". In most realistic

applications, the number of possible sequences is too large to choose all complete sequences.

In many cases, the number of complete sequences is in�nite.

Complete sequence level: The test engineer must de�ne meaningful sequences

of transitions on the speci�cation graph by choosing

sequences of states that should be entered.

Which sequences to choose is something that can only be determined by the test engineer

with the use of domain knowledge and experience. This is the least automatable level of

testing.

2.1.5 Summary

To generate tests according to this methodology, tests must be generated at the following

four levels:
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1. Transition Coverage Level

� De�nition: Each transition in the speci�cation graph is taken at least once.

� Requirements: Predicates on the edges must evaluate to True.

� Speci�cations:

{ Pre�x: Inputs to get to the pre-state immediately preceding the edge.

{ Test case values: Assignments to variables to satisfy the preconditions and

a new value for the triggering event variable.

{ Verify: Input to the software to show the post-state; depends on the software.

{ Exit: Input to the software to stop execution; depends on the software.

{ Expected outputs: Post-state from the requirements.

� Script: A sequence of inputs to the software; the format depends on the software.

2. Full Predicate Coverage Level

� De�nition: Each clause in turn takes the values of True and False while all

other clauses in the predicate have values such that the value of the predicate

will always be the same as clause being tested.

� Requirements: Certain rows from the truth tables of the predicates must be

chosen.

� Speci�cations:

{ Pre�x: Inputs to get to the pre-state immediately preceding the edge.

{ Test case values: Assignments to variables to satisfy the preconditions and

a new value for the triggering event variable.

{ Verify: Inputs to the software to show the post-state; depends on the soft-

ware.
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{ Exit: Input to the software to stop execution; depends on the software.

{ Expected outputs: Post-state from the requirements.

� Script: A sequence of inputs to the software; the format depends on the software.

3. Transition-Pair Coverage Level

� De�nition: For each state S, form test requirements such that for each incom-

ing transition and each outgoing transition, both transitions must be taken in

sequence.

� Requirements: Predicates on two edges of the speci�cation graph must evaluate

to True.

� Speci�cations:

{ Pre�x: Inputs to get to the pre-state immediately preceding the edge.

{ Test case values: Assignments to variables to satisfy the preconditions and

a new value for the triggering event variable.

{ Verify: Inputs to the software to show the post-state; depends on the soft-

ware.

{ Exit: Input to the software to stop execution; depends on the software.

{ Expected outputs: Post-state from the requirements.

� Script: A sequence of inputs to the software; the format depends on the software.

4. Complete Sequence Level

� De�nition: The test engineer must de�ne meaningful sequences of transitions

on the speci�cation graph by choosing sequences of states that should be entered.

� Requirements: Lists of states.

� Speci�cations:
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{ Setup: Should be empty

{ Test case value: Value assignments necessary to take every transition on the

sequence path.

{ Verify: Inputs to the software to show the post-state; depends on the soft-

ware.

{ Exit: Input to the software to stop execution; depends on the software.

{ Expected outputs: Sequence of states.

� Script: A sequence of inputs to the software; the format depends on the software.

2.2 Derivation Process

This section presents a process that can be used to derive test cases. The process steps for

all four levels of testing are presented together, as there is a fair amount of overlap. If not

all four levels are used, some of these steps should be skipped. The steps are presented as

being purely manual; in the future schemes for automating as many of the steps as possible

will be developed.

The general process is shown in Figure 5; this merely reects the multi-step aspect of our

test generation process that was presented in Section 2.1.

1. Develop transition conditions. The �rst step is to develop transition condi-

tions, which are predicates that de�ne under what conditions each transition will

be taken. With some speci�cation languages (e.g., SCR and CoRE), the transition

conditions are encoded directly into the speci�cations. With other languages, the

conditions may have to be derived.

2. Develop speci�cation graph. The speci�cation graph was described in Section
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Functional Specifications

Specification Graph

Test Requirements

Test Specifications

Test Scripts

Figure 5: General Process for Generating Test Cases

2.1. It can be directly derived from the speci�cation table, and edges annotated with

the conditions derived in step 1.

This is the point at which the process separates for the four testing levels.

3. Develop transition coverage test requirements.

(a) Derive transition predicates. The conditions from step 1 are listed one at a

time to form test requirements.

4. Develop full predicate test requirements.

(a) Construct truth tables for all predicates in the speci�cation graph. The

predicate coverage tests can be based on an expression tree or directly on the

predicates. If all the logical connectors are the same (all ANDs or all ORs), it is

a simple matter to modify the values for the clauses in the predicates directly. If

ANDs and ORs are mixed freely, however, it is less error-prone to construct the

expression tree. Most speci�cation languages di�erentiate between trigger events

and preconditions; in this case, the trigger events must be marked specially so

that the test engineer remembers to put that input after the precondition inputs.
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5. Develop transition-pair test requirements.

(a) Identify all pairs of transitions. Transition-pair tests are ordered pairs of

condition values, each representing an input to the state and an output from the

state. These are formed by enumerating all the input transitions (M), all the

output transitions (N), then creating M �N pairs of transitions.

(b) Construct predicate pairs. These pairs of transitions are then replaced by

the predicates from the speci�cation graph.

6. Develop complete sequence test requirements.

(a) Identify complete lists of states. The complete sequence tests are created

by the tester. This is done by choosing sequences of states from the speci�cation

graph to enter.

(b) Construct sequence of predicates. The sequences of states are transformed

into sequences of conditions that will cause those states to be entered.

At this point, test requirements for the four levels will be in a uniform format, as

truth assignments for predicates.

7. Construct test speci�cations. For each unique test requirement, generate pre�x

values, test case values, verify conditions, exit conditions, and expected outputs. Note

that there may be a fair amount of overlap among the test requirements, thus the

\unique" restriction. Generating the actual values may involve solving some algebraic

equations. For example, if a condition is A > B, values for A and B must be chosen

to give the predicate the appropriate value. It is also at this point that some \invalid"

tests might be discovered. For example, it may be impossible or meaningless to

pair all incoming and outgoing transitions for each state. In this case, certain test

speci�cations will be discarded.
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8. Construct test scripts. Each test speci�cation is used to construct one test script.

The actual scripts must reect the input syntax of the program, so knowledge of the

input syntax of the program is required for this step. (Note that this is the only step

that requires any knowledge of the implementation, all preceding steps depend solely

on the functional speci�cations.)

2.2.1 Automation Notes

It is possible to automate almost all of this derivation process. If a machine-readable form

of the speci�cation table is available, the transition conditions can be read directly from

the table. The speci�cation graph can then be automatically created from the states and

transition conditions. Test requirements take the form of partial truth tables de�ned on

transition predicates, state transition predicates, and pairs of state transition predicates.

Given a formal functional speci�cation, most if not all of these test requirements can be

generated automatically. The pre�x of a test case includes inputs necessary to put the

system into a particular pre-state. Given the speci�cation graph, many of these pre�xes can

be generated automatically. One open question is whether this problem is generally solvable

(unlike the related reachability problem in general software, which is generally unsolvable),

and how to solve or partially solve the problem. It is also possible to automatically re�ne test

speci�cations into test scripts. Finally, algorithms for automatically generating test scripts

can be developed, although the input syntax of the program will be needed. The �nal

step, generating complete sequence tests, cannot be fully automated. But an appropriate

interface could present the speci�cation graph, and allow the tester to choose sequences of

states by pointing and clicking on the screen. Each time a state is chosen, the transition

from the previous state could be automatically translated into values and saved as part of

the test case. This would allow the tester's job to become the purely intellectual exercise
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of choosing sequences of states to be entered.

2.3 Cruise Control Example

This section presents an example of applying the test data generation model to a speci�-

cation for an automobile cruise control system. Cruise control is a common example in the

literature [Atl94, Jin96]. Table 1 shows the speci�cations for the system (note that it does

not model the throttle). It has four states: OFF (the initial state), INACTIVE, CRUISE,

and OVERRIDE. The system's environmental conditions indicate whether the automobile's

ignition is on (Ignited), the engine is running (Running), the automobile is going too fast

to be controlled (Toofast), the brake pedal is being pressed (Brake), and whether the cruise

control level is set to Activate, Deactivate, or Resume.

Previous Mode Ignited Running Toofast Brake Activate Deactivate Resume New Mode

O� @T - - - - - - Inactive

Inactive @F - - - - - - O�

t t - f @T - - Cruise

Cruise @F - - - - - - O�

t @F - - - - - Inactive

t - @T - - - -

t t f @T - - - Override

t t f - - @T -

Override @F - - - - - - O�

t @F - - - - - Inactive

t t - f @T - - Cruise

t t - f - - @T

Table 1: SCR Speci�cations for the Cruise Control System

Each row in the table speci�es a conditioned event that activates a transition from the

mode on the left to the mode on the right. A table entry of @T or @F under a column

header C represents a triggering event @T(C) or @F(C). This means that the value of C

must change for the transition to be taken. A table entry of t or f represents a WHEN

condition. WHEN[C] means the transition can only be taken if C is true, and WHEN[:C]

means it can only be taken if C is false. If the value of an environmental condition C does
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P1 OFF @TIgnited INACTIVE
P2 INACTIVE @FIgnited OFF
P3 INACTIVE @TActivate ^ Ignited ^Running ^ :Brake CRUISE
P4 CRUISE @FIgnited OFF
P5 CRUISE @FRunning ^ Ignited INACTIVE
P6 CRUISE @TToofast^ Ignited INACTIVE
P7 CRUISE @TBrake ^ Ignited ^Running ^ :Toofast OVERRIDE
P8 CRUISE @TDeactivate ^ Ignited ^Running ^ :Toofast OVERRIDE
P9 OVERRIDE @FIgnited OFF
P10 OVERRIDE @FRunning ^ Ignited INACTIVE
P11 OVERRIDE @TActivate ^ Ignited ^Running ^ :Brake CRUISE
P12 OVERRIDE @TResume ^ Ignited ^Running ^ :Brake CRUISE

Table 2: Cruise Control Speci�cation Predicates

not a�ect a conditioned event, the table entry is marked with a hyphen \-" (don't care

conditions).

Table 2 shows the transitions of the speci�cation in predicate form, numbered P1 through

P12. Figure 6 shows the speci�cation graph, with the edges labeled with the condition

numbers.

2.3.1 Full Predicate Coverage Level

There are nine transitions in the cruise control speci�cations, and twelve disjunctive pred-

icates (Table 2 shows each disjunctive predicate on a separate line). For convenience, the

technique is applied by considering each predicate speci�cation separately. As stated in

Section 2.1.2, both the before- and after-values of the triggering event should be tested.

For SCR, this is handled by treating @ as an operator and expanding it algebraically. The

relevant expansions are:

� @T (X) � :X ^X 0



34

INACTIVE

OVERRIDE

CRUISEOFF

9P

1P

2P

4P

3P

10P

5 6P P

1211P P

7 8P P

Figure 6: Speci�cation Graph for Cruise Control

� @T (X ^ Y ) � :(X ^ Y ) ^ (X 0 ^ Y 0) � (:X _ :Y ) ^X 0 ^ Y 0

� @T (X _ Y ) � :(X _ Y ) ^ (X 0 ^ Y 0) � :X ^ :Y ^X 0 ^ Y 0

Table 3 repeats Table 2, but with the trigger events expanded appropriately.

The test case requirements for the full predicate coverage level are below with the environ-

mental variables shown as I (Ignited) R (Running), T (Toofast), B (Brake), A (Activate), D

(Deactivate), and S (Resume). The variable values are taken from the predicates, and are

shown as T, F, t, f, and -. A T or F means the clause is triggering, and the table contains

a before-and after-value. The values for the test case are the new value for the triggering

clause (T or F), and the t and f values from the WHEN conditions. The expected output

for the test speci�cation is derived from the triggering event, the post-state, and any terms

or variables that are de�ned as a result of the transition.
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P1 OFF :Ignited ^ Ignited0 INACTIVE
P2 INACTIVE Ignited ^ :Ignited0 OFF
P3 INACTIVE :Activate ^ Ignited ^Running ^ :Brake ^Activate0 CRUISE
P4 CRUISE Ignited ^ :Ignited0 OFF
P5 CRUISE Running ^ Ignited ^ :Running0 INACTIVE
P6 CRUISE :Toofast^ Ignited ^ Toofast0 INACTIVE
P7 CRUISE :Brake ^ Ignited ^Running ^ :Toofast^Brake0 OVERRIDE
P8 CRUISE :Deactivate ^ Ignited ^Running ^ :Toofast ^Deactivate0 OVERRIDE
P9 OVERRIDE Ignited ^ :Ignited0 OFF
P10 OVERRIDE Running ^ Ignited ^ :Running0 INACTIVE
P11 OVERRIDE :Activate ^ Ignited ^Running ^ :Brake ^Activate0 CRUISE
P12 OVERRIDE :Resume ^ Ignited ^Running ^ :Brake ^Resume0 CRUISE

Table 3: Expanded Cruise Control Speci�cation Predicates

The �rst two transitions have only one clause, so the only test cases are based on the

triggering event. The third transition, P3, has four clauses:

@TActivate ^ Ignited ^Running ^ :Brake

and its expanded version is:

:Activate ^ Ignited ^Running ^ :Brake ^Activate0

Its test case requirements are:

Pre Post
State Activate Ignited Running Brake Activate0 State
INACTIVE F t t f T CRUISE
INACTIVE T t t f T INACTIVE
INACTIVE F f t f T OFF
INACTIVE F t f f T INACTIVE
INACTIVE F t t t T INACTIVE
INACTIVE F t t f F INACTIVE
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The �rst row is the predicate as it appears in the speci�cation; every clause is True. The

subsequent rows make each clause false in turn. Because there are no _ operators, the full

predicate coverage criterion is satis�ed by holding all other clauses True.

Below are the requirements for all the predicates in the cruise control program. There are

54 test cases for the 12 predicates.

Pre Variable Triggering Post

State Values Event State

I R T B A D S

P1 OFF F - - - - - - Ignited0 = True INACTIVE

OFF T - - - - - - Ignited0 = True OFF

OFF F - - - - - - Ignited0 = False OFF

P2 INACTIVE T - - - - - - Ignited0 = False OFF

INACTIVE F - - - - - - Ignited0 = False INACTIVE

INACTIVE T - - - - - - Ignited0 = True INACTIVE

P3 INACTIVE t t - f F - - Activate0 = True CRUISE

INACTIVE f t - f F - - Activate0 = True INACTIVE

INACTIVE t f - f F - - Activate0 = True INACTIVE

INACTIVE t t - t F - - Activate0 = True INACTIVE

INACTIVE t t - f T - - Activate0 = True INACTIVE

INACTIVE t t - f F - - Activate0 = False INACTIVE

P4 CRUISE T - - - - - - Ignited0 = False OFF

CRUISE F - - - - - - Ignited0 = False CRUISE

CRUISE T - - - - - - Ignited0 = True CRUISE

P5 CRUISE t T - - - - - Running0 = False INACTIVE

CRUISE f T - - - - - Running0 = False CRUISE

CRUISE t F - - - - - Running0 = False CRUISE

CRUISE t T - - - - - Running0 = True CRUISE

P6 CRUISE t - F - - - - Toofast0 = True INACTIVE

CRUISE f - F - - - - Toofast0 = True CRUISE

CRUISE t - T - - - - Toofast0 = True CRUISE

CRUISE t - F - - - - Toofast0 = False CRUISE

P7 CRUISE t t f F - - - Brake0 = True OVERRIDE

CRUISE f t f F - - - Brake0 = True CRUISE

CRUISE t f f F - - - Brake0 = True CRUISE

CRUISE t t t F - - - Brake0 = True CRUISE

CRUISE t t f T - - - Brake0 = True CRUISE
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CRUISE t t f F - - - Brake0 = False CRUISE

P8 CRUISE t t f - - F - Deactivate0 = True OVERRIDE

CRUISE f t f - - F - Deactivate0 = True CRUISE

CRUISE t f f - - F - Deactivate0 = True CRUISE

CRUISE t t t - - F - Deactivate0 = True CRUISE

CRUISE t t f - - T - Deactivate0 = True CRUISE

CRUISE t t f - - F - Deactivate0 = False CRUISE

P9 OVERRIDE T - - - - - - Ignited0 = False OFF

OVERRIDE F - - - - - - Ignited0 = False OVERRIDE

OVERRIDE T - - - - - - Ignited0 = True OVERRIDE

P10 OVERRIDE t T - - - - - Running0 = False INACTIVE

OVERRIDE f T - - - - - Running0 = False OVERRIDE

OVERRIDE t F - - - - - Running0 = False OVERRIDE

OVERRIDE t T - - - - - Running0 = True OVERRIDE

P11 OVERRIDE t t - f F - - Activate0 = True CRUISE

OVERRIDE f t - f F - - Activate0 = True OVERRIDE

OVERRIDE t f - f F - - Activate0 = True OVERRIDE

OVERRIDE t t - t F - - Activate0 = True OVERRIDE

OVERRIDE t t - f T - - Activate0 = True OVERRIDE

OVERRIDE t t - f F - - Activate0 = False OVERRIDE

P12 OVERRIDE t t - f - - F Resume0 = True CRUISE

OVERRIDE f t - f - - F Resume0 = True OVERRIDE

OVERRIDE t f - f - - F Resume0 = True OVERRIDE

OVERRIDE t t - t - - F Resume0 = True OVERRIDE

OVERRIDE t t - f - - T Resume0 = True OVERRIDE

OVERRIDE t t - f - - F Resume0 = False OVERRIDE

Test speci�cations

The actual test speci�cations and test scripts are mechanically derived from the above test

requirements, and are too numerous to list. The predicate P3 is chosen as an illustrative

example. P3 has six full predicate level tests. For the �rst test case for P3, the test

case must reach the INACTIVE state; this forms the Prefix. The Test case values set

the before-value for the triggering event, and the WHEN condition variables of Inactive,

Running, and Brake, and then sets Activate to be True as the triggering event. The Verify

and Exit parts of the speci�cations are not shown, as they depend on the software. The
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software can safely be assumed to automatically print the (post) current state, and to not

require an exit.

1. Test speci�cation P3-1:

Pre�x: Ignited = True { Reach INACTIVE state
Test case value: Activate = False { Trigger before-value

Running = True { Condition variable
Brake = False { Condition variable
Activate = True { Triggering event

Expected outputs: CRUISE

2. Test speci�cation P3-2:

Pre�x: Ignited = True { Reach INACTIVE state
Test case value: Activate = False { Trigger before-value

Ignited = False { Condition variable
Running = True { Condition variable
Brake = False { Condition variable
Activate = True { Triggering event

Expected outputs: INACTIVE

3. Test speci�cation P3-3:

Pre�x: Ignited = True { Reach INACTIVE state
Test case value: Activate = False { Trigger before-value

Running = False { Condition variable
Brake = False { Condition variable
Activate = True { Triggering event

Expected outputs: INACTIVE

4. Test speci�cation P3-4:

Pre�x: Ignited = True { Reach INACTIVE state
Test case value: Activate = False { Trigger before-value

Running = True { Condition variable
Brake = True { Condition variable
Activate = True { Triggering event

Expected outputs: INACTIVE

5. Test speci�cation P3-5:
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Pre�x: Ignited = True { Reach INACTIVE state
Test case value: Activate = True { Trigger before-value

Running = True { Condition variable
Brake = False { Condition variable
Activate = True { Triggering event

Expected outputs: INACTIVE

6. Test speci�cation P3-6:

Pre�x: Ignited = True { Reach INACTIVE state
Test case value: Activate = False { Trigger before-value

Running = True { Condition variable
Brake = False { Condition variable
Activate = False { Triggering event

Expected outputs: INACTIVE

There are several interesting points to note about these test speci�cations. First, it should

be clear that there is some redundancy; some of the condition variables will not need to be

explicitly set, as they will already have the appropriate values. While this is true, the anal-

ysis necessary to decide what values do and do not need to be set probably outweighs the

small savings that could result from eliminating a few variable assignments. It is probable,

however, that this could be done automatically. Jin [Jin96] provided algorithms for deriving

invariants on modes; these could be used to directly eliminate unneeded variable assign-

ments. Her method used a static analysis. A dynamic analysis that uses the information in

the test speci�cation could be used to potentially eliminate more variable assignments. An-

other interesting point is the derivation of the pre�x part of the test speci�cation. Reaching

the pre-state is essentially a reachability problem. Given a control ow graph of a program,

it is an undecidable problem to �nd a test case that reaches a particular statement. Al-

though no theoretical analysis has been done as yet, it seems likely that the deterministic

nature of state-based systems means that this problem is solvable for speci�cation graphs

derived from state-based systems.
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Test scripts are simple rewrites of test speci�cations with modi�cations made for the input

requirements of the program being tested. The test script for the �rst test speci�cation

above is:

Ignited = True
Activate = False
Running = True
Brake = False
Activate = True

2.3.2 Transition-Pair Coverage Level

At the transition-pair level, each state is considered separately. Each input transition into

the state is matched with each transition out of the state, and the combination is used

to create test requirements, which are ordered pairs of predicates. The ordered pairs are

turned into ordered pairs of inputs to form test speci�cations.

Following are the test requirements for the four states. The pairs for the OFF state are:

1. P2:P1

2. P4:P1

3. P9:P1

The pairs for the INACTIVE state are:

1. P1:P2

2. P1:P3

3. P10:P2

4. P10:P3

5. (P5 OR P6):P2

6. (P5 OR P6):P3

The pairs for the CRUISE state are:

1. P3:P4

2. P3:(P5 OR P6)
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3. P3:(P7 OR P8)

4. (P11 OR P12):P4

5. (P11 OR P12):(P5 OR P6)

6. (P11 OR P12):(P7 OR P8)

The pairs for the OVERRIDE state are:

1. (P7 OR P8):P9

2. (P7 OR P8):P10

3. (P7 OR P8):(P11 OR P12)

These ordered pairs are transformed into predicates from Table 2. The \OR" entries result

from the transitions that have two conditions; either condition could be satis�ed to take

that transition. Rather than list before- and after-values for the triggering events in this

table, only the after-values are shown; the before-values are assumed to be the inverse.

I R T B A D S

OFF: 1. INACTIVE F - - - - - - OFF

OFF T - - - - - - INACTIVE

2. CRUISE F - - - - - - OFF

OFF T - - - - - - INACTIVE

3. OVERRIDE F - - - - - - OFF

OFF T - - - - - - INACTIVE

INACTIVE: 1. OFF T - - - - - - INACTIVE

INACTIVE F - - - - - - OFF

2. OFF T - - - - - - INACTIVE

INACTIVE t t - f T - - CRUISE

3. OVERRIDE t F - - - - - INACTIVE

INACTIVE F - - - - - - OFF

4. OVERRIDE t F - - - - - INACTIVE

INACTIVE t t - f T - - CRUISE

5. CRUISE t F - - - - - INACTIVE

OR

CRUISE t - T - - - - INACTIVE

INACTIVE F - - - - - - OFF

6. CRUISE t F - - - - - INACTIVE

OR

CRUISE t - T - - - - INACTIVE

INACTIVE t t - f T - - CRUISE

CRUISE: 1. INACTIVE t t - f T - - CRUISE
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CRUISE F - - - - - - OFF

2. INACTIVE t t - f T - - CRUISE

CRUISE t F - - - - - INACTIVE

OR

CRUISE t - T - - - - INACTIVE

3. INACTIVE t t - f T - - CRUISE

CRUISE t t f T - - - OVERRIDE

OR

CRUISE t t f - - T - OVERRIDE

4. OVERRIDE t t - f T - - CRUISE

OR

OVERRIDE t t - f - - T CRUISE

CRUISE F - - - - - - OFF

5. OVERRIDE t t - f T - - CRUISE

OR

OVERRIDE t t - f - - T CRUISE

CRUISE t F - - - - - INACTIVE

OR

CRUISE t - T - - - - INACTIVE

6. OVERRIDE t t - f T - - CRUISE

OR

OVERRIDE t t - f - - T CRUISE

CRUISE t t f T - - - OVERRIDE

OR

CRUISE t t f - - T - OVERRIDE

OVERRIDE: 1. CRUISE t t f T - - - OVERRIDE

OR

CRUISE t t f - - T - OVERRIDE

OVERRIDE F - - - - - - OFF

2. CRUISE t t f T - - - OVERRIDE

OR

CRUISE t t f - - T - OVERRIDE

OVERRIDE t F - - - - - INACTIVE

3. CRUISE t t f T - - - OVERRIDE

OR

CRUISE t t f - - T - OVERRIDE

OVERRIDE t t - f T - - CRUISE

OR

OVERRIDE t t - f - - T CRUISE

Test speci�cations

The actual test speci�cations and test scripts are mechanically derived from the above test

requirements, and are too numerous to list. The requirements for the OFF state are chosen
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as an illustrative example. OFF has three transition-pair coverage level tests. For the �rst

test case for OFF, the test case must reach the INACTIVE state; this forms the Prefix.

Then the test case must pass through transitions P1 and P2.

1. Test speci�cation OFF-1:

Pre�x: Ignited = True { Reach INACTIVE state
Test case values: Ignited = False { P2 Triggering event

Ignited = True { P1 Triggering event
Expected outputs: INACTIVE

2. Test speci�cation OFF-2:

Pre�x: Ignited = True { Reach INACTIVE state
Ignited = True { P3 Condition variable
Running = True { P3 Condition variable
Brake = False { P3 Condition variable
Activate = True { Reach CRUISE state

Test case values: Ignited = False { P4 Triggering event
Ignited = True { P1 Triggering event

Expected outputs: INACTIVE

3. Test speci�cation OFF-3:

Pre�x: Ignited = True { Reach INACTIVE state
Ignited = True { P3 Condition variable
Running = True { P3 Condition variable
Brake = False { P3 Condition variable
Activate = True { Reach CRUISE state
Ignited = True { P7 Condition variable
Running = True { P7 Condition variable
Toofast = False { P7 Condition variable
Brake = True { Reach OVERRIDE state

Test case values: Ignited = False { P9 Triggering event
Ignited = True { P1 Triggering event

Expected outputs: INACTIVE

2.3.3 Complete Sequence Level

At the complete sequence level, test engineers must use their experience and judgment

to develop sequences of states that should be tested. To do this well requires experience
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with testing, experience with programming, and knowledge of the domain. These tests are

omitted in this example.

2.3.4 Results

To evaluate this technique, a model of the cruise control problem was implemented in about

400 lines of C. The program accepts pairs of variable:values, where a value can be 't', 'f',

'T', or 'F'. Upper case inputs signify a triggering event. For convenience, the program was

implemented so that the pre-state could be either set with a test case Prefix, or by an

explicit input state value.

As a way to measure the quality of these tests, block and decision coverage was computed

using the full predicate test cases. The coverage was measured using Atac [HL92]. The

program, cruise, has �ve functions, 184 total blocks, and 174 decisions. The 54 test cases

covered 163 of the blocks (89%) and 155 of the decisions (89%). Of the 20 uncovered deci-

sions, �ve were infeasible, and eleven were related to input parameters that were not used

during testing. That is, these eleven decisions were not related to the functional speci�ca-

tions given in Table 1. The remaining decisions were left uncovered because the variables

Activate, Deactivate, and Resume are only used as triggering events, not condition variables.

Although there have been very few published studies on the ability of speci�cation-based

tests to satisfy code-based coverage criteria, these results seem very promising.



3 TEST CASE GENERATION TECHNIQUES FOR UML
SPECIFICATION

This section gives a detailed discussion of how UML speci�cation can be used to generate

test cases, and how the procedure works.

3.1 Testing Model

UML can be used to specify a wide range of aspects of a system. Statecharts are the

most obvious place to start with test data generation. UML statecharts are based on �nite

state machines using an extended Harel state chart notation, and are used to represent

the behavior of an object. Behavior binds the structure of an object to its attributes and

relationships so that the object can meet its responsibilities. An object's methods implement

its behavior. By testing each method, we can test some elements of an object's behavior,

but not the overall behavior. State machines describes overall behavior of an object, thus

test cases generated from state machines test overall behavior of an object. The other

advantage of UML statecharts is that they have the same semantics as the other state-

based speci�cations. This makes it possible to generalize the test case generation model

described it Chapter 2 to UML statecharts. To modify the model to UML statecharts, we

explain the semantics and syntax of statecharts in UML speci�cations.

The state of an object is the combination of all attribute values and objects the object

contains; a state is static, at a point of time, rather than dynamic. The dynamics of the

object is modeled through transitions, which is a movement from a state to another. When

the object is in a given state, an event occurs that moves it to another state (or back to the

45
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same state). During the transition from state to state, an action occurs. Transitions are

more elaborate in the UML than in the Harel notation. The UML syntax for transition is:

event (arguments) [condition] ^ target.sendEvent (arguments)/operation (arguments)

Each of these �elds is optional { even the name may be omitted if it is clear when the

transition will be taken.

The event is the name of the transition. Often this is the only thing speci�ed for the tran-

sition. The transition has an optional argument list to indicate when data is present in the

transition, such as an error code or a monitored value. This argument list is enclosed within

parentheses like a standard function call. A guard condition is shown in square brackets.

A guard is a condition that must be met before the transition is taken. The sendEvent list

is a comma- separated list of events. Each event is directed toward a target object, and

may have arguments. Such events will be propagated outside of the enclosing object as a

result of this transition. This is one way concurrent state machines communicate, allowing

a transition in one state machine to a�ect other concurrent state machines. Lastly, the

operation list speci�es a comma-separated list of functions (each with possible arguments)

that will be called as a result of transition being taken.

Within states, both entry and exit actions, as well as an ongoing activity, may be speci�ed.

An entry action is a function that is called when the state is entered (even when the

transition is self-directed). An exit action is a function that is executed when the state is

exited (even when the transition is self-directed). Activities denote processing that continues

until completion, or until interrupted by a transition (even when the transition is self-

directed).

The test objects for the state-transition model are transition paths, the paths through the



47

graph that represent a full object life cycle from creation to destruction. That is, each test

object represents one possible sequence of states between the birth and the death of an

object. We may not be able to test the full object life cycle model with the current model,

only part of it.

UML categorizes transitions into �ve types: high-level transitions, compound transitions,

internal transitions, completion transitions, and enabled transitions. A high-level or group

transition originates from the boundary of composite states. A composite state is a state

that consists of either concurrent substates or disjoint substates. If triggered, it exits all

substates of the composite state starting the exit action with the innermost states in the

active state con�guration. A compound transition originates from a set of states and targets

a set of states. An internal transition executes without exiting or re-entering the state in

which it is de�ned. A completion transition is a transition without an explicit trigger,

although it may have a guard de�ned. When all transitions and entry actions and activities

in the currently active state are completed, a completion event instance is generated. This

event is the implicit trigger for a completion transition. An enabled transition is enabled

by an event, and it orginates from an active state. An enabled transition is triggered when

there exists at least one full path from the source state to the target state.

This research is only interested in enabled transitions. The previous model was based pri-

marily on predicate satisfaction. In UML, the enabled transitions are similar to transitions

that are based on the notion of predicate satisfaction. For the generalization purpose of the

model, the other types of transitions are not considered.

Four kinds of events can be speci�ed in UML: call event, signal event, time event, and change

event. A call event represents the reception of a request to synchronously invoke a speci�c

operation. The expected result is the execution of a sequence of actions that characterize
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Figure 7: Call Events
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Figure 8: Signal Events

the operation behavior at a particular state. Object creation and object destruction are

two special cases of a call event. Figure 7 illustrates a call event.

A signal event represents the reception of a particular (synchronous) signal. A signal event

instance should not be confused with the action (e.g. send action) that generated it. Excep-

tions are examples of signal events. The signal events are modeled as stereotyped classes,

as shown in Figure 8. The send dependency indicates that an operation sends a particular

signal.

A time event represents the passage of a designated period of time after a designated event

(often the entry of the current state) or the occurrence of a given date/time. In the UML,

the time event is modeled by using the keyword after followed by some expression that
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Figure 9: Time Events

Idle

when(11:49PM) / selfTest()
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Figure 10: Change Events

evaluates to a period of time. Figure 9 illustrates a time event.

A change event models an event that occurs when an explicit boolean expression becomes

true as a result of a change in value of one or more attributes or associations. A change

event is raised implicitly and is not the result of an explicit change event action. The change

event is di�erent from a guard. A guard is only evaluated at the time an event is dispatched

whereas, conceptually, the boolean expression associated with a change event is evaluated

continuously until it becomes true. The event that is generated remains until it is consumed

even if the boolean expression changes to false after that. In the UML, the change event

is modeled by using the keyword when followed by some Boolean expression. Figure 10
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illustrates a change event.

Among the four kinds of events, the change event can be expressed as a predicate. Hence,

we apply the state-based speci�cation test case generation model described in Chapter 2 to

enabled transitions with change events.

3.1.1 Transition Coverage Level

Transition coverage: Each enabled transition in the statechart diagram is

taken at least once.

3.1.2 Full Predicate Coverage Level

Full predicate coverage: Each clause in turn takes the values of True and False

while all other clauses in the predicate have values

such that the value of the predicate will always be

the same as the clause being tested.

3.1.3 Transition-Pair Coverage Level

Transition-pair coverage level: For each state S, form test requirements such that

for each incoming transition and each outgoing tran-

sition, both transitions must be taken sequentially.

Note: The transition-pair coverage criterion may not be feasible in a statechart that has

mixed types of transitions. The technique generates test data for only enabled transitions.
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Test Requirements

Test Specifications

Test Scripts

       UML Statecharts

Develop Transition Conditions

Figure 11: General Process for Generating Test Cases

If there are others types of transitions in a statechart, the technique cannot generate test

cases for them. We may not have test cases for some of the transition pairs.

3.1.4 Complete Sequence Level

Complete sequence level: The test engineer must de�ne meaningful sequences

of transitions on the statechart diagram by choosing

sequences of states that should be entered.

Note: The complete sequence coverage criterion may not be feasible in a statechart that has

mixed types of transitions. The reason is same as for the transition-pair coverage criterion.

3.2 Derivation Process

This section presents a process that can be used to derive test cases. Figure 11 shows the

general process for generating test cases.
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1. Develop transition conditions. The �rst step is to develop transition condi-

tions, which are predicates that de�ne under what conditions each transition will be

taken. In UML, the transition conditions are encoded directly into the speci�cations.

2. Develop transition coverage test requirements.

(a) Derive transition predicates. The conditions from step 1 are listed one at a

time to form test requirements.

3. Develop full predicate test requirements.

(a) Construct truth tables for all predicates in the speci�cation graph. The

predicate coverage tests can be based on an expression tree or directly on the

predicates. If all the logical connectors are the same (all ANDs or all ORs), it is

a simple matter to modify the values for the clauses in the predicates directly. If

ANDs and ORs are mixed freely, however, it is less error-prone to construct the

expression tree. Most speci�cation languages di�erentiate between trigger events

and preconditions; in this case, the trigger events must be marked specially so

that the test engineer remembers to put that input after the precondition inputs.

4. Develop transition-pair test requirements.

(a) Identify all pairs of transitions. Transition-pair tests are ordered pairs of

condition values, each representing an input to the state and an output from the

state. These are formed by enumerating all the input transitions (M), all the

output transitions (N), then creating M �N pairs of transitions.

(b) Construct predicate pairs. These pairs of transitions are then replaced by

the predicates from the speci�cation graph.

5. Develop complete sequence test requirements.
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(a) Identify complete lists of states. The complete sequence tests are created

by the tester. This is done by choosing sequences of states from the speci�cation

graph to enter.

(b) Construct sequence of predicates. The sequences of states are transformed

into sequences of conditions that will cause those states to be entered.

At this point, test requirements for the four levels will be in a uniform format, as

truth assignments for predicates.

6. Construct test speci�cations. For each unique test requirement, generate pre�x

values, test case values, verify conditions, exit conditions, and expected outputs. Note

that there may be a fair amount of overlap among the test requirements, thus the

\unique" restriction. Generating the actual values may involve solving some algebraic

equations. For example, if a condition is A > B, values for A and B must be chosen

to give the predicate the appropriate value. It is also at this point that some \invalid"

tests might be discovered. For example, it may be impossible or meaningless to

pair all incoming and outgoing transitions for each state. In this case, certain test

speci�cations will be discarded.

7. Construct test scripts. Each test speci�cation is used to construct one test script.

The actual scripts must reect the input syntax of the program, so knowledge of the

input syntax of the program is required for this step. (Note that this is the only step

that requires any knowledge of the implementation, all preceding steps depend solely

on the functional speci�cations.)
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3.2.1 Automation Notes

The UML speci�cations generated by Rational Rose case tool are all saved in plain text

format, which are readable on any machine. Each object is an instant of a class. A class

part of UML speci�cations has class names, class attributes, class methods, and a state

machine attached to it. An object's states and transitions can be gotten directly from the

class section of a speci�cation. Since the variables used in state transition descriptions

are de�ned in the class attributes section, the types and initial values of variables can be

obtained. With an appropriate data structure for the obtained information and algorithms

for the model, the test case generation process is automatable.

3.3 Cruise Control Example

This section presents an example of applying the test data generation model to the UML

speci�cation of automobile cruise control system. Figure 12 shows the UML statechart for

cruise control object. It has four states: OFF (the initial state), INACTIVE, CRUISE,

and OVERRIDE. The objects attributes indicate whether the automobile's ignition is on

(Ignited), the engine is running (Running), the automobile is going too fast to be controlled

(Toofast), the brake pedal is being pressed (Brake), and whether the cruise control level is

set to Activate, Deactivate, or Resume.

The transitions are shown as solid arrows from one state (the source state) to another state

(the target state) labeled by a transition string. Each transition string speci�es a conditioned

event that activates the transition from the source state to the target state. A transition

string when(c) means the value of c must change from false to true for the transition to be

taken. A transition string when(not c) means the value of c must change from true to false

for the transition to be taken. A transition string when(c) [d] means d must be evaluated
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OFF INACTIVE

OVERRIDECRUISE

when(Ignited)

when(not Ignited)

when ((A
ctive)[Ig

nited AND Running AND NOT Brake]
when (Ignited)
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unning)[Ig
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when (T
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when (Resume)[Ignited AND Running AND NOT Brake]
when (Activate)[Ignited AND Running AND NOT Brake]

when (Brake)[Ignited AND Running AND NOT Toofast]
when (Deactivate)[Ignited AND Running AND NOT Toofast]

w
hen (R

unning)[Ignited]

w
he

n 
(I
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ite

d)

Figure 12: UML Statechart for Cruise Control

to true before and at the time c is changed from false to true. A transition string when(c)

[not d] means d must be evaluated to false before and at the time c changed from false

to true. Other combinations can be inferred from the above descriptions.

The conventions used in SCR method for event description are simple and visual, so we

describe the transitions with those conventions. The when(c) part of the transition is

mapped as @T(c), when(not c) is mapped as @F(c). The guard(s) [d] are mapped directly

to when conditions.

Table 4 shows the transitions of the speci�cation in predicate form, numbered P1 through

P12.

From the table we can see that now we have exactly same table as we have from SCR

speci�cation of cruise control system; the rest of the process same as in Chapter 2.
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P1 OFF @TIgnited INACTIVE
P2 INACTIVE @FIgnited OFF
P3 INACTIVE @TActivate ^ Ignited ^Running ^ :Brake CRUISE
P4 CRUISE @FIgnited OFF
P5 CRUISE @FRunning ^ Ignited INACTIVE
P6 CRUISE @TToofast^ Ignited INACTIVE
P7 CRUISE @TBrake ^ Ignited ^Running ^ :Toofast OVERRIDE
P8 CRUISE @TDeactivate ^ Ignited ^Running ^ :Toofast OVERRIDE
P9 OVERRIDE @FIgnited OFF
P10 OVERRIDE @FRunning ^ Ignited INACTIVE
P11 OVERRIDE @TActivate ^ Ignited ^Running ^ :Brake CRUISE
P12 OVERRIDE @TResume ^ Ignited ^Running ^ :Brake CRUISE

Table 4: Cruise Control Speci�cation Predicates



4 A PROOF OF CONCEPT TOOL

TCGen is a proof-of-concept tool that generates test cases from SCR and UML speci�ca-

tions. The SCR and UML speci�cations that TCGen can process are case tool speci�c. The

SCR speci�cations that we considered in TCGen design are generated by SCR* Toolset

[JK98], which is developed by the Naval Research Laboratory. The UML speci�cations were

generated by Rational Software Corporation's Rational Rose, hereafter Rose.

In this chapter, we �rst describe the structure of the SCR and UML speci�cation �les and

assumptions that we made during our design and implementation of TCGen. Then we give

the architectural design for the TCGen. Finally, the algorithms that parse the speci�cation

�les and generate test cases for full-predicate coverage and transition-pair coverage criteria

are presented.

4.1 SCR and UML Speci�cation Files

Both SCR* Toolset and Rose have graphical user interfaces. SCR* Toolset has consistency

and type checking functions that enforce consistency of names and types among various

kinds of elements of a speci�cation. Rose cannot enforce consistency, but it has well-de�ned

notations for all possible elements, that is, if followed, a consistent speci�cation can be

produced. Meanwhile, in both tools the speci�cations are saved as ASCII text �les. This

provided another possibility for automatically generating test cases from speci�cation. We

parse the speci�cation �le syntax to get its semantic meaning. Parsing the speci�cation

text �les heavily depends on their structure. In this section, we will give a brief overview

57
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of how the speci�cation text �les were structured.

4.1.1 Structure of SCR Speci�cation Files

SCR* Toolset supports the speci�cation of the following items individually:

� Type Dictionary

� Mode Class Dictionary

� Constant Dictionary

� Variable Dictionary

� Speci�cation Assertion Dictionary

� Environmental Assertion Dictionary

� Enumerated Monitored Variable Dictionary

� Controlled Variable Dictionary

� Mode Class Tables

� Term Variable Tables

The speci�cations for all items are saved as ASCII text �les in the above order. There is

no restriction on the �le name, or on the extension. The structure of the text �le is shown

in Figure 13.

4.1.2 Assumptions for SCR Speci�cations

The following assumptions were made while parsing the SCR speci�cation text �le:

� @T, @F denote trigger events

� AND denotes logical and

� Only one mode class

� boolean variables

� Single variable change in event

� None/Single/Multiple variables in condition

� State transitions are deterministic



59

Type Dictionary
TYPE Type Name

BASETYPE Base Type Name

UNITS Unit Name

COMMENT Comments for the type usage

Mode Class Dictionary
MODECLASS Mode Class Name

MODES List of modes separated by comma

INITMODE Initial Mode

COMMENT Comments for the mode class usage

Constant Dictionary
CONSTANT Constant Name

TYPE Type Name

VAL Value

COMMENT Comments for the constant

Variable Dictionary
MON Name of a monitored variable

TYPE Type Name

INITVAL Initial value

ACCURACY Accuracy

COMMENT Rules for value assignment

CON Name of a controlled variable

TYPE Type Name

INITVAL Initial value

ACCURACY Accuracy

COMMENT Rules for value assignment

Speci�cation Assertion Dictionary
ASSERTION Name of an assertion

EXPR Expression

COMMENT Explanation of assertion

Figure 13: The Structure of SCR Speci�cation Text File
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Environmental Assertion Dictionary

Enumerated Monitored Variable Table

Event, Mode Transition, and Condition Functions
EVENTFUNC Event function table name

MCLASS Mode class name

MODES Mode name

EVENTS Event1, Event2

ASSIGNMENTS Value1, Value2

CONDFUNC Condition function table name

CONDITIONS Condition1, Condition2

ASSIGNMENTS Value1, Value2

MODETRANS Mode transition table name

FROM State name

EVENT Event

WHEN List of Disjunctive Conditions

TO State name

Figure 13: The Structure of SCR Speci�cation Text File - continued

4.1.3 Structure of UML MDL Files

UML speci�cation text �les generated by Rose are generally called MDL �les because of

the �le extension "mdl". We use this convention in this thesis.

The MDL �les store speci�cation information from di�erent perspectives. There are two

main categories of information: logical and physical. The speci�cation itself is grouped into

two packages: use case and object collaboration diagrams are packed as Use Case Package,

Class Diagram and State Transition Diagram are packed as Logical View. We are interested

in state transition diagrams, hence, we give only the structure of the Logical View section of

the MDL �le. Figure 14 shows the internal structure of class diagram and state transition

diagram in a MDL �le.
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Logical Models

object Class

classAttributes

-------------- State Transition: Logical -------------

State Machine

Object State /*StartState, Normal, EndState */

State Transition

State Machine

Object State /* Normal */

-------------- State Transition: Physical ------------

State Diagram

State View /* StartState, Normal, EndState */

Transition View

object Association

object Role

Logical Presentations

object ClassDiagram /* with grouping and name */

object ClassView

Association View

Role View

Inheritance View

Figure 14: Structure of MDL File for Class Diagram and State Transition Dia-

gram Section
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4.1.4 Assumptions for UML Speci�cations

As stated in Chapter 3, several types of transitions can be speci�ed in UML. Because in this

thesis we are interested only in transitions triggered by change events, we did not consider

other types of transitions. For the UML speci�cation �le input of TCGen, we made the

following assumptions:

� All transitions are triggered by change events.

� Events and conditions are expressed through boolean type class attributes.

� The speci�cation is written strictly following the UML notations. For example, when

denotes a change event, conditions are in solid brackets ([]), etc. Because there is

no way to check whether a speci�cation is well-formed or consistent, this assumption

cannot be checked. The OCL does not have mechanism to enforce its well-formedness

rules on all parts of the UML speci�cation. Also, Rose does not have a function to

write the speci�cation in OCL.

� State transitions are deterministic.

4.2 Architectural Design

We explain the design model of the tool through a class diagram and three object collabo-

ration diagrams generated by Rose.

4.2.1 Class Diagram

Figure 15 is a UML class diagram describing the TCGen tool. Classes are represented

as boxes that have three parts, the class name, data members that are declared in the

class, and methods of the class. The main entry point (TCGen) has four objects, a UML

speci�cation parser, a SCR speci�cation parser, a full predicate test case generator, and a
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transition-pair test case generator.

UMLSpecParser reads a UML speci�cation text �le, parses it, and generates state transition

table(s) for classes that have state machines. SCRSpecParser reads SCR speci�cation text

�les, parses them, and generates state transitions tables for mode classes. FullPredicate

takes a state transition table as an input, generates test cases for the full predicate coverage

criterion, and saves the test cases into a �le. TransitionPair takes a state transition table

as input, generates test cases for the transition-pair coverage criterion, and saves the test

cases in an ASCII text �le.

4.2.2 Object Collaboration Diagrams

Object collaboration diagrams (OCD) for generating full predicate coverage, transition cov-

erage, and transition-pair coverage test cases are shown in Figures 16, 17, and 18. We

illustrate the OCD for generating test cases for full predicate coverage, the two �gures have

similar explanation.

In Figure 16, TCGen is a main program. It interacts with the user, gets the command

to read a SCR or UML speci�cation �le, and invokes SCRSpecParser or UMLSpecParser

sending a speci�cation �le name as a parameter. SCRSPecParser or UMLSpecParser opens

the �le, parses it, generates transition table, and returns the transition table to TCGen.

Next, TCGen invokes FullPredicate, sending the state transition table as a parameter.

FullPredicate generates test cases for full predicate coverage criteria, saves the test cases in

�les, and returns a message to TCGen that test cases have been generated.
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<<Algorithm>>
TransitionPair

sttNext: Hashtable
sttPrevious: Hashtable
modeClassDictionary: Hashtable
transitionPairs: Hashtable
tcValueOrder: Hashtable
modeClassName: String
modeClass: ModeClass
modes: Vector
currentState: String
initialState: String
previousState: String
expectedOutput: String
transitions: Vector
transition: Transition
condition: Condition
incomingTrans: Vector
outgoingTrans: Vector
testCaseValue: Vector
testCaseSet: Vector

generateTC()
printTC()
getPrefix()

fileName: String
scrFile: FileInputStream
sttNext: Hashtable
sttPrevious: Hashtable
modeClassDictionary: Hashtable
initialState: String

getTableNext()
getTablePrevious()
getInitState()
getModeClassDictionary()
parseSCRAlgor()
readLine()

fileName: String

sttNext: Hashtable
sttPrevious: Hashtable
modeClassDictionary: Hashtable
initialState: String

umlFile: FileInputStream

getTableNext()
getTablePrevious()
getInitState()
getModeClassDictionary()

readLine()
parseUMLAlgor()

<<TextFile>>
UMLSpecificationFileSCRSpecificationFile

<<TextFile>>

Reads Reads

generateTC()
printTC()
getPrefix()

<<Algorithm>>
FullPredicate

sttNext: Hashtable

initialState: String
previousState: String

expectedOutput: String
transitions: Vector

transition: Transition
condition: Condition
testCaseValue: Vector
testCaseSet: Vector

sttPrevious: Hashtable

nextState: String

newTransitions: Vector

Invokes

Invokes Invokes

Invokes

<<TextFile>>
TestCaseFiles

Generates
Generates

<<Algorithm>><<Algorithm>>

<<Controller>>
TCGen

scrStruc: SCRSpecParser
umlStruc: UMLSpecParser
fptc: FullPredicate
tptc: TransitionPair
sttNext: Hashtable
sttPrevious: Hashtable

main()
SCRSpecParser UMLSpecParser

Figure 15: Class Diagram for TCGen Tool
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2: Read specification

3: Process specification

4: State transition table generated (table)

7: Write test files

:TCGen

:TestCase
Files File

5: Generate full predicate
    coverage test cases(table)

Generate test cases6:

:Full
Predicate

:Spec
1:Process (Specification file name)

:Specification

Parser

Figure 16: OCD for Generating Full Predicate Coverage Test Cases

2: Read specification

3: Process specification

4: State transition table generated (table)

7: Write test files

:TCGen

:TestCase
Files

Generate test cases

:Transition

1:Process (Specification file name)
:Spec

File
:Specification

5: Generate transition
    coverage test cases(table)

Parser

Figure 17: OCD for Generating Transition Coverage Test Cases
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2: Read specification

3: Process specification

4: State transition table generated (table)

7: Write test files

:TCGen

:TestCase
Files

Generate test cases6:

:Transition
Pair

5: Generate transition−pair
    coverage test cases(table)

1:Process (Specification file name)
:Spec

File
:Specification

Parser

Figure 18: OCD for Generating Transition-Pair Coverage Test Cases

4.3 Algorithms

This section introduces algorithms used in TCGen. Algorithms were developed to parse

SCR and UML speci�cation text �les and to generate test case for full predicate coverage,

transition coverage, and transition-pair coverage criteria. A pre�x generation algorithm was

used in test data generation algorithms.

4.3.1 Parse SCR Speci�cation Algorithm

Figure 19 gives an algorithm to parse SCR speci�cation text �les. Algorithm SCRSpec-

Parser takes an SCR speci�cation �le as an input, then parses the �le to extract the

necessary information for test case generation. It extracts mode class dictionary, variable

dictionary, and state transition table, and saves them in data structures.
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algorithm: ParseSCRSpeci�cation (SCR Speci�cation)
input: SCR specification text file.

output: State transition table.

output criteria: Find all incoming and outgoing transitions for each state.

ParseSCRSpeci�cation (SCR Speci�cation)
BEGIN -- Algorithm ParseSCRSpecification

-- Read until "Mode Class Dictionary" section starts

WHILE (curLine DOES NOT CONTAIN "Mode Class Dictionary") LOOP
curLine = NEW LINE

END LOOP
PARSE "Mode Class Dictionary" section; EXTRACT All mode class names

-- Read until "Variable Dictionary" section starts

WHILE (Currentline DOES NOT CONTAIN "Variable Dictionary") LOOP
curLine = NEW LINE

END LOOP
PARSE "Variable Dictionary" section; EXTRACT All variable names,

types, initial value, and accuracy.

-- Read until "Event, mode transition, condition" section starts

WHILE (Currentline DOES NOT CONTAIN "Variable Dictionary") LOOP
curLine = NEW LINE

END LOOP
PARSE "Event, mode transition, condition" section; EXTRACT All previous

states, next states, transition predicates.

RETURN (Finished)

END Algorithm ParseSCRSpeci�cation

Figure 19: The ParseSCRSpeci�cation Algorithm
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4.3.2 Parse UML Speci�cation Algorithm

Figure 20 gives an algorithm to parse UML speci�cation text �les (MDL �les). Algorithm

UMLSpecParser takes a UML speci�cation �le as an input, then parses the �le to extract

the necessary information for test case generation. It extracts class name, class attributes,

and state machine, and saves them in data structures. In this algorithm, UML classes are

mapped to mode classes of SCR, class attributes to variable dictionaries, and state machines

to state transition tables.

4.3.3 Generate Transition Coverage Test Cases Algorithm

Figure 21 gives an algorithm to generate test cases for the transition coverage criterion. This

algorithm uses an algorithm to �nd a pre�x for a given state. The GetPre�x algorithm

is shown in Figure 22. Algorithm GenerateTransitionCoverageTCs takes a StateTransi-

tionTable as input, and generates a test case for each of the outgoing transition of each

source state in the table. Although we developed the GenerateTransitionPairTCs algo-

rithm for the transition pair coverage criterion, we did not implement it in our tool TCGen

because the transition-pair coverage criterion subsumes the transition coverage criterion. A

criterion A subsumes criterion B if for every test set T that satis�es A, T also satis�es B.

4.3.4 Generate Full-Predicate Coverage Test Cases Algorithm

Figure 23 gives an algorithm for generating test cases for the full predicate coverage criterion.

Algorithm FullPredicateCoverageTCs takes a state transition table as input, and generates

test cases for the full predicate coverage criterion. It processes each outgoing transition of

each source state, generates a test case that makes the transition valid, and then generates

test cases that make the transition invalid. When generating a test case, a pre�x is gotten
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algorithm: ParseUMLSpeci�cation (UMLSpeci�cationFile)
input: UML specification text file.

output: State transition table.

output criteria: Find all incoming and outgoing transitions for each state.

declare: statemachine -- A finite state machine (FSM) that describes the

behavior of a class.

varDic -- The dictionary created for a UML class attributes.

outgoingTrans(s) -- The set of outgoing transitions from state s.

sttNext -- A table that is for outgoing transitions in the FSM.

sttPrev -- A table that is for incoming transitions in the FSM.

otr -- An outgoing transition that being processed.

ParseUMLSpeci�cation (UMLSpeci�cationFile)
BEGIN -- Algorithm ParseUMLSpecification

-- Read until "object Class category 'Logical View'" section starts

varDic = EMPTY

FOR EACH "object Class" section

IF (EXISTS attributes) THEN
WHILE (HAS MORE class attributes) LOOP

get attribute name, type, and initial value

varDic = varDic [ f(attribute name, type, initial value)g
END LOOP

END IF
IF (EXISTS statemachine) THEN

sttNext = EMPTY

sttPrev = EMPTY

FOR EACH state s in statemachine

prevState = s

get outgoingTrans(s)

FOR EACH outgoing transition otr 2 outgoingTrans(s)

get eventType

get eventParam

get condition

get nextState

sttNext = sttNext [ f(prevState, eventType, eventParam, condition, nextState)g
sttPrev = sttPrev [ f(nextState, eventType, eventParam, condition, prevState)g

END FOR
END FOR

END IF
END FOR

END Algorithm ParseUMLSpeci�cation

Figure 20: The ParseUMLSpeci�cation Algorithm
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algorithm: GenerateTransitionCoverageTCs (StateTransitionTable)
input: State transition table.

output: Test cases for transition coverage criterion.

output criteria: Each test case consists of prefix, test case values, and expected output.

No redundant assignment in prefix and test case values.

declare: prefix(s) -- Inputs to get to the state s.

outgoingTrans(s) -- The set of outgoing transitions from state s.

otr -- An outgoing transition that being processed.

event(otr) -- The trigger event for transition otr.

whenCondition(otr) -- The precondition for transition otr be enabled.

nextState(otr) -- The next state for transition otr.

expectedOutput -- The post-state of FSM after a transition take place.

TCValue(otr) -- Value assignments for the trigger event and when

condition variables for transition otr.

TestCaseSet -- The whole set of test cases for transition coverage citerion.

GenerateTransitionCoverageTCs (StateTransitionTable)
BEGIN -- Algorithm GenerateTransitionCoverageTCs

TestCaseSet = EMPTY

FOR EACH source state s in StateTransitionTable

prefix(s) = GetPre�x(s)
get outgoingTrans(s)

-- Generate one test case for each transition

FOR EACH outgoing transition otr 2 outgoingTrans(s)

expectedOutput = nextState(otr)

TCValue(otr) = EMPTY

get event(otr) and whenConditions(otr)

-- Check for redundancy before assign a value to a variable

IF (: 9 a condition variable var 2 prefix(s) such that

var.name = event(otr).name ^ var.value = event(otr).value) THEN
TCValue(otr) = TCValue(otr) [ f(event(otr).name, event(otr).beforeValue)g

END IF
-- Assign value for clauses in when condition

FOR EACH clausei in whenConditions(otr)

IF (: 9 a condition variable var 2 prefix(s) such that

var.name = clausei.name ^ var.value = clausei.value) THEN
TCValue(otr) = TCValue(otr) [ f(clausei.name, clausei.value)g

END IF
END FOR
TCValue(otr) = TCValue(otr) [ f(event(otr).name, event(otr).afterValue)g
TestCaseSet = TestCaseSet [ f(prefix(s), TCValue(otr), expectedOutputg

END FOR
END FOR

END Algorithm GenerateTransitionCoverageTCs

Figure 21: The GenerateTransitionCoverageTCs Algorithm
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algorithm: GetPre�x (State)
input: The source state of a transition that is being processed.

output: Inputs to get to the given state.

output criteria: No redundant input.

declare: prefix(s) -- Inputs to get to the state s.

incomingTrans(s) -- The set of incoming transitions into state s.

itr -- An incoming transition that is being processed.

event(otr) -- The trigger event for transition otr.

whenCondition(otr) -- The precondition for transition otr to be enabled.

nextState(otr) -- The next state for transition otr.

expectedOutput -- The post-state of FSM after a transition takes place.

TCValue(otr) -- Value assignments for the trigger event and when

condition variables for transition otr.

TestCaseSet -- The whole set of test cases for transition coverage.

GetPre�x (State)
BEGIN -- Algorithm GetPrefix

s = state

prefixStates = prefixStates [ s

WHILE (s IS NOT initial state) LOOP
get incomingTrans(s)

prefix(s) = EMPTY

IF (9 transition itr 2 incomingTrans(s) such that

prevState(itr) = initialState) THEN
s = prevState(itr)

prefixStates = prefixStates [ s

EXIT

ELSE
s = prevState(itr) such that itr 2 incomingTrans(s) ^

prevState(itr) =2 prefixStates

prefixStates = prefixStates [ s

END IF
END LOOP

END Algorithm GetPre�x

Figure 22: The GetPre�x Algorithm
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�rst to reach the source state of a transition. Then each variable in the transition predicate

is assigned a test case value. To avoid redundant test case value assignments, those variables

that already have assigned values in the pre�xes are not considered in the test case value

assignment process.

4.3.5 Generate Transition-Pair Coverage Test Cases Algorithm

Figure 24 gives an algorithm for generating test cases for the transition-pair coverage crite-

rion. Algorithm GenerateTransitionPairTCs takes StateTransitionTable as an input, then

generates test cases for each pair of incoming-outgoing transitions from each source state.

GenerateTransitionPairTCs also uses the GetPre�x algorithm to get the input that is nec-

essary to put the system in the source state of an incoming transition.
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algorithm: GenerateFullPredicateCoverageTCs (StateTransitionTable)
input: State transition table.

output: Test cases for full predicate coverage.

output criteria: Each test case consists of prefix, test case values, and expected output.

assumption: Clauses in a predicate are disjunctive.

No redundant assignment in prefix and test case values.

declare: prefix(s) -- Inputs to get to the state s.

outgoingTrans(s) -- The set of outgoing transitions from state s.

otr -- An outgoing transition that is being processed.

event(otr) -- The trigger event for transition otr.

whenCondition(otr) -- The precondition for transition otr to be enabled.

nextState(otr) -- The next state for transition otr.

expectedOutput -- The post-state of FSM after a transition takes place.

TCValue(otr) -- Value assignments for the trigger event and when

condition variables for transition otr.

TestCaseSet -- The whole set of test cases for transition coverage.

GenerateFullPredicateCoverageTCs (StateTransitionTable)
BEGIN -- Algorithm GenerateFullPredicateCoverageTCs

TestCaseSet = EMPTY

FOR EACH source state s in StateTransitionTable

prefix(s) = GetPre�x(s)
get outgoingTrans(s)

-- Generate one test case for each transition

FOR EACH outgoing transition otr 2 outgoingTrans(s)

expectedOutput = nextState(otr)

TCValue(otr) = EMPTY

get event(otr) and whenConditions(otr)

-- Check for redundancy before assign a value to a variable

IF (: 9 a condition variable var 2 prefix(s) such that

var.name = event(otr).name ^ var.value = event(otr).value) THEN
TCValue(otr) = TCValue(otr) [ f(event(otr).name, event(otr).beforeValue)g

END IF
-- Assign value for clauses in when condition

FOR EACH clausei in whenConditions(otr)

IF (: 9 a condition variable var 2 prefix(s) such that

var.name = clausei.name ^ var.value = clausei.value) THEN
TCValue(otr) = TCValue(otr) [ f(clausei.name, clausei.value)g

END IF
END FOR
TCValue(otr) = TCValue(otr) [ f(event(otr).name, event(otr).afterValue)g
TestCaseSet = TestCaseSet [ f(prefix(s), TCValue(otr), expectedOutputg

Figure 23: The GenerateFullPredicateCoverageTCs Algorithm
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-- get test cases for invalid transitions

expectedOutput = current state s

FOR EACH variable var in TCValue(otr)

TCValue(otr) = TCValue(otr) - f(var.name, var.value)g
var.value = :var.value
TCValue(otr) = TCValue(otr) [ f(var.name, var.value)g
TestCaseSet = TestCaseSet [ f(prefix(s), TCValue(otr), expectedOutput)g

END FOR
END FOR

END FOR
END Algorithm GenerateFullPredicateCoverageTCs

Figure 23: The GenerateFullPredicateCoverageTCs Algorithm - continued
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algorithm: GenerateTransitionPairCoverageTCs (StateTransitionTable)
input: State transition table.

output: Test cases for full predicate coverage criterion.

output criteria: Each test case consists of prefix, test case values, and expected output.

assumption: Clauses in a predicate are disjunctive.

No redundant assignment in prefix and test case values.

declare: prefix(ss) -- Inputs to get to the state ss.

outgoingTrans(s) -- The set of outgoing transitions from state s.

incomingTrans(s) -- The set of incoming transitions to state s.

i/otr -- An incoming/outgoing transition that is being processed.

event(i/otr) -- The trigger event for transition i/otr.

whenCondition(i/otr) -- The precondition for transition i/otr to be enabled.

prevState(itr) -- The source state of transition itr.

nextState(otr) -- The target state for transition otr.

expectedOutput -- The post-state of FSM after a transition takes place.

TCValue(itr) -- Value assignments for the trigger event and when

condition variables for transition itr.

TCValue(otr) -- Value assignments for the trigger event and when

condition variables for transition otr.

TestCaseSet -- The whole set of test cases for transition-pair coverage.

GenerateTransitionPairCoverageTCs (StateTransitionTable)
BEGIN -- Algorithm GenerateTransitionPairCoverageTCs

TestCaseSet = EMPTY

FOR EACH state s in StateTransitionTable

get incomingTrans(s)

get outgoingTrans(s)

FOR EACH incoming transition itr 2 incomingTrans(s)

ss = prevState(itr)

prefix(ss) = GetPre�x(ss)
TCValue(itr) = EMPTY

get event(itr) and whenConditions(itr)

-- Check for redundancy before assign a value to a variable

IF (: 9 a condition variable var 2 prefix(ss) such that

var.name = event(itr).name ^ var.value = event(itr).value) THEN
TCValue(itr) = TCValue(itr) [ f(event(itr).name, event(itr).beforeValue)g

END IF
-- Assign value for clauses in when condition

FOR EACH clausei in whenConditions(itr)

IF (: 9 a condition variable var 2 prefix(ss) such that

var.name = clausei.name ^ var.value = clausei.value) THEN
TCValue(itr) = TCValue(itr) [ f(clausei.name, clausei.value)g

END IF
END FOR
TCValue(itr) = TCValue(itr) [ f(event(itr).name, event(itr).afterValue)g

Figure 24: The GenerateTransitionPairCoverageTCs Algorithm
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FOR EACH outgoing transition otr 2 outgoingTrans(s)

TCValue(otr) = EMPTY

expectedOutput = nextState(otr)

get event(otr) and whenConditions(otr)

-- Check for redundancy before assign a value to a variable

IF (: 9 a condition variable var 2 prefix(ss) such that

var.name = event(otr).name ^ var.value = event(otr).value) THEN
TCValue(otr) = TCValue(otr) [ f(event(otr).name, event(otr).beforeValue)g

END IF
-- Assign value for clauses in when condition

FOR EACH clausei in whenConditions(otr)

IF (: 9 a condition variable var 2 prefix(ss) such that

var.name = clausei.name ^ var.value = clausei.value) THEN
TCValue(otr) = TCValue(otr) [ f(clausei.name, clausei.value)g

END IF
END FOR
TCValue(otr) = TCValue(otr) [ f(event(otr).name, event(otr).afterValue)g

TestCaseSet = TestCaseSet [ f(prefix(ss), TCValue(itr) [ TCValue(otr), expectedOutputg
END FOR

END FOR
END FOR

Figure 24: The GenerateTransitionPairCoverageTCs Algorithm - continued



5 RESULTS

A principal reason for implementing TCGen was to provide a tool for generating test cases

automatically to improve the speci�cation-based testing process. Experiments have been

performed on SCR and UML speci�cations to determine the test case generation power of

TCGen. Results for di�erent coverage criteria are presented. A distribution of detected

faults is given. The time to generate test cases is also presented.

The tool currently handles only one mode class in SCR speci�cations and one class in

UML speci�cations. The transition predicates are limited to predicates that have only

boolean clauses. The results focus on two questions: (1) can generating test cases from

speci�cations be automated, and (2) what is the quality of test cases that are generated for

the full predicate and transition-pair coverage criteria?

For the �rst question, we generated SCR and UML versions of speci�cations for the cruise

control system. The speci�cations were generated by SCRtool* and Rose respectively, and

were saved in ASCII text �les. TCGen was used to generate test cases for full predicate

and transition-pair test cases from both speci�cations. TCGen generated 34 test cases

for full predicate coverage criterion. This was surprising at �rst because the number of

manually generated test cases was 54. This discrepancy happened because in the test case

value part of the test cases, we eliminated those variables that are already assigned values

in the pre�x. This makes a di�erence for the full predicate coverage criterion because it

considers each of the variables in the test case value part. For purposes of evaluation , we

modi�ed the tool and generated two sets of test cases for full predicate coverage criterion.
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The �rst set includes test cases that included redundant value assignments, which resulted

in 54 test cases, and the other had no redundant value assignments, which resulted in 34

test cases.

For the transition-pair coverage criterion, TCGen generated 34 test cases, which is the

same as the number of hand generated test cases.

Test cases are saved in separate ASCII text �les. These text �les can be used as direct

program inputs if the implementation follows the naming conventions of the speci�cation.

When the implementation has di�erent naming notations for variables, a processor will be

needed to translate the test case �les into software inputs. Also generated are summary

�les that describe each test case in detail { for which transition predicate or transition-pair,

which part is the pre�x, and what is the expected output after running a test case.

For the second question, we executed 25 faulty versions of cruise control implementation

on the di�erent coverage criteria test sets. The faults were created by inserting variable

reference, variable negation, expression negation, associative shift, and operator reference

faults. Besides full predicate and transition-pair test case sets, we used all-uses and branch

coverage criteria test sets. The branch coverage adequate test cases were manually generated

by examining each branch in the control ow graph of the cruise control implementation. A

control ow graph is a graph model of a program in which conditional branch instructions

and program junctions are represented by nodes and the program segments between such

points are represented by links [Bei90]. The process of branch coverage adequate test

cases generation was �rst to insert instrumention into the cruise control implementation to

measure branch coverage, then initial tests were created to set each variable to each value.

Then each uncovered branch was used to derive a covering test case in an iterative fashion.

There are 112 branches in the cruise control implementation, and 7 of them are infeasible.
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The feasible 105 branches are covered by 9 test cases.

Each faulty implementation contains one fault. This way, it is convenient to monitor which

test cases �nd each fault, and analyze the reasons. A series of scripts were written to run

the test cases and collect the results.

The evaluation results are shown in Figures 25 through 35. Figures 25 through 29 show the

number of faults that each test case found. Figures 30 through 34 show, for each fault, how

many test cases found it. Figures 25 and 30 show the results for the full predicate coverage

test cases that do not have redundant value assignments. Figures 26 and 31 show the results

for the full predicate coverage test cases that include redundant value assignments. Both

test sets achieved the same fault coverage, hence, we can conclude that removing redundant

test value assignments reduces the number of test cases and also the size of some test

cases without a�ecting the e�ciency of a test case set. However, we further noticed that

it is necessary to remove redundant test value assignments, especially when the variables

involved in this process are invariants. Changes to the values of invariant variables must

cause a transition from the current state to another state because of the violation of safety

invariants. Therefore, if an invariant appears as an event variable in a transition, there is

no problem. However, if an invariant appears in the condition part of a transition, changes

to the invariant's value should cause an immediate state transition from the current state.

There may be other variables that come after the invariant variable in a test case value, if

these value assignments satisfy a transition predicate of the newly changed state, they will

cause another state transition. Predicting the output of this kind of test case will be hard,

especially in an automated environment. However, this problem was solved in TCGen. A

state's invariants must be true when the system is in that state. This means the pre�x of a

test case for a transition already includes the invariant variables of the source state of the

transition. By not including any variables that are in the pre�x of the test case values, the
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problem is avoided.

Figures 27 and 32 show the results for transition-pair test cases. Figures 28 and 33 show the

results for the all-uses coverage test cases. Figures 29 and 34 show the results for branch

coverage test cases.

As we can see from these �gures of results, both full predicate redundant and full predicate

non-redundant test cases reached 56% fault coverage. Hence, we conclude that for full

predicate coverage, the second type of test cases should not be generated.

Figure 35 shows the fault coverage percentage for full predicate, transition-pair, all-uses

and branch coverage criteria test cases. The fault coverage percentages are 56%, 48%, 64%,

and 28% respectively.

For the 25 faults, the all-uses coverage test cases found the set of faults f1, 2, 3, 4, 5, 6,

7, 9, 13, 14, 16, 19, 20, 21, 23, 25g, the full predicate coverage test cases found the set of

faults f 1, 2, 5, 6, 7, 9, 11, 12, 14, 17, 19, 20, 22, 25g, the transition-pair coverage test cases

found the set of faults f1, 2, 5, 6, 7, 9, 14, 17, 19, 20, 22, 25g, and the branch coverage

test cases found the set of faults f5, 7, 11, 17, 19, 22, 25g. Full predicate test cases found

all the faults that were found by transition-pair and branch coverage test cases. The faults

that were not found by full predicate test cases but all-uses coverage test cases are f3, 4,

13, 16, 21, 23g. After examining these faults, it was found that these are speci�c to how

the program is run.

The implementation of cruise control system has three running modes: interactive mode,

�le input mode for test cases with pre�x, and �le input mode for test cases with source

state names instead of a pre�x. In the interactive mode, the variable value pairs are entered

in order from the terminal. In the other two modes, the test cases are read from test case
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�les. The running modes are not speci�ed in the speci�cation, therefore, the full predicate

and transition-pair test cases do not reect them. The all-uses coverage test cases were run

in �le input mode with source state names, and the full predicate and transition-pair test

cases were run in �le input mode with test cases that have pre�xes. The branch coverage

test cases were run in all modes.

After examining the faults that were not found by each set of test cases, the characteristics

of the faults are sumarized as below:

� Some faults are speci�c to a running mode

� The choice of pre�x path is relevant to �nding fault

� Faults that are in an infeasable path cannot be revealed

It can be concluded from the above analysis that to have a complete test, test cases have

to be run in every running mode. Besides, for each pre�x, all di�erent paths that can form

the pre�x should be considered. In full predicate and transition-pair coverage criteria, the

pre�x of a test case is a randomly chosen path from the initial state to the source state of

a transition or transition-pair. I recommend to add the following requirement to the test

case generation: All the paths that can form a pre�x should be considered separately for a

test case value.

We summarize the results as the following:

� Test case generation is fully automated.

� The outputs of TCGen were executed on the C implementation of the cruise control

system. In this example, the implementation of cruise control used the same variable

names that used in the speci�cation. Therefore, the test cases that were generated

from the speci�cation were quali�ed to be direct inputs to the implementation. This

is only a speci�c case, it does not hold in general. A middle processor will be needed
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between the test cases and software inputs when the implementation does not use the

names in the software speci�cation.

� 25 faults were inserted into the cruise control implementation.

� The full predicate coverage test cases reached 56% coverage.

� The transition pair coverage test cases reached 48% coverage.

� The number of full predicate coverage criterion test cases is reduced by 37%. At full

predicate coverage level, the test requirement is each clause in a transition predicate

in turn takes the values of True and False while other clauses have values such that

the value of the predicate will always be the same as the clause being tested. Since

some of the clauses are already assigned values in the pre�x, and keep those values as

a state property, their values will not (or should not) be changed. Thus, the actual

number of test cases is less than the calculated number of test cases from a predicate

clauses. In other word, even if we include those clauses that should not be changed

in our test case generation, the result is the same as with the reduced number of test

cases.

� Test case generation time for a cruise control is less than 5 seconds for both full

predicate and transition-pair coverage criteria. Comparing to the manual generation

of test cases, this period of time is insigni�cant. The cruise control system has 12

transitions, which theoretically should result in 54 full predicated test cases and 34

transition-pair test cases. Manually generating test cases for these requirements took

16 to 20 hours. The branch coverage test cases used in this experimentation took 5

hours. This includes about 1 hour of instrumentation insertion time.
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6 CONCLUSIONS AND RECOMMENDATIONS

In this section, we give the conclusions �rst and then present our recommendations. The

recommendations are both on improving the test data generation techniques and on im-

proving the software.

6.1 Conclusions

This thesis presents a model for automatically generating test data from state-based speci�-

cations. Speci�cally, SCR speci�cations generated by SCR* Toolset and UML speci�cations

generated by Rose are used as a basis for generating full predicate and transition-pair cov-

erage test cases. This thesis also presents algorithms for test data generation, and results

from a proof-of-concept tool. The tool automatically generates test data for full predicate

and transition-pair coverage criteria from state transition tables of SCR speci�cations and

statecharts of UML speci�cations. Our results show that:

� Generating test data from state-based speci�cations can be fully automated.

� Full predicate coverage criterion test cases have a high capacity to catch faults at

system test level. In the experiments, the fault coverage percentage is 56% for 25

faults of the cruise control program (see Figure 35 in Chapter 5). It is next to the

fault coverage percentage of all-uses test cases, but full predicate test cases are less

expensive to generate than all-uses test cases.

� Full predicate coverage test cases found more faults than transition-pair coverage test

cases.
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� The number of full predicate coverage test cases generated by the tool is less than the

estimated number of test cases by the test case generation model.

6.2 Recommendations

In this subsection, we make a recommendation for improving the test case generation tech-

nique.

The state-based speci�cation test case generation model described in this paper does not

consider safety invariants of a system. This is problematic for the full predicate coverage

criterion. For full predicate coverage criterion, we generate a test case that satis�es a

transition predicate, and a series of test cases that do not satisfy the transition predicate

(see section 2.3). The test cases that do not satisfy the transition predicate are generated

by negating each clause in the transition predicate, one in a time. Changes to the values

of variables that are invariants must cause a transition from current state to another state

because of the violation of safety invariants. Therefore, if an invariant appears as an event

variable in a transition, there is no problem. However, if an invariant appears in the

condition part of a transition, changes to the invariant's value should cause an immediate

state transition from the current state. There may be other variables that come after the

variables of an invariant in a test case value, if these value assignments satisfy a transition

predicate of the newly changed state, it causes another state transition. Predicting the

output of this kind of test case will be hard, especially in automated environment. To avoid

confusion, we suggest the following modi�cation to the test case generation model: If a

state invariant appears in the condition part of a transition predicate, keep the value of the

invariant unchanged during the generating test cases for invalid transitions process.

Another recommendation is all paths of a pre�x should be considered in the test case
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generation. As we discussed in Chapter 5, some faults can only be revealed through a

speci�c path. Choosing only one path as a pre�x cannot result in complete test.

6.3 Future Work

Although TCGen proved that we can automatically generate test cases from state-based

speci�cations, but it is currently limited to SCR speci�cations that have only one mode

class and UML speci�cations that have only one class with a statechart. Also, it can

process only state transitions that have boolean type event and condition variables. This

restricts TCGen's usability in industry. Processing more than one mode class in SCR or

class in UML is not a problem, since it is simply a matter of repeating the process. It is

more di�cult to consider non-boolean type of variables in automation, and harder still to

handle state transition types other than the enabled transition in UML.



APPENDIX A: SCR SPECIFICATION FILE OF CRUISE

CONTROL SYSTEM

// This file contains an SCRTool system specification.
// It may have been written by the SCRTool and not changed since.

// This first definition describes the specification as a whole.
// The VERSION is the version of the SCRTool matching this file.
// The DESCRIPTION is the description field for this specification
// as it appears in the main SCRTool window.
SPECIFICATION; VERSION "1.6";

// This section contains all of the items in the
// Type Dictionary.

// This section contains all of the items in the
// Mode Class Dictionary.
MODECLASS "Cruise"; MODES "OFF, INACTIVE, CRUISE, OVERRIDE";
INITMODE "OFF";

// This section contains all of the items in the
// Constant Dictionary.

// This section contains all of the items in the
// Variable Dictionary.
MON "Activate"; TYPE "Boolean"; INITVAL "FALSE";
ACCURACY "N/A";
MON "Brake"; TYPE "Boolean"; INITVAL "FALSE"; ACCURACY
"N/A";
MON "Deactivate"; TYPE "Boolean"; INITVAL "FALSE";
ACCURACY "N/A";
MON "Ignited"; TYPE "Boolean"; INITVAL "TRUE";
ACCURACY "N/A";
MON "Resume"; TYPE "Boolean"; INITVAL "FALSE";
ACCURACY "N/A";
MON "Running"; TYPE "Boolean"; INITVAL "FALSE";
ACCURACY "N/A";
MON "Toofast"; TYPE "Boolean"; INITVAL "FALSE";
ACCURACY "N/A";

// This section contains all of the items in the
// Specification Assertion Dictionary.
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// This section contains all of the items in the
// Environmental Assertion Dictionary.

// This section contains the event, mode transition, and condition functions.

MODETRANS "Cruise";
FROM "OFF" EVENT "@T(Ignited)" TO "INACTIVE";
FROM "INACTIVE" EVENT "@F(Ignited)" TO "OFF";
FROM "INACTIVE"

EVENT "@T(Activate) WHEN (Ignited AND Running AND NOT Brake)"
TO "CRUISE";
FROM "CRUISE" EVENT "@F(Ignited)" TO "OFF";
FROM "CRUISE" EVENT "@F(Running) WHEN Ignited" TO "INACTIVE";
FROM "CRUISE" EVENT "@T(Toofast) WHEN Ignited" TO "INACTIVE";
FROM "CRUISE"

EVENT "@T(Brake) WHEN (Ignited AND Running AND NOT Toofast)"
TO "OVERRIDE";
FROM "CRUISE"

EVENT
"@T(Deactivate) WHEN (Ignited AND Running AND NOT Toofast)"
TO "OVERRIDE";
FROM "OVERRIDE" EVENT "@F(Ignited)" TO "OFF";
FROM "OVERRIDE" EVENT "@F(Running) WHEN Ignited" TO "INACTIVE";
FROM "OVERRIDE"

EVENT "@T(Activate) WHEN (Ignited AND Running AND NOT Brake)"
TO "CRUISE";
FROM "OVERRIDE "

EVENT "@T(Resume) WHEN (Ignited AND Running AND NOT Brake)"
TO "CRUISE";



APPENDIX B: (UML SPECIFICATION) MDL FILE OF
CRUISE CONTROL SYSTEM

(object Petal
version 42
_written "Rose 4.5.8054a"
charSet 0)

(object Design "Logical View"
is_unit TRUE
is_loaded TRUE
defaults (object defaults

rightMargin 0.250000
leftMargin 0.250000
topMargin 0.250000
bottomMargin 0.500000
pageOverlap 0.250000
clipIconLabels TRUE
autoResize FALSE
snapToGrid TRUE
gridX 15
gridY 15
defaultFont (object Font

size 10
face "Arial"
bold FALSE
italics FALSE
underline FALSE
strike FALSE
color 0
default_color TRUE)

showMessageNum 3
showClassOfObject TRUE
notation "Unified")

root_usecase_package (object Class_Category "Use Case View"

... (omitted)

root_category (object Class_Category "Logical View"
quid "3693F7F200DF"
exportControl "Public"
global TRUE
subsystem "Component View"
quidu "3693F7F200E1"
logical_models (list unit_reference_list
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(object Class "Cruise Control"
quid "3693F8090267"
stereotype "Controller"
class_attributes (list class_attribute_list

(object ClassAttribute "Ignited"
quid "36F2C8330045"
type "Boolean"
initv "false")

(object ClassAttribute "Running"
quid "36F2C83C0188"
type "Boolean"
initv "false")

(object ClassAttribute "Brake"
quid "36F2C8450218"
type "Boolean"
initv "false")

(object ClassAttribute "Toofast"
quid "36F2C84D025F"
type "Boolean"
initv "false")

(object ClassAttribute "Activate"
quid "36F2C85202B6"
type "Boolean"
initv "false")

(object ClassAttribute "Deactivate"
quid "36F2C86201E7"
type "Boolean"
initv "false")

(object ClassAttribute "Resume"
quid "36F2C86A0257"
type "Boolean"
initv "false"))

statemachine (object State_Machine
quid "3693F833031C"
states (list States

(object State "Off"
quid "3693F83A02D6"
transitions (list transition_list

(object State_Transition
quid "3693F88503E2"
label ""
supplier "Inactive"
quidu "3693F84101DC"
Event (object Event "when"

quid "3693F88503E3"
parameters "Ignited")

sendEvent (object sendEvent
quid "3693F88503E5"))
(object State_Transition
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quid "369A1A900135"
supplier "$UNNAMED$0"
quidu "369A1A83012C"
sendEvent (object sendEvent

quid "369A1A900138")))
type "Normal")

(object State "Inactive"
quid "3693F84101DC"
transitions (list transition_list

(object State_Transition
quid "369A1AB5017E"
label ""
supplier "Off"
quidu "3693F83A02D6"
Event (object Event "when"

quid "369A1AB5017F"
parameters "not Ignited")

sendEvent (object sendEvent
quid "369A1AB50181"))
(object State_Transition

quid "369A1B380136"
label ""
supplier "Cruise"
quidu "3693F874027F"
Event (object Event "when"

quid "369A1B380137"
parameters "Activate")

condition "Ignited AND Running AND NOT Brake"
sendEvent (object sendEvent

quid "369A1B380139"))
(object State_Transition

quid "369A1DCB0397"
supplier "Cruise"
quidu "3693F874027F"
sendEvent (object sendEvent

quid "369A1DCB039A"))
(object State_Transition

quid "369A1E510349"
supplier "Cruise"
quidu "3693F874027F"
sendEvent (object sendEvent

quid "369A1E51034C")))
type "Normal")

(object State "Override"
quid "3693F8440059"
transitions (list transition_list

(object State_Transition
quid "369A1AF202F8"
label ""
supplier "Off"
quidu "3693F83A02D6"
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Event (object Event "when"
quid "369A1AF202F9"
parameters "not Ignited")

sendEvent (object sendEvent
quid "369A1AF202FB"))
(object State_Transition

quid "369A1EC10387"
label ""
supplier "Cruise"
quidu "3693F874027F"
Event (object Event "when"

quid "369A1EC10388"
parameters "Activate")

condition "Ignited AND Running AND NOT Brake"
sendEvent (object sendEvent

quid "369A1EC1038A"))
(object State_Transition

quid "369A1EFF0295"
label ""
supplier "Inactive"
quidu "3693F84101DC"
Event (object Event "when"

quid "369A1EFF0296"
parameters "not Running")

condition "Ignited"
sendEvent (object sendEvent

quid "369A1EFF0298"))
(object State_Transition

quid "369A470500D6"
label ""
supplier "Cruise"
quidu "3693F874027F"
Event (object Event "when"

quid "369A470500D7"
parameters "Resume")

condition "Ignited AND Running AND NOT Brake"
sendEvent (object sendEvent

quid "369A470500D9")))
type "Normal")

(object State "Cruise"
quid "3693F874027F"
transitions (list transition_list

(object State_Transition
quid "369A1B06027F"
label ""
supplier "Off"
quidu "3693F83A02D6"
Event (object Event "when"

quid "369A1B060280"
parameters "not Ignited")

sendEvent (object sendEvent
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quid "369A1B060282"))
(object State_Transition

quid "369A1DB102D1"
supplier "Inactive"
quidu "3693F84101DC"
sendEvent (object sendEvent

quid "369A1DB102D4"))
(object State_Transition

quid "369A1DBF00D3"
supplier "Inactive"
quidu "3693F84101DC"
sendEvent (object sendEvent

quid "369A1DBF00D6"))
(object State_Transition

quid "369A1DC702D3"
supplier "Inactive"
quidu "3693F84101DC"
sendEvent (object sendEvent

quid "369A1DC702D6"))
(object State_Transition

quid "369A1DD20206"
label ""
supplier "Inactive"
quidu "3693F84101DC"
Event (object Event "when"

quid "369A1DD20207"
parameters "not Running")

condition "Ignited"
sendEvent (object sendEvent

quid "369A1DD20209"))
(object State_Transition

quid "369A1E4B0369"
label ""
supplier "Inactive"
quidu "3693F84101DC"
Event (object Event "when"

quid "369A462701A6"
parameters "Toofast")

condition "Running"
sendEvent (object sendEvent

quid "369A1E4B036C"))
(object State_Transition

quid "369A1E6401F2"
label ""
supplier "Override"
quidu "3693F8440059"
Event (object Event "when"

quid "369A1E6401F3"
parameters "Brake")

condition "Ignited AND Running AND NOT Toofast"
sendEvent (object sendEvent
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quid "369A1E6401F5"))
(object State_Transition

quid "369A46BF023E"
label ""
supplier "Override"
quidu "3693F8440059"
Event (object Event "when"

quid "369A46BF023F"
parameters "Deactivate")

condition "Ignited AND Running AND NOT Toofast"
sendEvent (object sendEvent

quid "369A46BF0241")))
type "Normal")

(object State "$UNNAMED$1"
quid "369A1A630299"
transitions (list transition_list

(object State_Transition
quid "369A1A72011E"
supplier "Off"
quidu "3693F83A02D6"
sendEvent (object sendEvent

quid "369A1A720121")))
type "StartState")

(object State "$UNNAMED$0"
quid "369A1A83012C"
type "EndState")))

statediagram (object State_Diagram ""

... (physical description - omitted)
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