
References

[AC76] F. E. Allen and J. Cocke. Aprogram dataow analysis procedure. Communicati o n s o f t he ACM,
19(3):137{146, March 1976.

[Acr80] A. T. Acree. On Mu t a t i o n . PhD thesis, GeorgiaInstitute of Technology, AtlantaGA, 1980.

[All69] F. E. Allen. Programoptimization. An n u a l Re vi e w i n Au t o ma t i c Pro gr a mmi n g , 5, 1969.

[BA82] T. A. Budd andD. Angluin. Two notions of correctness and their relation to testing. Ac t a

In f o r ma t i c a , 18(1):31{45, November 1982.

[BS79] D. BaldwinandF. Sayward. Heuristics for determiningequivalence of programmutations. Re-
searchreport 276, Department of Computer Science, YaleUniversity, 1979.

[Bud80] T. A. Budd. Mu t a t i o n An a l ys i s o f Pr o g r a m Te s t Da t a . PhDthesis, YaleUniversity, NewHaven
CT, 1980.

[Cra89] W. M. Craft. Detecting equivalent mutants using compiler optimizationtechniques. Master's
thesis, Department of Computer Science, ClemsonUniversity, Clemson SC, 1989. Technical
Report 91-128.

[DGK +88] R. A. DeMillo, D. S. Guindi, K. N. King, W. M. McCracken, andA. J. O�utt. Anextended
overviewof the Mothra software testing environment. InPr o c e e di n g s o f t h e Se c o n d Wo r ks h o p

o n S o f t wa r e Te s t i n g , Ve r i �c a t i o n , a n d An a l y s i s , pages 142{151, Ban�Alberta, July1988. IEEE
Computer SocietyPress.

[DO91] R. A. DeMilloandA. J. O�utt. Constraint-basedautomatic test datageneration. I EEE Tr a n s -

a c t i o n s o n S o f t wa r e En g i n e e r i n g , 17(9):900{910, September 1991.

[DO93] R. A. DeMillo andA. J. O�utt. Experimental results fromanautomatic test case generator.
ACM Tr a n s a c t i o n s o n S o f t wa r e En g i n e e r i n g Me t h o d o l o g y , January1993. Toappear.

[DSL79] R. A. DeMillo, F. G. Sayward, andR. J. Lipton. Programmutation: Anewapproachtoprogram
testing. In I n f o t e c h I n t e r n a t i o n a l S t a t e o f t h e Ar t Re p o r t : Pr o g r a m Te s

InfotechInternational, 1979.

[KO91] K. N. King andA. J. O�utt. AFortranlanguage systemfor mutation-basedsoftware testing.
S o f t wa r e {Pr a c t i c e a n d Exp e r i e n c e , 21(7):685{718, July1991.

[O�88] A. J. O�utt. Au t o ma t i c Te s t Da t a Ge n e r a t i o n . PhDthesis, Georgia Institute of Technology,
AtlantaGA, 1988. Technical reportGIT-ICS88/28, (AlsoreleasedasPurdueUniversitySoftware
EngineeringResearchCenter technical report SERC-TR-25-P).

15



Original Program Mutant Program
IF (X .LT. 0) THEN IF (X .LT. 0) THEN

Z = 0 Z =0

ELSE ELSE

Z =Y = X Z =Y = ABS(X)
ENDIF ENDIF

Figure 7: EquivalenceDetectionUsingConstraints

[O�88].

As anexample of using constraints to detect equivalent mutants, consider the programfragment in

Figure 7. The pathexpressionto themutatedstatement isX � 0, the necessityconstraint for themutant

isX< 0, thus the complete constraint systemisX> 0^X<0, whichis infeasible.

Another opportunityfor detecting equivalent mutants comes fromthe pathexpressions createdfor

DO loops. For the loop

DO 10 I = M, N

wegenerate thepathexpressionconstraint

N �M

indicating that Nmust be larger thanMinside the loop. If amutationwithinthe DO-loopconstrains N

to be less thanMthenthe constraint systemis N� M^ N<M, whichis infeasible, andthemutant is

equivalent.

AsimpleextensiontothepathexpressionconstraintsgeneratedforDO-loopscangivemoreopportunity

for detectingequivalent mutants. For example, if wehavethe loop

DO 10 I = 1, N

thenthe pathexpressionconstraint system

(I � 1^ I � N)

is true. Althoughthis constraint is not useful for generatingtest cases, it canbe usedtodetect equivalent

mutants. If amutationconstrains I to be out of this range (I � 0, or I >N), the constraint systemis

infeasible andthemutant cannot be killed

Of course, thesedetectionopportunities dependnot onlyonconstructingconstraint systems that are

infeasible, but also onthe abilityto detect that the systemis infeasible, whichis also a di�cult problem.

Godzilla only implements this technique ina primitive way, byconsidering unsolvedconstraints as strong

\evidence" that amutant representedbyunsolvedconstraints is equivalent. Althougha de�nite answer is

preferable, hints of this type are certainlybene�cial.

Although these results are only preliminary, most equivalent mutants seemto be represented by

infeasible constraints, andmost of the constraints that Godzilla cannot solve are infact infeasible, thus it

seems likelythat this technique will eventuallybe able to detect manymore equivalent mutants thanthe

compiler optimizationtechniques.

14



suchasX >A + B, andweknowthatbothA andB non-negative, techniquessuchasthoseusedinde�nition

invariant propagationcouldbe usedtoderive the invariantX >0.

Another potential improvement couldcome frommore analysis of loops. Variables that are de�ned

in loops are often r e c u r s i v e l y de�ned, that is, they are de�ned in terms of themselves, andthe de�nition

reaches itself as ause. One special case of this situationis whenscalar variables are always incrementedin

a loop. For example, the explicitlyrecursive de�nitionI = I +1 canbe determinedtobe always greater

thanor equal tozero if I is initializedtoapositive valueandnoother de�nitions of I exist. Since this type

of de�nitionoccurs frequently, this informationwouldbe quite helpful.

In the data owalgorithms used in the Equalizer, arrays are treated as a single data itemanda

referencetoanyelementof anarrayis treatedas areferencetotheentirearray. For this reason, theconstant

andinvariant propagationtechniques cannot be appliedtoanyde�nitioncontaininganarrayreference even

if the arrayindexis known. Anexample of this is the statementA(5) = 0 . Fromthis de�nition, the fact

that the �fthelement of A is set to zero canbe determined, anda later use of the �fthelement wouldbe

constant. If elements of anarraycouldbe treatedas individual data items, these techniques couldbe used

to detect more informationabout the programbeing tested. Since success for this technique requires two

references tothe arraywithconstant-valuedindexes, wedonot expect this technique tohelpveryoften.

7 USING CONSTRAINTS TODETECTEQUIVALENTMU-

TANTS

Inhis dissertation[O�88], O�utt describes amethodfor usingmathematical constraints todetect equivalent

mutants. Inparticular, then e c e s s i t y c o n s t r a i n t s andp a t h e x p r e s s i o n c o n s t r a i n t s that areusedfor generati

test datacanbeexaminedtodetermineequivalence. Necessityconstraints encodeconditions that atest case

must meet tokill a speci�c mutant. For example, anabs mutationcanonlybe killedif a test case causes

the mutatedexpressiontohave anegative value. The necessityconstraint encodes that condition. Apath

expressionconstraint for a statement encodes the conditions ona test case that will cause the statement

to be executed. For example, if a statement canonly be reachedif X� 0, thenthat is part of the path

expressionconstraint for that statement. Godzilla [DGK +88] is a tool that generates necessityandpath

expressionconstraints, combines the two to create, for eachmutant, a constraint systemthat describes a

test case toreachthemutant andthenkill themutant, thensatis�es the constraint systembygeneratinga

test case that will kill themutant ahighpercentage of the time.

The necessityconstraints andthe pathexpressionconstraints cannot onlybe usedtogenerate test

data, butalsotodetectequivalentmutants. Thekeyinsightisthat if thecombinationof anecessityconstraint

andits pathexpressionconstraint are infeasible, thenthat constraint systemindicates that there arenotest

cases that cankill themutant, hencethemutant cannot bekilled. Thereareseveretheoretical limitations to

this technique, speci�cally, althoughGodzilla's constraints have beenshownto be highlye�ective [DO93],

the path expression constraints cannot absolutely guarantee reachability. Thus, an infeasible constraint

systemwill not guarantee that themutant is equivalent, but inmost cases it will be. Infact, aninfeasible

constraint systemwill always representanequivalentmutant if therearenobackwardsGOTOs intheprogram

13



Program Constant Invariant Common Loop Hoisting Total Total Percentage
Propagation Propagation SubExpr Invariant Sinking Detected Equivalent Detected

TESTCOM 0 0 2 0 0 2 2 100%
TESTLOOP 6 4 0 1 0 7 25 28%
TESTHOIST 0 4 0 0 1 5 13 38%

Table 4: EquivalentMutantsDetected

well-structuredalgorithmwithexplicit loops rather thanGOTO statements. Another observationis that the

majorityof theequivalentmutants detectedbytheEqualizer (67%)wereabs mutants. This reects the fact

that the techniques of constant andinvariant propagation, especiallyde�nitioninvariant propagation, were

themost successful, sincetheyaredirectlyconcernedwiththevariable's relationshipwiththeconstant zero.

Eachof the techniques of commonsubexpressiondetection, loopinvariants, andhoistingandsinking

dependonprogramcharacteristics that are relativelyrare. For example, todetect anequivalent mutation

usingloopinvariants, alabeledstatement that ends aDO-loopmustbeeither followedorprecededbyanother

labeledstatement, andthe separating statements must be invariant inthe loop. Since none of our subject

programs hadanyequivalent mutants that weredetectable bythose three techniques, we constructedthree

programs to demonstrate that the implementations of these techniques were successful andthat theycan

detect equivalentmutants. The results of the sameexperiment as above for theseprograms arepresentedin

Table4. TheTo t a l De t e c t e d , To t a l Equ i v a l e n t , andPe r c e n t a g e De t e c t e d columns arethe sameas inTable

6 CONCLUSIONS ANDFUTUREWORK

Althoughmutationtesting is atechnique that is demonstratablye�ective at �ndingerrors, it is expensive.

Inadditiontothemachinecosts of executingall themutants of aprogram, test casesmust begenerated, the

output of eachtest casemust be examinedfor correctness, andmutants must be analyzedfor equivalence.

Althoughprogress has beenmade recentlyinautomatic generationof test data[DO91], examiningtest case

output anddeterminingequivalent mutants are still major humancosts of applyingmutationtesting.

The Equalizer represents apartial solutionto this problem. Byutilizing techniques fromdata ow

analysis and compiler optimization, a number of equivalent mutants canbe detected automatically. Al-

thoughit is not possible todetect all equivalent mutants, wewereable toautomaticallydetect asigni�cant

percentage, insome cases well over half. Since this problemis currentlysolvedcompletelymanually, these

results are quite useful. Althoughmore empirical workis needed(larger programs, etc.), these results are

certainly encouraging. Belowwe discuss three extensions that couldbe made to the Equalizer to increase

its power, andinthe next sectionintroduce anewmethodfor detectingequivalent mutants.

6.1 Extensions t o t he Equali zer

Inthecurrentimplementationof theEqualizer, thestatementinvarianttableconsistsonlyof simpleinvariants

that represent relationshipsbetweentwovariablesorbetweenonevariableandaconstant. Sincethemajority

of theequivalentmutantsdetectedwerefrominvariantpropagation, storingmoreinformationintheinvariant

tablesmayincreasetheEqualizer'sabilitytodetect equivalentmutants. Forexample, if westoreaninvariant

12



Program Dead Constant Invariant Total Total Percentage
Code Propagation Propagation Detected Equivalent Detected

BSEARCH 0 0 0 0 27 0%
BANKER 0 1 21 21 43 49%
BUBBLE 0 5 4 5 35 14%
CAL 0 0 0 0 263 0%

COUNT 0 1 4 5 19 26%
DEAD 7 0 0 7 7 100%

DEADLOCK 0 0 18 18 196 9%
EUCLID 0 0 1 1 26 4%
FIND 0 0 1 1 77 1%

INSERT 0 0 10 10 48 21%
MAX 0 1 0 1 4 25%
MID 0 0 1 1 13 8%

TRISMALL 0 0 18 18 99 18%
TRITYP 0 3 12 12 111 11%

WARSHALL 0 0 4 4 35 11%

Table 3: EquivalentMutantsDetected

5. 1 Equi val ence Det ect i on

Our experiment usedfour steps:

1. For eachprogram, eachof the Equalizer's detectiontechniques was executedseparatelyto count how
manyequivalent mutants eachtechniquedetected.

2. The mutants that were marked equivalent in step 1 were recreated (to be alive) and all detection
techniqueswereruntogether toget thetotal number of equivalentmutants theEqualizer coulddetect.

3. Themutants that weremarkedequivalent instep2wereagainrecreatedandtest cases weregenerated
usingthe automatic test datagenerator Godzilla [DO91] andrunagainst all mutants.

4. Theremaininglivemutantswereanalyzedfor equivalencebyhandto�ndthetruenumberof equivalent
mutants.

The results of this experiment are displayedinTable 3. The number of equivalent mutants detected

byeachtechnique is givenfor eachprogram. The techniques of loopinvariants, hoisting andsinking, and

commonsubexpressiondetectiondidnot detect anyequivalent mutants for these programs, thus are not

includedinTable3. TheTo t a l De t e c t e d columngives thenumber of equivalentmutantsdetectedusingall of

the techniques (step2). TheTo t a l Eq u i v a l e n t columngives the total number of equivalentmutants for each

program(determinedinstep4). ThePe r c e n t a g e De t e c t e d columngives the percentage of the total number

of equivalentmutants theEqualizer detected. Since someequivalentmutants canbe detectedbymore than

one technique, the sumof thenumbers of mutants detectedbyeachtechnique is sometimes greater thanthe

total number of detectedmutants.

Oneobservationthat canbemade fromtheresults of theseexperiments is that thedetectionpowerof

theEqualizer depends greatlyuponthe programbeingtested. For example, 49%of the equivalent mutants

weredetectedfor BANKER, whileonlyonewasdetectedfor FIND. This is largelybecauseFIND contains arrays

and backward GOTOs, which are not handled well by our data owanalysis algorithms. BANKER uses a

11



&%
'$
MIC

?

DataFlow

Analyzer

?�
�

�
�DataFlow

Tables
����������������

HHHHHHHHHHHHHHHj















�

J
J
J
J
J
J
JĴ

DeadCode

Detection

Constant

Propagation

Invariant

Propagation

Common
Subexpression
Detection

? ?

HHHHj
������

�
�
�DeadCode

Table

�
�

�
�Constant

Table

�
�

�
�Invariant

Tables
�
�
�
�
�3

PPPPPPPPPPPPPPPq

@
@
@
@
@R

�����������

Equiv&%
'$
MDR -�

Dead

Code

Constant

Propagation

Invariant

Propagation

Common
Sub{

expressions

Loop

Invariants

Hoisting
and

Sinking

Figure 6: Flowof Data inThe Equalize r

10



B = 0

IF (A .EQ. 0) GOTO 30

A = A + 1

30 e t c .

Figure 5: HoistedVersion

4 ANEQUIVALENCEDETECTIONTOOL

TheEqualizer uses the sixtechniques insection3toautomaticallymarkmutants equivalent intheMothra

testingsystem. TheEqualizer is implementedintheC programminglanguageand, likeMothra, workswith

Fortran77programs. Figure 6 shows the high-level designof the Equalizer. InMothra, test programs are

parsedintoapost�xintermediate language calledMothraIntermediateCode (MIC) [KO91]. TheEqualizer

uses theMIC�letobuildthebasicblockgraph, �ndall de�nitions, andthebasicblocks that eachde�nition

reaches. This informationis passedseparatelyintoeachof thefour optimizationfunctions showninFigure6,

whichcreate tables indicatingwheredeadcode is found(DeadCodeTable), whichde�nitions haveconstant

values (Constant Table), andwhat statements have invariants associatedwiththem(Invariant Table). The

invariant tables have informationfrombothinvariant propagationandcommonsubexpressiondetection.

InMothra, eachmutant is storedinacompact recordcalledtheMutant Descriptor Record(MDR)

that indicates the changes to the MICnecessary to create that mutant. After the dead code, constant,

andinvariant tables are constructed, they are passedto the functionEq u i v . Eq u i v applies eachof the six

techniques tothemutants intheMDRtable.

The d e a d c o d e , c o n s t a n t p r o p a g a t i o n , and i n v a r i a n t p r o p a g a t i o n functions use informati

withinthe respective tables andthe dataowtables todetermine whether eachmutant is equivalent. The

l o o p i n v a r i a n t s function considers mutations that modify the range of a DO loop. For eachmutant, the

methodof detectingwhether themutationcauses the additionor deletionof loopinvariant code toor from

a loop is applied. Similarly, the h o i s t i n g a n d s i n k i n g function considers eachmutation that changes the

target of aGOTO statement todescribewhether themutant is equivalent. If one of thesedetectionfunctions

indicates that themutant is equivalent, thenEq u i v marks themutant equivalent bychangingits MDR.

5 EXPERIMENTATIONWITH THEEQUALIZER

WehaveusedtheEqualizer todetermine equivalent mutants on15Fortran77programs that cover arange

of applications. Theseprograms range insize fromabout 5to52executable statements andhadfromabout

180 to3000mutants. We alsoanalyzedeachprogrambyhandtodetermine the true number of equivalent

mutants, andcomparedthe Equalizer's e�ectiveness basedonthe percentage of equivalent mutants that it

detected. Insomecases, weconstructedprograms toensurethat thesoftwareworkedcorrectly; for example,

we createdaprogramthat containeddeadcode totest that part of the system.

9



Original Program Mutant Program
X = A + B X = A + B

Y = A + B Y = A + B

Z = X Z = Y

Figure 2: CommonSubexpressionExample

Original Program OptimizedProgram
DO 10 I = 1, 10 DO 10 I = 1, 10

A (I) = 0 A (I) = 0

B = 0 10 CONTINUE

10 CONTINUE B = 0

Figure 3: LoopInvariant Example

3. 6 Det ect i ng Equi val ent Mut ant s Us i ng Loop Invar i ant Det ect i on

The DO-loop replacement mutation operator alters the ranges of loops by changing the label in the DO-

statement. During code optimization, code that is invariant througha loopis oftenmovedoutside of the

loop, whereas mutationcanmove code either inside or outside of a loop. For example, the loopinFigure

3 contains anassignment that is movedoutside of the loopduring optimization. If amutant changes the

boundary of a loop suchthat invariant code is moved inside or outside of the loop, then that mutant is

equivalent.

3. 7 Det ect i ng Equi val ent Mut ant s Us i ng Hoi s t i ng and Si nki ng

Hoisting and sinking is similar to loop invariants optimization. Again, it is best understood through an

example. InFigure 4 is aprogramfragment andmutant that replaces the target of the �rst GOTO withthe

label 20.

This programfragment is a candidate for a \hoisting" optimization. The variableB is set to zero

inbothbranches of the IF statement. AhoistingoptimizationwouldmoveBbefore the GOTO, as shownin

Figure 5. Becausewe candothis hoisting, themutant inFigure 4is equivalent tothe original program. As

withloopinvariants, if amutationoperator results inaprogramthat couldbeproducedbytheoptimization,

thenthat mutant is equivalent.

Original Program Mutant Program
IF (A .EQ. 0) GOTO 1 0 IF (A .EQ. 0) GOTO 20
A = A + 1 A = A + 1

20 B = 0 20 B = 0

GOTO 30 GOTO 30

10 B = 0 10 B = 0

30 e t c . 30 e t c .

Figure 4: HoistingOptimizationExample

8



3. 3 Equi val enci ng Mut ant s Us i ng Cons t ant Propagat i on

Constant propagation involves detecting de�nitions whose values are constant and can be computed at

compiletime. Theconstantpropagationalgorithmweimplementedismodeledafter theproceduredescribed

byAllen[All69], however, ours propagates constants not onlywithinblockboundaries but alsoacross these

boundaries. Thus, the constant de�nitions detectedinone blockare usedtodetect constant de�nitions in

other blocks. This is accomplishedbyusing the reachinformationderivedfromthe data owanalysis in

conjunctionwitha c o n s t a n t t a bl e that has one entryfor eachde�nition. If ade�nitionis determinedtobe

constant, thenthat constantvalueis storedinthat de�nition's constant tableentry. This informationis used

todetermine equivalent mutants whenamutant cannot be killedif avariable has the value inits constant

table entry.

3. 4 Equi val enci ng Mut ant s Us i ng I nvar i ant Propagat i on

Aninvariantisarelationbetweentwovariablesoravariableandaconstantthat isknowntobetrueatagiven

point inaprogram. Weseparate these invariants intotwocategories. The �rst groupof invariants pertains

to the de�nitions contained in the programandare stored in the d e � n i t i o n i n v a r i a n t t a b l e . The second

group is amore general groupthat includes invariants for eachstatement in the program. Relationships

that are true at a particular statement in the programare stored in the s t a t e me n t i n v a r i a n t t a b l e at the

correspondingstatement number. This informationis usedtodetermine equivalentmutants whenamutant

cannot bekilledwhenavariablehas the invariantmarkedinthe de�nitioninvariant table. For example, to

kill avariable replacement mutant, the newvariablemust haveavaluethat di�ers fromtheoldvariable. If

the d e � n i t i o n i n v a r i a n t d e c i s i o n t a b l e indicates the twovariables are equal, themutant is equivalent.

Because of the largenumber of absolute value insertionmutants that are equivalent, avaluablepiece

of informationis the relationshipbetweenavariable andthe constant zero(i.e., X>0). Often, evenif the

variable's constant value cannot be determined, its relationshipwithzerocan, sowe store that information

as the s t a t u s of the variable in the d e � n i t i o n s t a t u s d e c i s i o n t a b l e . This information is usedto determine

equivalentmutants whenamutant cannot bekilledwhenavariable has the status markedinthede�nition

status decision table. For example, to kill anabs mutant, the variable must have a value that is greater

than zero. If the d e � n i t i o n s t a t u s d e c i s i o n t a b l e indicates the variable is strictly negative, the mutant is

equivalent.

3. 5 Det ect i ng Equi val ent Mut ant s Us i ng Common Subexpr es s i on

Detectingequivalentmutants throughcommonsubexpressioneliminationcanbest bedescribedthroughan

example. Consider the programfragment andone of its mutants showninFigure 2. Using techniques for

commonsubexpressionelimination, wecandeterminethatXandY havethesamevaluewhenZ is de�ned.

Thus themutant is equivalent.

7



3. 1 Dat a Fl ow Anal ys i s

Dataowis awell-knownprogramanalysis techniqueusedfor compiler optimizationandsoftware testing.

It is not conceptually di�cult, but implementations of data oware technically detailed andtend to be

expensive torun. The terms usedinthis paper come fromAllenandCocke [AC76].

Avariable is d e � n e d (a def) when it is assigned a value, i.e., it appears on the left hand-side of

anassignment statement. Avariable is u s e d when it appears in the right hand-side of an assignment (a

c o mp u t a t i o n - u s e ) or inthe expressionof abranchstatement (ap r e d i c a t e - u s e ). Adef of avariabler e a c h e s a

use if there is apathinthe programfromthe def tothe use withnointerveningde�nitions.

In data owanalysis, the programis �rst partitioned into b a s i c b l o c k s , whichare maximal linear

sequences of code havingone entrypoint (the �rst instructionexecuted) andone exit (the last instruction

executed). Giventhis partitioning of the program, the programowof control can be represented as a

directedgraphinwhichthe basic blocks are nodes andthe actual ows of control are the edges.

After the basic blocks and the control owbetween these blocks have been established, reaching

de�nitions canbe foundby�ndingthe set of de�nitions of eachdataitemthat reacheachbasic block. This

is theunionof theset of de�nitions that areavailable fromthosenodes that immediatelyprecedeeachnode.

This informationcanbederivedbyusingabasic reachalgorithm(e.g., as giveninAllenandCocke [AC76])

andstoredinar e a c h t a b l e .

After the reach information for the blocks is determined, computing which defs reach a use is

straightforward. If there exists ade�nitionof the dataitembeingreferencedbetweenthe start of the block

and the actual use, that last de�nition is the only reaching de�nition. Otherwise, eachde�nition of the

data itemthat reaches the beginningof the blockreaches theuse of that dataitem. Withthis information,

exactlywhichde�nitions of avariable canbe current at eachuse of that variable canbe determined. The

informationgatheredabout eachde�nition, inconjunctionwiththe reachinformation, cannowbe usedto

determine equivalent mutants.

3. 2 Equi val enci ng Mut ant s Us i ng Dead Code Det ect i on

Anystatement that canneverbeexecutedorwhoseexecutionis irrelevant is considereddeadcode. Themost

obvious formof deadcode is anunreachablestatement, whichhasnocontrol owpathfromthebeginningof

the programtothe statement. This case is easytodetect usingacontrol owgraphbecause the statement

appears inanode that is unreachable fromthe start node. Suchanode caneasilybedetectedbyexecuting

abreadth-�rst traversal of the owgraphstartingfromthe start node. Anynode that is isolatedfromthe

start node will not be visited. Obviouslyanymutationthat changes deadcode cannever a�ect the output

of the programandis therefore equivalent.

Thesecondformof deadcode is thed e a d d e � n i t i o n , whichis ade�nitionof adataitemthat is either

rede�nedbeforeit is referenced, or is never referenced. Onerestrictiononthis de�nitionis that theexecution

of theassignmentstatementdoes not alter thevalueof anyother dataitemother thantheonebeingde�ned.

Anymutationthat acts onastatement that has adeadde�nitionwill be equivalent.

6



Level Percent of Equivalent Percent of All Mutants
1 31.1 2.3
2 2.8 0.13
3 40.8 2.0
4 22.9 1.4
5 2.4 0.14

Table 2: Percentages of EquivalentMutants byLevel

randomlyfromall livemutants after test cases hadbeendevelopedthat eliminatedenoughmutants sothat

about half of the remainingmutants were equivalent. At y p e 1 error was consideredto bemarkinga non-

equivalentmutant as equivalent, andat y p e 2 error wasmarkinganequivalentmutant non-equivalent. Type

2errors are not serious, since themutant remains inthe systemtobe reconsidered.

The disturbingresult of Acree's experiment was that people judgedcorrectlyonlyabout 80%of the

time. Thehumansmade type2errors 12%of the timeandtype1errors 8%of the time. Sincetype2errors

are\correctable"duringlater testing, it is reallyonlytype1errors that requireattention. Theadvantageof

usingautomatedtechniques todetect equivalentmutants is not that thetechniquewouldnotmakemistakes,

but that themistakesmadewouldall beof type2. Anautomatedtool (if implementedcorrectly) wouldnot

convince itself that akillablemutant was equivalent.

3 COMPILEROPTIMIZATIONTECHNIQUES

BaldwinandSayward[BS79] proposedusingcompiler optimizationstrategies todetect equivalentmutants.

Theydiscussedgenerallyhowthe techniqueswouldwork; wehavedesignedalgorithms (presentedinCraft's

thesis [Cra89]), andimplementedthealgorithms. ThekeyintuitionbehindBaldwinandSayward'sapproach

is that manyequivalent mutants are, insome sense, either optimizations or de -optimizations of the original

program. The transformations that code optimizers makeproduce equivalent programs. Sowhenanequiv-

alent mutant satis�es acode optimizationrule, algorithms candetect that themutant is infact equivalent.

Baldwin andSaywarddescribe six types of compiler optimization techniques that canbe used to detect

equivalentmutants:

1. DeadCodeDetection,

2. Constant Propagation,

3. Invariant Propagation,

4. CommonSubexpressionDetection,

5. LoopInvariant Detection, and

6. HoistingandSinking.

Thesesixtechniquesaredescribedintherest of this section. Becauseof spacelimitations, this is only

anoverview. All the details, includingalgorithms andcomplete rules for whichtypes of equivalent mutants

canbe detected, canbe foundinCraft's thesis [Cra89]. Because these techniques dependona data ow

analysis of the program, we�rst present someof the basic concepts of dataowanalysis.

5



Mutant Type Percent of Equivalent Percent of All Mutants
AbsoluteValue Insertion 54.3 3.40
Scalar for Constant Replacement 16.1 1.70
Arrayfor Constant Replacement 11.2 0.25
Arrayfor Scalar Replacement 3.9 0.19
Scalar VariableReplacement 3.1 0.18
UnaryOperator Insertion 3.0 0.15
Relational Operator Replacement 2.4 0.07
All Other MutationOperators 6.0 0.30

Table 1: EquivalentMutant Percentages

Fortunately, wedohaveoneadvantageoverthegeneral equivalenceprobleminthecontextof mutation

testing. Speci�cally, wedonot havetodetermine the equivalenceof arbitrarypairs of programs. Because of

thede�nitions of themutationoperators, mutant programs are verymuchliketheir original program(Budd

andAngluindescribe mutants as \neighbors"of the original program). Wecantake advantage of this fact

todeveloptechniques andheuristics for detectingmanyof the equivalent mutants.

2. 1 Budd's Equi val ent Mut ant Di �cul t y Level s

Budd [Bud80] classi�es equivalent mutants byhowdi�cult it is to detect that they are equivalent. One

of his observations is that equivalent mutants are not evenlydistributedamong the 22mutant types. In

fact, the equivalentmutants tendtocluster amongonlyafewtypes. Table1summarizes statistics fromthe

programs usedinsection5of this paper. The�rst columninthetabledescribes atypeof mutationoperator

andthe secondcolumngives the percentage of the total number of equivalent mutants representedbythat

type. The thirdcolumngives thepercentageof all mutants that areequivalent of that type. It is interesting

tonotethat onemutant type, a b s o l u t e v a l u e i n s e r t i o n (abs), accounts for over half of all equivalentmutants.

Theabs mutationoperator inserts threeunaryoperators beforeeachexpression; ABS computes theabsolute

value of the expression, NEGABS computes the negative of the absolute value, andZPUSH kills themutant

if the expressionis zero, otherwise the valueof the expressionis unchanged.

Budddivides theequivalentmutants into�velevels of detectiondi�culty. Level 1is the least di�cult

while level 5 is the most di�cult to detect. Budd's analysis showed that level 1 and level 3 equivalent

mutants are byfar the most common. Table 2 is fromBudd's dissertation[Bud80], pg. 117, andgives the

percentage of eachtype of equivalent mutant. Manyabs mutants are level 3, whichis whythere are more

level 3equivalent mutants. Anencouragingaspect of Table 2 is that Buddclaimedit shouldbe possible to

automaticallydetect equivalent mutants of type 1 through4| over 95%of all equivalent mutants byhis

count.

2. 2 Det ect i ng Equi val ent Mut ant s By Hand

It is obvious that detectingequivalentmutants automaticallycansavemuchtimeandenergyfor thetesters,

butAcree [Acr80] foundthat it couldalsoprevent peoplefrommakingerrors inmarkingequivalentmutants.

Acree chose two subjects to examine 50 mutants in each of four programs. These mutants were chosen

4



Themutationtestingprocess begins withanautomatedmutationsystemcreating themutants of a

test program. Test cases are thenadded, either manuallyor automatically, tothemutationsystemandthe

user checks the output of the programoneachtest case to see if it is correct. If incorrect, a fault has been

foundandthe programmust bemodi�edandthe process restarted. If the output is correct, that test case

is executedagainst eachlivemutant. If the output of amutant di�ers fromthat of the original program, it

is assumedtobe incorrect andthemutant is killed.

After all of the test cases havebeenexecutedagainst all of themutants, eachremainingmutant falls

intooneof twocategories. One, themutant is killable, but theset of test cases is insu�cient tokill it. Inthis

case, newtest cases needtobe created. Two, themutant is functionallye q u i v a l e n t tothe original program.

Anequivalent mutant will always produce the same output as the original program, sonotest case cankill

it. Thus there is noneedfor it toremaininthe systemfor further consideration.

1. 2 Equi val ent Mut ant s

The last mutant inFigure 1 is anequivalent mutant. Note that the reference to I has been replacedby

a reference toMI N. Since these two variables always have the same value at this point in the program,

the replacement has noe�ect onthe functional behavior of the program. Thus the output of the mutated

programwill always be identical tothat of the original.

The equivalent mutant in Figure 1 is easy to detect manually. However, recognizing equivalent

mutants, usuallydone byhumanexamination, is one of the most expensive parts of the mutationprocess.

This paper describes algorithms totheproblemof automaticallydetectingequivalentmutants that arebased

onsuggestionsbyBaldwinandSayward[BS79]. Thesealgorithmshavebeenimplementedinaprogramthat

automaticallydetects certainequivalentmutants. Insection2, theproblemis examined, andprevious work

done insolving this problemis presented. Six techniques for partially solving this probleminvolvingdata

owanalysis and compiler optimization strategies are presented in section 3. These techniques are very

involved, and the algorithms and complete rules are in Craft's thesis [Cra89]. An automatic equivalent

mutant detector, theEqualizer, is presentedinsection4, andadescriptionof several experiments usingthe

Equalizer is giveninsection5. Finally, concludingremarks andsuggestions for further researcharepresented

insection6.

2 DETECTINGEQUIVALENTMUTANTS

Part of the reasonthat recognizing equivalent mutants is one of the most expensive mutationtesting op-

erations is that equivalent mutant detectionis usuallydone byhand. Convincingoneself that amutant is

equivalent is a complicatedandarduous task that requires anin-depthanalysis andunderstanding of the

program. BuddandAngluin[BA82] examinetherelationships betweenequivalenceandtestdatageneration.

Theyshowthat if there is acomputableprocedure for generatingadequatetest datafor aprogram, there is

alsoacomputable procedure for checking if that programis equivalent toanother programandvice versa.

They also showthat, ingeneral, neither of these problems is decidable. Thus, there canbe no complete

algorithmic solutiontothe equivalenceproblem.

3



FUNCTION MIN (I,J)

1 MIN = I

� MIN = J
2 IF (J .LT. I) MIN = J

� IF (J .GT. I) MIN = J

� IF (J .LT. I) TRAP
� IF (J .LT. MI N) MIN = J

3 RETURN

Figure 1: FunctionMIN

programis e�ectivelyin�nite, sowemust �nda�nitenumber of test cases that will giveus somecon�dence

that the programis correct.

Atestingc r i t e r i o n selects a�nite set of test cases that, if executedsuccessfully, will providethetester

withahighlevel of con�dence inthe softwarebeingtested. Most testingcriteriadividetheprogram's input

space into subsets suchthat everytest case inthe same subset has similar properties. Then, the program

canbetestedusingonetest case fromeachsubset. For example, statement coveragedivides programinputs

intosubsets where eachtest case inasubset will cause the same statement tobe reached.

Fault-basedtesting is ageneral strategy for developingtest datadivides test data intosubsets that

will detect the same general kinds of faults. The faults that are usuallytargetedare typical mistakes that

programmers make. Mu t a t i o n t e s t i n g [DSL79] is one suchfault-basedtestingmethod.

1. 1 Mut at i on Tes t i ng Overvi ew

Mutationtestinghelps theuser iterativelycreateaset of test databyinteractingwiththeuser tostrengthen

the qualityof the test data. Duringmutationtesting, faults are introducedtoprograms bycreatingmany

versions of the software, eachcontainingone fault. Test data is usedtoexecute these faultyprograms with

the goal of causing eachfaultyprogramto fail. Hence the termmutation; faultyprograms aremu t a n t s of

the original, andamutant is k i l l e d bycausing it to fail. Whenthis happens, themutant is consideredd e a d

andnolonger needs toremaininthe testingprocess since the faults representedbythat mutant havebeen

detected.

Figure 1 contains a simple Fortranfunctionwiththree mutatedlines (precededbythe �symbol).

Notethat eachof themutatedstatements represents aseparateprogram. Themost recentmutationsystem,

Mothra [DGK +88], uses 22types of mutationoperators totest Fortran77programs. These operators have

beendevelopedand re�ned over 10 years throughseveral mutationsystems. The 22mutationoperators

supportedbytheMothrasystemcanbedividedintothreegeneral classes: s t a t e me n t a n a l y s i s , p r e d i c a t e a n d

d o ma i n a n a l y s i s , andc o i n c i d e n t a l c o r r e c t n e s s . Statement analysis mutants check for statement coverage,

statement necessity, andcorrect label usage. Predicate anddomainanalysis mutants checkfor cases where

programmersmakeerrors insideexpressions, forexample, usingthewrongarithmeticoperatororanincorrect

comparisonoperator. Thecoincidental correctness operators checkfor cases wheretheprogrammer uses the

wrongvariablenameor arrayreference. The�rst andfourthmutants inFigure1arec o i n c i d e n t a l c o r r e c t n e s s

mutants, thesecondis ap r e d i c a t e a n d d o ma i n a n a l y s i s mutant, andthethirdis as t a t e me n t a n a l y s i s mutant.

2



Using Compiler OptimizationTechniques

toDetect Equivalent Mutants

A. Je�erson O�utt �

Department of Inf ormation and Sof tware Systems Engi neeri ng

George Mason Uni versi ty

Fai rf ax, VA22030

phone: 703-993-1654

emai l: of ut@gmuvax2. gmu. edu

W. Mi chael Craf t

Department of Computer Sci ence

Cl emson Uni versi ty

Cl emson, South Carol i na

September 1992

Abstract

Mutat ion i s a s o ft wa re t e s t i n g t e chn i qu e t h a t r e q u i r e s t h e t e s t e r t o g e n e r a t e t e s t da

s pe c i � c , we l l -d e � n e d e r r o r s . Mu t a t i o n t e s t i n g e xe c u t e s ma n y s l i g h t l y d i �e r i n g ve r s i

t h e s a me p r o g r a m t o e v a l u a t e t h e q u a l i t y o f t h e d a t a u s e d t o t e s t t h e p r o g r a m. Al t h

a r e g e n e r a t e d a n d e x e c u t e d e �c i e n t l y by a u t o ma t e d me t h o d s , ma n y o f t h e mu t a n t s a

equivalent t o t h e o r i g i n a l p r o g r a m a n d a r e n o t u s e f u l f o r t e s t i n g . Re c o g n i zi n g a n d e l i mi

mu t a n t s h a s t r a d i t i o n a l l y b e e n d o n e b y h a n d , a t i me - c o n s umi n g a n d a r d u o u s t a s k,

p r a c t i c a l u s e f u l n e s s o f mu t a t i o n t e s t i n g .

Th i s p a p e r p r e s e n t s e x t e n s i o n s t o p r e v i o u s wo r k i n d e t e c t i n g e q u i v a l e n t mu t a n

p r e s e n t a l g o r i t hms f o r d e t e r mi n i n g s e v e r a l c l a s s e s o f e q u i v a l e n t mu t a n t s , a n d r e s

t a t i o n o f t h e s e a l g o r i t hms . Th e s e a l g o r i t hms a r e b a s e d o n d a t a o w a n a l y s i s a n d s i x

t e c h n i q u e s . We d e s c r i b e e a c h o f t h e s e t e c h n i q u e s a n d h o w t h e y a r e u s e d t o d e t e c t

Th e d e s i g n o f t h e t o o l , a n d s o me e x p e r i me n t a l r e s u l t s u s i n g i t a r e a l s o p r e s e n t e d

p r o a c h f o r d e t e c t i n g e q u i v a l e n t mu t a n t s t h a t ma y b e mo r e p o we r f u l t h a n t h e o p t i mi z

i n t r o d u c e d .

Ke y wo r d s |compiler optimizations, software testing, mutationtesting, experimental software engineering.

1 INTRODUCTION

Althoughprogress inautomating the testing of software has givenus widely available software tools that

automaticallyexecute tests, report the results, andhelpperformregressiontesting, one of themost di�cult

technical problems is generating test data for unit testing|anddespite muchactive research, the bulk

of this e�ort is still left to the tester. The central test data generationproblemis that the only way to

ensurecorrectness is totest withall possible inputs. Unfortunately, thenumber of possible inputs toagiven

�The bulk of this workwas done whi le the authors were withClemsonUniversi ty.

1


