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Abstract

Mutation testing is a software testing technique that is considered to be very powerful, but is very
expensive to apply. One open problem in mutation testing is how to automatically detect equivalent
mutant programs. Currently, equivalent mutants are detected by hand, which makes it a very expensive
and time-consuming process, and restricts the use of mutation testing. This paper presents a technique
that uses mathematical constraints to automatically detect equivalent mutants. A tool Equivalencer
has been developed to demonstrate this technique, and experimental results from using this tool are
presented.
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1 Introduction

Mutation analysis is a technique for testing software. One open problem in mutation testing is how to
automatically detect equivalent mutated programs. Currently, equivalent mutants are detected by hand,
which it makes a very expensive and time-consuming process. This thesis describes an approach that
is based on the constraint-based testing technique by recognizing infeasible constraints to automatically
detect equivalent mutants, applies a collection of special case analysis and heuristics to recognize infeasible
constraints, and presents a tool that implements this approach.
In the rest of this thesis, we will use following notations and de�nitions. If P is a program, then P(t) denotes
the output value of the function computed by P on input t. The set of all inputs at which P de�nes a de�nite
value is the domain of P. The letter D is usually used to denote the domain of a program. A test case is an
input that belongs to D. A test case set T is a subset of D that contains test cases (inputs) that are used
to test P under some testing criterion. We use test data interchangeably with test case set. A failure in a
system is an observable event where the system violates its speci�cations. An error is an item of information
that may produce a failure when processed by the system. A fault is a mechanical or algorithmic defect that
will generate an error.

1.1 Software Testing

A software life cycle includes software requirements, speci�cation, design, implementation, testing and main-
tenance. Software testing is one of and often the most time consuming part of the software development
process [Som92]. Sommerville de�nes various levels at which software testing occurs. They can be identi�ed
as unit test (also known as a module test), integration test, subsystem test, system test and acceptance test.
There are two testing approaches that can be applied at these levels. They are refered as \black box" or
\white box" approaches. A black box testing approach will devise test data without any knowledge of the
structure of the software under test, whereas white box testing will explicitly use the program structure to
develop test data. Black box testing is based on the requirements and speci�cations, while white box testing
is based on the source code. Usually, white box testing approaches are applied to the unit test level, and
black box testing approaches are applied during integration test and system test.
Software testing is the process of executing a program on a set of test cases and comparing the actual results
with the expected results. Its purpose is to reveal the existence of faults. With this purpose in mind,
the testing criterion is often stated as \test until the software is fault-free". Unfortunately, we cannot use
conventional testing strategies to guarantee that the software is fault-free [How76]. Therefore, one purpose
of a software testing strategy is to specify a stopping point for testing while developing test data that is
useful for �nding faults.
There are several criteria that may be used to specify a stopping point for testing. Statement testing,
branch testing, data-ow testing, and fault-based testing are a few examples. They are all white box testing
approaches. Statement testing [Mye79] requires that the testing continues until all statements have been
reached. With the branch testing criterion [Hua75], all branches need to be executed before the testing
can be �nished. In data-ow testing, seven distinct criteria have been de�ned [FW88] for data-ow; testing
continues until one or all of the criteria have been satis�ed. With fault-based testing techniques, test cases
are designed to �nd speci�c types of faults that usually represent common programming mistakes. Testing
continues until all these faults have been found. Mutation testing is a fault-based testing technique.

1.2 Mutation Analysis

Mutation is a fault-based testing technique that measures the adequacy of a set of externally created test
cases [DLS78], [Ham77]. Mutation testing creates a collection of programs that have one simple syntactic
change from the program under test by using mutant operators. These programs are calledmutated programs
or mutants. We call the program under test the original program. A mutant operator is a rule for changing
the original program to create mutants. The goal of the tester is to �nd a test case that causes each mutant to
generate an output di�erent from that of the original program on the same test case, thereby distinguishing
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INTEGER FUNCTION Min (I,J) INTEGER FUNCTION MinMut (I, J)

INTEGER I, J INTEGER I, J

1 Min = I 1 �1 Min = J
2 IF (J .LT. I) Min = J 2 IF (J .LT. I) Min = J

3 RETURN 3 RETURN

Figure 1: Function Min and a Mutant

INTEGER FUNCTION Min (I,J)

INTEGER I, J

1 Min = I

�1 Min = J
�2 Min = ABS(I)

2 IF (J .LT. I) Min = J

�3 IF (J .GT. I) Min = J

�4 IF (J .LT. I) TRAP
�5 IF (J .LT. Min) Min = J

3 RETURN

Figure 2: Function Min with Five Mutants (In-line Version)

the mutant from the original program, or killing the mutant.
During mutation testing, many mutants are created for the original program. The adequacy of a test set is
measured by how many mutants it can kill.
Term1: A mutant is dead if a test case has distinguished it from the original program.

Term2: A mutant is equivalent if it has the same functional behavior as the original program, and will
produce the same results on all inputs.

(We give a more formal de�nition of equivalence in section 3).

Let K be the number of killed mutants,M be the number of total mutants generated, and E be the number
of equivalent mutants. Then the mutation score [DLS78] is computed as:

Mutation Score(P , T ) = K=(M �E) � 100%
We call a test data set, T , mutation-adequate for a program P , if its mutation score is 100% for P , i.e.,
K =M �E.
In practice, a tester interacts with an automated mutation system to determine and improve the mutation
adequacy of a test data set. This forces the tester to test for speci�c types of faults. These faults are
represented as simple syntactic changes to the test program that create mutant programs.
The mutation systemMothra [DGK+88, KO91] uses 22 mutant operators to test Fortran-77 programs. These
operators are shown in Table 14 in Appendix C. These 22 mutant operators can be divided into three cate-
gories based on the syntactic elements that they modify [OLR+94]. Operand replacement operators replace
each operand in a program with each other legal operand. Referring to Table 14 in Appendix C, the operators
AAR, ACR, ASR, CAR, CNR, CRP, CSR, SAR, SRC, and SVR perform operand replacement. They check for
cases where programmers use the wrong variable name or array reference. Expression modi�cation operators
(ABS, AOR, LCR, ROR, UOI) modify expressions by replacing operators and inserting new operators. They
check for cases where programmers make errors inside expressions, for example, using the wrong arithmetic
operator or an incorrect comparison operator. Statement modi�cation operators (DER, DSA, GLR, RSR,
SAN, SDL) modify entire statements. They check for statement coverage, statement necessity, and correct
label usage. Mothra's mutant operators are de�ned by King and O�utt [KO91].
Figure 1 is a small Fortran function Min, and a mutant of Min that changes variable I to J . Figure 2 is
a in-line version of the same Fortran function Min with �ve mutated lines (preceded by the � symbol).
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Figure 3: A Mutation Testing Process

Note that each mutated statement represents a separate program. The �rst mutant is the same as shown in
Figure 1. The �rst and �fth mutants in Figure 2 are operand replacement mutants, the second and third are
expression modi�cation mutants, and the fourth is a statement modi�cation mutant.
One process that can be used to apply mutation testing is shown in Figure 3. First, a set of mutants is
created by an automated tool. Then a tester supplies test data for the original program and checks the
output; if the output is not correct, the tester �xes the original and starts again. If it is correct, the same
test data is executed on the mutants. If the output from a mutant is di�erent from that of the original, the
mutant is considered to be distinguished from the original and is dead. If the output is not di�erent from
that of the original, the mutant is said to be still alive. There are two exit points from this process:

� Exit 1: All mutants are dead. There is no need to give more test data. The test data that the tester
has is adequate.

� Exit 2: Some mutants are still alive, but the tester decided not to add more test data.

We do not need to elaborate on exit 1, since the tester has achieved the goal of the mutation testing in this
case. But unfortunately, this is rare.
At exit 2, there are some live mutants. Ignoring the �nancial and management issues, how can a tester
decide whether to quit or not? Before the tester can decide to quit the process for technical reasons, the
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tester must declare that the mutants left alive are all equivalent and thus there are no test data that can kill
them.
For example, consider the mutants in Figure 2. The test cases (I = �1; J = 3); (I = 2; J = 1) are mutation
adequate for these mutants. These test cases kill the �rst through the fourth mutants but not the �fth
mutant. Note that in the �fth mutant, the reference to I has been replaced by a reference to MIN . Since
these two variables always have the same value at this point in the program, the replacement has no e�ect
on the functional behavior of the program. Thus the output of the mutated program will always be the same
as that of the original, and this mutated program is equivalent to the original.
The equivalent mutant in Figure 2 is easy to detect manually. Unfortunately, detecting equivalent mutants
is not always easy, and currently must be done by hand. It requires a tester's experience and skills. Thus,
it is one of the most expensive parts of the mutation process.
In the next section, we will describe the equivalence problem in detail. A technique for automatically
detecting equivalent mutants is presented in section 3; the design and implementation of a tool that uses the
technique will be provided in section 4; we give our experimental results of this tool in section 5; and �nally,
the conclusions and recommendations are in section 6.
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Mutant Type % of Equivalent % of All Mutants

abs 47.19 4.30
acr 14.10 1.28
scr 7.05 0.64
uoi 6.04 0.55
src 4.89 0.45
svr 4.46 0.41
ror 3.60 0.33
sdl 2.16 0.20
crp 1.58 0.14
aar 1.44 0.13
rsr 1.44 0.13
lcr 1.15 0.10
asr 1.15 0.10
csr 1.01 0.09
sar 1.01 0.09

all others 1.73 0.16
total 100.00 9.10

Table 1: Equivalent Mutants among Mutant Types
| Programs Used in This Thesis

2 Equivalence Problem

Some of the open problems in mutation testing have been speed of execution, the so called \oracle problem"
| that is, determining output correctness, scalability | that is, whether mutation can be applied to big
programs, and automatically detecting equivalent mutants. This thesis focuses on the problem of detecting
equivalent mutants, which has been a major obstacle to the practical application of mutation. Without
detecting all the equivalent mutants, the mutation score will never be 100%. Thus, the tester will not have
complete con�dence in the program and the test data. Meanwhile, detecting equivalent mutants by hand is
very time-consuming, which restricts the use of mutation testing.

2.1 Distribution of Equivalent Mutants among Mutant Types

In Budd's dissertation [Bud80], he states that equivalent mutants are not evenly distributed among the 22
mutant types. In fact, the equivalent mutants tend to cluster among only a few types. Table 1 summarizes
statistics from the programs used in section 5 of this thesis. The �rst column in the table gives the mu-
tant operator type and the second column gives the percentage of the total number of equivalent mutants
represented by each type. The third column gives the percentage of all mutants that are equivalent of that
type.
Table 2 from O�utt and Craft's paper [OC94] and Table 3 from Budd's dissertation [Bud80] show the
statistics of distribution of equivalent mutants among mutant types, too. Note that the sets of programs
used for the three sets of statistics are di�erent, and Budd's was based on a di�erent mutation system.
These three statistics indicate one very interesting fact. One mutant type, absolute value insertion (abs), has
many more equivalent mutants than all other mutant types. The abs mutant operator inserts three unary
operators before each expression | ABS computes the absolute value of the expression, NEGABS computes
the negative of the absolute value, and ZPUSH kills the mutant if the expression is zero, otherwise the value
of the expression is unchanged, (this forces the tester to cause each expression to have the value zero, a
common testing heuristic).
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Mutant Type % of Equivalent % of All Mutants

abs 54.3 3.40
scr 16.1 1.70
acr 11.2 0.25
asr 3.9 0.19
svr 3.1 0.18
uoi 3.0 0.15
ror 2.4 0.07

all others 6.0 0.30
total 100.00 6.24

Table 2: Equivalent Mutants among Mutant Types
| From O�utt and Craft [OC94]

Mutant Type % of Equivalent % of All Mutants

abs 75.0 4.0
glr 12.0 0.7
ror 7.5 0.5

all others 5.5 0.5
total 100.00 5.7

Table 3: Equivalent Mutants among Mutant Types
| From Budd [Bud80]

8



2.2 Motivation for Automatically Detecting Equivalent Mutants

It is obvious that one motivation for detecting equivalent mutants automatically is that it can save much
time and energy for the testers. As said in the previous section, detecting equivalent mutants is one of the
most expensive parts of mutation testing. Convincing oneself that a mutant is equivalent is a complicated
task that requires an in-depth analysis and understanding of the program.
Another motivation found by Acree [Acr80] is that detecting equivalent mutants automatically also could
prevent people from making errors in marking equivalent mutants. Acree de�nes two types of errors when
marking mutants equivalent:

Type 1: Marking a non-equivalent mutant as equivalent.

Type 2: Marking an equivalent mutant as non-equivalent.

Acree chose two programmers to examine 50 mutants in each of four programs. These mutants were chosen
randomly from all live mutants after test cases had been developed that eliminated enough mutants so that
about half of the remaining mutants were equivalent. The two programmers judged correctly only about
80% of the time, and 12% of the time made type 2 errors and 8% of the time made type 1 errors. Since
type 2 errors are \correctable" during later testing, it is really only type 1 errors that require attention.
The advantage of using automated techniques to detect equivalent mutants is that an automated tool (if
implemented correctly) would avoid type 1 errors since it would not convince itself that a killable mutant
was equivalent.

2.3 Do Procedures for Automatically Detecting Equivalence Exist?

Budd and Angluin [BA82] examine the relationships between equivalence and test data generation. They
prove that if there is a computable procedure for checking if two programs are equivalent, then there is also
a computable procedure for generating adequate test data for a program and vice versa. They also show
that, in general, neither of these computable procedure exists. Thus, there cannot be a complete algorithmic
solution to the equivalence problem. That is, detecting equivalence either between two arbitrary programs
or two mutants is an undecidable problem.
Fortunately, we do have one advantage over the general equivalence problem in mutation testing. Speci�cally,
we do not have to determine the equivalence of arbitrary pairs of programs. Because of the de�nitions of
mutant operators, mutants are very much like their original program. Although Budd and Angluin also
prove that this problem is undecidable, it has been theorized that for most speci�c cases, equivalence can be
decided [Acr80, OC94]. We can take advantage of this fact to develop techniques and heuristics for detecting
many of the equivalent mutants automatically.

2.4 Compiler Optimization Techniques in Equivalence Detection

Baldwin and Sayward [BS79] proposed using compiler optimization techniques to detect equivalent mutants.
The key intuition behind their approach is that many equivalent mutants are, in some sense, either optimiza-
tions or de-optimizations of the original program. The transformations that code optimizers make produce
equivalent programs. So when a mutant satis�es a code optimization rule, algorithms can detect the mutant
as an equivalent mutant. Baldwin and Sayward describe six types of compiler optimization techniques that
can be used to detect equivalent mutants:

1. Dead code detection,

2. Constant propagation,

3. Invariant propagation,

4. Common subexpression detection,

5. Loop invariant detection, and
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6. Hoisting and sinking.

O�utt and Craft [OC94] have designed algorithms for these six techniques, and developed and implemented
Equalizer, an automated detecting equivalent mutant tool. They found that Equalizer detected an average
of 10% of the equivalent mutants for 15 programs. They found that the invariant propagation technique is
the most powerful technique among these six.

2.5 Using Constraints in Equivalence Detection

In his dissertation [O�88], O�utt describes a technique for using mathematical constraints for testing, which
is called Constraint-Based Testing (CBT) [DO91]. He also suggested using CBT to detect equivalent mutants,
which is the subject of this thesis. This thesis develops the idea, presents speci�c strategies and algorithms
for detecting equivalent mutants and presents an implementation for these algorithms.
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3 Using Constraints To Detect Equivalent Mutants

According to Webster's Desk Dictionary of the English Language, a constraint is a con�nement or a restric-
tion. A constraint described in this paper is a mathematical algebraic expression that restricts the input
space of the program to be the portion of the input domain that satis�es a certain goal. As a simple example,
(x > 0) describes the portion of the input domain where x is positive. More complicated constraints can be
used to describe higher-level goals, such as an array must be sorted or a shape represented by a set of points
must be rectangular.
Constraint-based testing (CBT) [DO91] is a technique that uses constraints for software testing. It has
been used in one implementation of a test data generator and has been shown to be successful [DO91].
Can constraints also be used to detect equivalent mutants? As we described in section 2.3, theoretically
and generally speaking, the answer should be \YES". The general approach is to look for infeasibility in
constraint systems. In CBT, a constraint represents the conditions under which a mutant will die. That is,
if a test case kills the mutant, the constraint system will be true. If the constraint system cannot be true,
then there is no test case that can kill the mutant, thus, the mutant is equivalent.
In this section, we give a detailed discussion of how constraints can be used to detect equivalent mutants,
and how the procedure works. Since constraint-based testing was previously used for test data generation,
we start our introduction of this technique with constraint-based test data generation. We then give three
theorems of how to use CBT to detect equivalent mutants and the proofs for these theorems.

3.1 The Constraint-based Testing Technique

Practical test data generation techniques attempt to choose a subset of the input domain according to some
testing criterion. The assumption behind any criterion for generating test data is that the subset of inputs
chosen will �nd a large portion of the faults in the program as well as help the tester establish some con�dence
in the software. In a mutation system, the tester's goal is to select inputs that cause each mutant to fail.
For each mutant, we say that an e�ective test case causes the mutant to fail, and an ine�ective test case
does not. One way to automatically generate test cases to kill mutants is to \�lter out" the ine�ective test
cases. Such a �lter may be described by mathematical constraints.
Constraint-based testing uses the concepts of mutation analysis to automatically create test data. This test
data is designed speci�cally to kill the mutants of the test program. Such test data can be used to kill
mutants within a mutation system. For a test case t to kill a mutant M that modi�es line S of a program
P , t has to have three broad characteristics: reachability, necessity and su�ciency.

� Reachability

Since a mutant is represented as a syntactic change to a particular statement, and the other statements
in the mutated program are exactly the same as in the original program, it is apparent that as a mini-
mum requirement we must execute the mutated statement. We call this characteristic the reachability
condition.

Given a program P and a mutant programM that is formed by changing a statement S in P , if a test
case t cannot reach the statement S, it is guaranteed that t will not kill M [DO91].

� Necessity

A program that generates test cases to kill mutants needs to have one simple, broad characteristic: it
must generate test data that makes a di�erence in the mutant's behavior. We call this characteristic
the necessity condition.
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Given a program P and a mutant program M that is formed by changing a statement S in P , for a
test case t to kill M , it is necessary that if S is reached, the state of M immediately following some
execution of S be di�erent from the state of P at the same point [DO91].

To see why, simply note that since M is syntactically equal to P except for the mutated statement S,
if the states of the two programs do not di�er after the last execution of S, they will never di�er.

� Su�ciency

The su�ciency condition is that the �nal state of M di�ers from that of P [DO91].

Let D be the domain of all test cases t for P . This domain is represented by all t to P and the range of
values that t can assume. Each t in D represents a possible test case for P . In the light of the conditions
above, D can be divided in several ways for each mutant:

� D = Dr [Dr , where Dr is the portion of D that will satisfy the reachability condition Cr for a given
mutant and Dr is the portion of D that will not.

� D = Dn [Dn, where Dn is the portion of D that will satisfy the necessity condition Cn for a given
mutant and Dn is the portion of D that will not.

� D = Ds [Ds, where Ds is the portion of D that will satisfy the su�ciency condition Cs for a given
mutant and Ds is the portion of D that will not.

The letter C stands for a condition. The subscripts r; n; and s are taken from the terms reachability,
necessity and su�ciency.
From the de�nitions of the above three conditions and sub domains, we derive the following facts:

Fact 1: t is an e�ective test case that will kill a mutant M , t 2 Ds

Fact 2: t is an e�ective test case that will kill a mutant M ) t 2 Dr \Dn

Fact 3: Ds � Dr \Dn

Unfortunately, �nding t such that t 2 Dr is undecidable [O�88]. This is because the reachability condition
requires that if t satis�es the condition then the statement S will be executed, which requires a solution to
the halting problem. A weaker condition is that if S is executed, then the condition will be true. We use
CR to refer to this weaker condition and DR to refer to a domain that contains all inputs t that satisfy CR.
Since Cr ) CR, it is clear that:

Fact 4: Dr � DR.

Figure 4 is a Venn diagram that graphically shows these domains and their relationships for one mutant.
We will use the above facts and this diagram in later proofs.
CBT uses a path expression to describe the reachability condition (the weaker condition), CR, for a statement.
A path expression for a statement S in a program P is an algebraic expression that describes a condition on
test cases that will be true when P reaches S.
Since mutant operators represent syntactic changes, a test case that satis�es the necessity condition must
ensure that the syntactic change e�ected by the mutation results in an incorrect state for the program. CBT
uses a necessity constraint, which is an algebraic expression, to describe this necessity condition Cn, that
is, if a test case that satis�es the necessity condition will be executed on the mutated statement, the state
immediately following some execution of the mutated statement will be incorrect.
As an example, Figure 5 shows the function Mid with a mutant that replaces the relational operator LT with
LE on statement 5. The path expression for statement 5 is (Y < Z)^ (X � Y ), and the necessity constraint
for the mutant is ((X < Z) 6= (X � Z)).
In CBT, a test case t is generated by satisfying a constraint system, which can be either a reachability
constraint (a path expression), a necessity constraint, or a conjunction of a path expression and a necessity
constraint. It is clear that t is in the union of DR and Dn, i.e., t 2 DR [Dn.

12
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Dr Dn

Figure 4: Input Domain Subsets

FUNCTION Min (X, Y, Z)

INTEGER X, Y, Z

1 Mid = Z

2 IF (Y.LT.Z) THEN

3 IF (X.LT.Y) THEN

4 MID = Y

5 ELSE IF (X.LT.Z) THEN

� ELSE IF (X .LE. Z) THEN

6 MID = X

7 ENDIF

8 ELSE

9 IF (X.GT.Y) THEN

10 MID = Y

11 ELSE IF (X.GT.Z) THEN

12 MID = X

13 ENDIF

14 ENDIF

15 RETURN

16 END

Figure 5: Function Mid
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3.2 Why Can Constraints be Used to Detect Equivalent Mutants?

In section 1.2, we said that an equivalent mutant has the same functional behavior as the original program.
However, the term \the same functional behavior" was not formally given. Now we formally de�ne equivalent
mutants in terms of inputs and outputs.
De�nition: Let P be a program, andM a mutated program of P . ThenM is an equivalent mutant program
of P i� P (t) =M (t) for all t, t 2 D.
The above de�nition says that if a mutant is functionally equivalent to the original program, then we will
not be able to �nd any test data to kill the mutant, that is:

:(9tjt2D � P (t) 6=M (t))*) 8tjt2D � P (t) =M (t)

To support our e�orts in automatically detecting equivalent mutants, we state following three theorems, and
give proofs for these theorems. These proofs are based on the de�nition of an equivalent mutant, descriptions
of input domains and facts given in 3.1.
Theorem 1: Let Dr be the domain in which test cases satisfy the reachability condition (Cr) for a mutant
M . If Cr is infeasible, that is, Dr is empty, then M is equivalent. That is, Dr = � )M is equivalent.
Proof of Theorem 1:

1. M is equivalent , Ds =� | De�nition, Fact 1
2. Dr \Dn � Ds | Fact 3
3. Dr = � ) Ds = � | rules of sets, 2
4. Dr = � )M is equivalent | substitution of 1 in 3

Theorem 2: Let Dn be the domain in which test cases satisfy the necessity condition (Cn) for a mutant
M . If Cn is infeasible, that is, Dn is empty, then M is equivalent. That is, Dn = � )M is equivalent.
Proof of Theorem 2:

1. M is equivalent , Ds =� | De�nition, Fact 1
2. Dr \Dn � Ds | Fact 3
3. Dn = � ) Ds = � | rules of sets, 2
4. Dn = � )M is equivalent | substitution of 1 in 3

Theorem 3: Let Dr be the domain in which test cases satisfy the reachability condition (Cr) for a mutant
M , and let Dn be the domain in which test cases satisfy the necessity condition (Cn) for M . If Cr ^Cn is
infeasible, that is, Dr \Dn is empty, then M is equivalent.
Proof of Theorem 3:

1. M is equivalent , Ds =� | De�nition, Fact 1
2. Dr \Dn � Ds | Fact 3
3. Dr \Dn = � )M is equivalent. | substitution of 1 in 2

If we use the weaker reachability condition (CR) instead of the reachability condition (Cr), since Cr ) CR,
we can easily have following two derivations:

� DR = � )M is equivalent.

� DR \Dn = � )M is equivalent.

Proof of the Derivations:

1. Dr = � )M is equivalent | Theorem 1
2. DR � Dr | Fact 4
3. DR = � ) Dr = � | rules of sets, 2
4. DR = � )M is equivalent | Transition of implication, 1, 3
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5. Dr \Dn = � )M is equivalent | Theorem 3
6. DR \Dn = � ) Dr \Dn = � | rules of sets, 2
7. DR \Dn = � )M is equivalent. | Transition of implication, 5, 6

In section 3.1, we mentioned that CBT uses path expression constraint systems to represent reachability
conditions (the weaker conditions) and necessity constraints systems to represent necessity conditions. So
following statements are true.

� If a path expression constraint system (CR) for a statement modi�ed by a mutantM is infeasible, then
the set of test cases (DR) that can kill M is empty { implying that M can never be killed. So M is
equivalent.

� If a necessity constraint system(Cn) for a mutantM is infeasible, then the set of test cases (Dn) that
can kill M is empty | implying that M can never be killed. So M is equivalent.

� If a constraint system that is a conjunction of a path expression constraint system and a necessity
constraint system (CR^Cn) is infeasible, then the set of test cases (DR\Dn) that can killM is empty
{ implying that M can never be killed. So M is equivalent.

To decide if a constraint system is infeasible, there must be a contradiction in the constraint system itself.
For example, the constraint system (x > 0) ^ (x < 0) is a contradiction, because x can never be assigned a
value that is greater than 0 and less than 0 at the same time. If a mutant M has the above constraint as a
path expression associated with it, then we can say M is equivalent.
So far, we have translated the problem of detecting equivalent mutants to the problem of recognizing a
contradiction in a constraint system, which is a mathematical expression. Test data generation uses con-
straints by satisfying constraints to generate test cases, while equivalent mutant detection uses constraints by
recognizing infeasible constraints to detect equivalent mutants. Figure 6 shows these two uses of constraints.

Test Data Equivalent MutantsConstraints
InfeasibilitySatisfaction

Figure 6: Using Constraints

3.3 Constraint Representation

Before we describe how to use constraints to detect equivalent mutants, let us describe how constraints are
represented in CBT. The basic component of a constraint is an algebraic expression, which is composed of
variables, parentheses, and programming language operators. Expressions are taken directly from the test
program and come from right-hand sides of assignment statements, predicates within decision statements, etc.
A constraint is a pair of algebraic expressions related by one of the conditional operators f>;�; <;�;=; 6=g.
Constraints evaluate to one of the Boolean values TRUE or FALSE and can be modi�ed by the negation
operator NOT (:). A clause is a list of constraints connected by the logical operators AND (^) and OR

(_). A conjunctive clause uses only the logical AND, and a disjunctive clause uses only the logical OR. We
keep all constraints in disjunctive normal form (DNF), which is a list of conjunctive clauses connected by
logical ORs. For example, (x > 0) represents a constraint; (x > 0) ^ (y < 0) is a conjunctive clause; and
((x > 0) ^ (y < 0)) _ (z = 0) is a disjunctive clause.
In CBT, a constraint system is referred to as a DNF clause. DNF is used for convenience during constraint
generation (each conjunctive clause within a path expression represents a unique path to a statement).
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3.4 Strategies for Detecting Equivalent Mutants

As mentioned in the previous section, we try to �nd a contradiction in the constraint system to detect
equivalent mutants. Unfortunately, recognizing whether an arbitrary constraint system is infeasible is an
undecidable problem [DO91]. Thus, we cannot always recognize whether a constraint system is infeasible.
Presently, however, equivalent mutants are detected by hand, so even partial solutions are worthwhile. We
apply a collection of special case analysis and heuristics to recognize infeasible constraint systems, and
equivalent mutants, when possible. In section 5 we present empirical results, from an implementation, that
measures how well these strategies work.
In this thesis, we use three broad strategies that attempt to recognize infeasible constraint systems. They
are negation, constraint splitting and constants comparison.

3.4.1 Negation

De�nition 1: Constraint C1 is the negation of C2 i� the domains they describe:

� are non-overlapping, and

� cover the entire domain of the variables in C1 and C2.

To recognize infeasible constraint systems, we concentrate on non-overlapping but not domain covering. We
introduce partial negation to loosen the restriction of covering the entire domain in negation.
De�nition 2: Constraint C1 is a partial negation of C2 i� the domains they describe:

� are non overlapping, and

� do not cover the entire domain.

De�nition 3: Two constraints are semantically equal if they describe the same domain.
De�nition 4: Two constraints are syntactically equal if they describe the same domain and also have the
same string of symbols.
Clearly, two constraints that are semantically equal if they are syntactically equal.
Examples:

� Let A be the constraint x > 1 and B be the constraint x � 1. Then A is the negation of B, or B is the
negation of A (negation is commutative). Both constraints cannot be satis�ed at the same time, but
the domain of x that makes the two constraints TRUE cover the entire domain of x.

� Let A be the constraint x > 1 and B be the constraint x < 1. Then A is the partial negation of B, or
B is the partial negation of A. Both constraints cannot be satis�ed at the same time, but the domain
of x that makes the two constraints TRUE do not cover the entire domain of x.

� Suppose constraint A is x > 0 and constraint B is x > 0. Then A and B are syntactically equal. Thus,
A and B are semantically equal.

� Let x be a variable over integers, A be the constraint x > 0 and B be the constraint x � 1. Thus A
and B are not syntactically equal, but they are semantically equal.

The negation strategy is the basic way we recognize infeasible constraints. Given two constraints, we �rst
use negation or partial negation to rewrite one of the constraints, then compare these two constraints. If
they are syntactically equal, the constraints conict, and the constraint system is infeasible. So, a mutant
with this infeasible constraint system is equivalent.
For example, assume two constraints A and B, where A is (x+ y) > z and B is (x+ y) � z. The negation
of A is (x+ y) � z, denoted A

0

. Then, since A
0

and B are syntactically equal, A and B conict.
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3.4.2 Constraint splitting

We also use constraint splitting to recognize infeasible constraints. The motivation is as follows. We found
that a commonly occurring case is a necessity constraint such as (x+y) > 0, together with a path expression
such as (x < 0) ^ (y < 0). The negation strategy cannot tell that the necessity constraint conicts with the
path expression.
To detect such conicts, we use a strategy called constraint splitting. Given two constraints (say C and D),
we generate two new constraints (say A and B), such that C ) A _ B. Then we compare A and B to D.
We prove that if both A and B conict with D, then C conicts with D, and thus show the correctness of
the \constraint splitting" strategy.

C ) A _B
, :C _ (A _B) | implication
, (A _B) _ :C | commutativity
, ::(A _B) _ :C | logical negation
, :(:A ^ :B) _ :C | De Morgan's law
, :A ^:B ) :C | implication

By showing that A and B conict with D, that is, :A^:B^D, and using the above proof, :A^:B ) :C,
we are sure that C conicts with D, that is, :C ^D. The following proves this:

From :A ^ :B ^D; :A ^ :B ) :C Infer :C ^D

1 :A ^ :B ^D premise

2 :A ^ :B property of And, 1

3 :A ^ :B ) :C premise

4 :C implication eliminating, 2, 3

5 D property of And, 1

6 :C ^D property of And, 4, 5

For the constraint splitting strategy, we analyze the cases shown in Table 4. Note that for most of these, A
and B are weaker than C, but it is usually easier to decide if A or B conicts with D.

3.4.3 Constant comparison

A third strategy to decide whether two constraints conict is based on a property that is common in the
constraints generated for test cases. The property is that both constraints should have the format (V rop K),
where V is a variable, rop is a relational operator, and K is a constant. Also the variables in both constraints
are required to be the same.
Let A be the constraint (X rop1 K1), and B be the constraint (X rop2 K2). By evaluating two constants and
two relational operators, we decide whether A conicts with B. We call this strategy constants comparison.
Table 5 shows the cases we analyzed for the constants comparison strategy. The �rst and the second columns
are the two given constraints. The third column is a predicate on constants k1 and k2, which is used to
decide whether the two constrains conict. Note that it does not always have such a predicate available.
The last column is the conclusion of whether the two constrains conict. The word \pred" stands for \the
predicate holds"; the predicate is in column 3. The letter \T" stands for \True" which means the two given
constraints conict; and the letter \F" stands for \False" which means the two given constraints do not
conict.
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Original New New
Constraint Constraint1 Constraint2

(x + y) > 0 ) x > 0 _ y > 0
(x + y) � 0 ) x � 0 _ y � 0
(x + y) < 0 ) x < 0 _ y < 0
(x + y) � 0 ) x � 0 _ y � 0
(x + y) = 0 ) x � 0 _ y � 0
(x + y) 6= 0 ) x 6= �y
(x � y) > 0 ) x > 0 _ y < 0
(x � y) � 0 ) x � 0 _ y � 0
(x � y) < 0 ) x < 0 _ y > 0
(x � y) � 0 ) x � 0 _ y � 0
(x � y) = 0 ) x � 0 _ y � 0
(x � y) 6= 0 ) x 6= y
(x � y) > 0 ) x > 0 ^ y > 0 _ x < 0 ^ y < 0
(x � y) � 0 ) x � 0 ^ y � 0 _ x � 0 ^ y � 0
(x � y) < 0 ) x > 0 ^ y < 0 _ x < 0 ^ y > 0
(x � y) � 0 ) x � 0 ^ y � 0 _ x � 0 ^ y � 0
(x � y) = 0 ) x = 0 _ y = 0
(x � y) 6= 0 ) x 6= 0 ^ y 6= 0
(x � y) > 0 ) x > 0 ^ y > 0 _ x < 0 ^ y < 0
(x � y) � 0 ) x � 0 ^ y > 0 _ x � 0 ^ y < 0
(x � y) < 0 ) x > 0 ^ y < 0 _ x < 0 ^ y > 0
(x � y) � 0 ) x � 0 ^ y < 0 _ x � 0 ^ y > 0
(x � y) = 0 ) x = 0
(x � y) 6= 0 ) x 6= 0

Table 4: Constraint Splitting Cases Analysis
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Constraint A Constraint B Predicate (pred) Conclusion

x > k1 x > k2 | F
x > k1 x � k2 | F
x > k1 x < k2 k1 � k2� 1 if pred T, else F
x > k1 x � k2 k1 � k2 if pred T, else F
x > k1 x = k2 k1 � k2 if pred T, else F
x > k1 x 6= k2 | F
x � k1 x > k2 | F
x � k1 x � k2 | F
x � k1 x < k2 k1 � k2 if pred T, else F
x � k1 x � k2 k1 > k2 if pred T, else F
x � k1 x = k2 k1 > k2 if pred T, else F
x � k1 x 6= k2 | F
x < k1 x > k2 k1 � k2 + 1 if pred T, else F
x < k1 x � k2 k1 � k2 if pred T, else F
x < k1 x < k2 | F
x < k1 x � k2 | F
x < k1 x = k2 k1 � k2 if pred T, else F
x < k1 x 6= k2 | F
x � k1 x > k2 k1 � k2 if pred T, else F
x � k1 x � k2 k1 < k2 if pred T, else F
x � k1 x < k2 | F
x � k1 x � k2 | F
x � k1 x = k2 k1 < k2 if pred T, else F
x � k1 x 6= k2 | F
x = k1 x > k2 k1 � k2 if pred T, else F
x = k1 x � k2 k1 < k2 if pred T, else F
x = k1 x < k2 k1 � k2 if pred T, else F
x = k1 x � k2 k1 > k2 if pred T, else F
x = k1 x = k2 k1 6= k2 if pred T, else F
x = k1 x 6= k2 k1 = k2 if pred T, else F
x 6= k1 x > k2 | F
x 6= k1 x � k2 | F
x 6= k1 x < k2 | F
x 6= k1 x � k2 | F
x 6= k1 x = k2 k1 = k2 if pred T, else F
x 6= k1 x:k2 | F

Table 5: Constant Comparison Cases Analysis
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The reason to use this strategy is that the negation strategy described before is based on syntactic checking
of two constraints. For example, given the two constraints (x > 1) and (x < 0), if we use the negation
strategy, we can partially negate or negate the �rst constraint (x > 1) to be (x < 1) or (x � 1), but neither
(x < 1) nor (x � 1) is syntactically equal to (x < 0), so we cannot tell they conict. But if we use \constants
comparison", we can tell that they do conict.
To expand the use of constant comparison, if a constraint has the format (V aop K1) rop K2, we rewrite it
as V rop (K2 aop K1), such that (V aop K1) rop K2 , V rop (K2 aop K1), where V is a variable, aop is an
arithmetic operator, aop is the mathematical inverse operation of aop, rop is a relational operator, and K1
and K2 are constants.
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4 Design And Implementation

We have implemented a tool Equivalencer that uses CBT to detect equivalent mutants. Equivalencer is
integrated with Godzilla, a test data generator in Mothra. Although the technique (CBT) is language
independent, the tool detects equivalent mutants for Fortran 77 programs. Equivalencer was implemented
in the programming language C on a Sun Sparc classic workstation running the SunOS 4.1.3 (MULTICAST-
4.1.3) #2 operating system. Equivalencer contains more than 2000 lines source code and also uses several
Mothra and Godzilla library functions.
In this section, we �rst describe the assertion constraints that a�ect our design and implementation; and how
we insert them into a program under test. Then we give the architectural design for the tool Equivalencer.
Finally, the algorithms that implement the strategies described in section 3 are given.

4.1 Inserting Assertion Constraints

In our implementation, we use assertion constraints to help detect equivalent mutants. Assertions are
constraints that a user inserts into a program under test to manually restrict the input domain of some
variables. They could be preconditions to the program or predicates on a speci�c statement, or predicates
that apply to an entire function or program.
There are two kinds of variables in a program or a function: parameter variables and internal variables. The
assertions on the parameter variables can usually only be derived by a human (semantically). These are often
part of the speci�cations, that is, preconditions. The assertions on the internal variables can sometimes be
derived automatically (syntactically). We have three kinds of assertions in the programs used in this thesis.

1 . Assertions on parameter variables, such as (F.GE.1 .AND. F.LE.N .AND. N.GE.1 .AND. N.LE.10) in the
function Find shown in Figure 7. Assertions like these are also known as preconditions.

2 . Assertions on internal variables that could be derived automatically, such as (I.GE.1 .AND. M.GE.1)
in the function Find shown in Figure 7. There are known techniques for doing this, such as slicing
[Wei84] and control ow analysis [FL88]. The purpose of implementing a tool in this thesis is to show
how we can use constraints to detect equivalent mutants, so in our implementation, we generate these
assertions by hand and put them in as assertion constraints.

3 . Assertions on internal variables that could not easily be derived automatically, such as (J.GE.0 .AND.
NS.GE.1) in the function Find shown in Figure 7. Although creating assertions is an additional burden
on the tester, we feel that it is easier for the tester to provide information about variables in the
program than to analyze mutants. We can imagine a system that interacts with the tester and provides
information to help the tester to analyze mutants and to detect equivalent mutants on a program under
test.

When Godzilla generates a constraint that has arrays in it, it takes a safe approach that does not provide
array index expressions associated with array references. For example, a constraint system such as A(i) �
0 ^ A(j) < 0 will be generated as A() � 0 ^ A() < 0. Depending on the negation strategy, this constraint
system could be recognized as having a contradiction in it, which is incorrect. To avoid this, Equivalencer
skips checking constraints with arrays, except in the case we describe below.
We use a constraint with arrays to recognize contradiction only if this constraint is an assertion constraint.
That is because we can be sure that an array in an assertion constraint that we insert will apply to every
element of the array. For example, an assertion constraint is A() � 0, which means every element in array
A() is greater than or equal to 0. If there is a necessity constraint, say A() < 0, we can be sure that this
assertion conicts with this necessity constraint. To take advantage of this, we added a routine that checks
whether assertion constraints conict with other constraints, such as necessity, path expression constraints.
In this routine, Equivalencer works on array constraints. We will refer to this routine as array-extension.

4.2 Architectural Design

Figure 8 is the overall architectural diagram of Godzilla after adding Equivalencer. The tools are represented
in the �gure by boxes. These tools, which are designed as separate entities and implemented as separate
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SUBROUTINE FIND (A, N, F)
INTEGER A (10), N, F

C= A inout
C= N in
C= F in

C F is index into A(). After execution, all elements to the left of
C A(F) are less than or equal to A(F) and all elements to the right
C of A(F) are greater than or equal to A(F).
C Only the �rst N elements are considered.
C From DeMillo, Lipton, and Sayward [DeMi78], repeated from Hoare's
C paper [Hoar70].

INTEGER M, NS, R, I, J, W

C External parameters assertions:
ASSERT (F.GE.1.AND.F.LE.N.AND.N.GE.1.AND.N.LE.10)

C Internal variables assertions:
ASSERT (I.GE.1.AND.M.GE.1)

C Internal variables assertions (hard to derive automatically):
ASSERT (J.GE.0 .AND. NS.GE.1)
M = 1
NS = N

10 IF (M.GE.NS) GOTO 1000
R = A (F)
I = M
J = NS

20 IF (I.GT.J) GOTO 60
30 IF (A(I).GE.R) GOTO 40

I = I + 1
GOTO 30

40 IF (R.GE.A(J)) GOTO 50
J = J - 1
GOTO 40

50 IF (I.GT.J) GOTO 20
W = A (I)
A (I) = A (J)
A (J) = W
I = I + 1
J = J - 1
GOTO 20

60 IF (F.GT.J) GOTO 70
NS = J
GOTO 10

70 IF (I.GT.F) GOTO 1000
M = I
GOTO 10

1000 RETURN
END

Figure 7: Subroutine Find
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Figure 8: Godzilla Architectural Diagram

programs, communicate through �les (data) represented by ovals. The arrows indicate the ow of data
through Godzilla.
The MIC (Mothra Intermediate Code) is generated by the Parser tool inMothra (not shown in the diagram),
from parsing a Fortran test program. The Path Analyzer, Paths, uses the MIC to generate Path Expression
Constraints. The Constraints Generator, Congen, uses MIC to generate Necessity Constraints; it also uses
the Path Expression to generate the Predicate Constraints. The Assertion Transformation (Transass) uses
MIC to generate Assertion Constraints (if they exist). The Constraints Satis�er (Consat) generates test data
by satisfying the constraints; and it also provides Failure Information (why a test case cannot be generated).
Then Equivalencer (Equivalence Analyzer) uses the Path Expression, Necessity, and Assertion Constraints
that are generated by the other tools to detect equivalent mutants by using the strategies described in section
3. Also, Equivalencer uses the Failure Information o�ered by Consat to detect some equivalent mutants. We
could not �nd a way to use Predicate Constraints.
Figure 9 shows the execution ow of Equivalencer. The �rst step is the initialization. Equivalencer opens
all the �les that are needed and brings the data into memory. In the second step, Equivalencer consults the
Failure Information o�ered by Consat. If the information says the mutant being checked is equivalent, it
outputs an equivalent message and exits, otherwise Equivalencer goes to the next step. Next Equivalencer gets
the Path Expression (pe) and Assertion Constraints (assertion), and combines them to form a completed
path expression (pathexpr). Then it checks for infeasible constraints in pathexpr by using the negation,
constants comparison, and constraint splitting strategies. If the constraints are infeasible, it outputs the
equivalent message, otherwise it goes to the next step. Equivalencer gets the Necessity Constraint (cnst) if it
is available, otherwise it outputs a message indicating that fact. If cnst is available then Equivalencer checks
whether cnst is infeasible by using the negation, constraint splitting, and constants comparison strategies.
If it is infeasible, Equivalencer outputs an equivalence message. If it is not, Equivalencer goes to next step.
After combining cnst and pathexpr, Equivalencer checks for a contradiction in the combination by using
the three strategies. If a contradiction is found, it outputs an equivalence message. If it is not found, the
array-extension checking routine is applied to assertion constraints against cnst and against pathexpr. If a
conict is found, an equivalence message is output. If none of these steps �nd that the mutant is equivalent,
Equivalencer outputs a message indicating that fact. After outputting the messages, Equivalencer checks
whether there are more mutants. If not, it exits.
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4.3 Algorithms

Following are the algorithms for the three strategies described in section 3. They are Negation, Constraint
Splitting, and Constants Comparison.

Negation algorithm

input two constraints A and B
output boolean | If A and B conict, return conict, else return no-conict.
declare neg-A, partneg1-A, partneg2-A | negated or partial negated constraint
BEGIN

neg-A = Negate(A) | according to Table 6 (negation table)
IF neg-A syntactically equals B

RETURN conict
ELSE

IF the relation operator in A is one of f>;<;=g
partneg-A = PartialNegate1(A) | according to Table 6
IF partneg1-A syntactically equals B

RETURN conict
ELSE

partneg2-A = PartialNegate2(A) | according to Table 6
IF partneg2-A syntactically equals B

RETURN conict
ELSE

RETURN no-conict
END IF

END IF
END IF

END IF
END Negation
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Constraint C Negation of C Partial Negation of C
Partial Negation1 Partial Negation2

expr1 > expr2 expr1 � expr2 expr1 < expr2 expr1 = expr2
expr1 � expr2 expr1 < expr2 | |
expr1 < expr2 expr1 � expr2 expr1 > expr2 expr1 = expr2
expr1 � expr2 expr1 > expr2 | |
expr1 = expr2 expr1 6= expr2 expr1 > expr2 expr1 < expr2
expr1 6= expr2 expr1 = expr2 | |

True False | |
False True | |

Table 6: Negation and Partial Negation

Constraint splitting algorithm

input necessity constraint C, and path expression D
output boolean | If C and D conict, return conict, else return no-conict
declare A, B | constraints
BEGIN

IF the format of C is not ((V11 aop V22) rop3 K4)
RETURN no-conict

ELSE | according to the Table 4 (constraint splitting table)
A = NewConstraint1(C)
B = NewConstraint2(C)

END IF
use negation strategy to check for a conict | see negation algorithm
IF A and B both conict with D

RETURN conict
ELSE

use constants comparison strategy to check for a conict
| see constants comparison algorithm

IF A and B both conict with D
RETURN conict

ELSE
RETURN no-conict

END IF
END IF

END Constraint Splitting

1V1 is a variable
2V2 is a variable
3rop is a relational operator
4K is a constant
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Constants Comparison Algorithm

input two constraints A and B
output boolean | If A and B conict, return conict, else return no-conict.
BEGIN

IF the format of A is (V5 rop6 K7)
keep the format

ELSE IF the format of A is (K rop V)
modify the format to (V rop K)

ELSE IF the format of A is ((V aop8 K19) rop K210)
modify the format to (V rop (K2 aop K1))

ELSE IF the format of A is (K1 rop (V aop K2))
modify the format to (V rop (K1 aop K2))

ELSE
RETURN no-conict

END IF
IF the format of B is (V rop K)

keep the format
ELSE IF the format of B is (K rop V)

modify the format to (V rop K)
ELSE IF the format of B is ((V aop K1) rop K2)

modify the format to (V rop (K2 aop K1))
ELSE IF the format of B is (K1 rop (V aop K2))

modify the format to (V rop (K1 aop K2))
ELSE

RETURN no-conict
END IF
IF V in A and B are not the same

RETURN no-conict
END IF
IF (ConstantsComparison(A, B) == True)

| according to Table 5 (constants comparison table)
RETURN conict

ELSE RETURN no-conict
END IF

END Constants Comparison

5V is a variable
6rop is a relational operator
7K is a constant
8aop is one of the arithmetic operators (+;�;�;�)
9K1 is a constant
10K2 is a constant
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Program Description Statements Mutants Equivalent

Bsearch Binary search on an integer array 20 299 27
Bub Bubble sort on an integer array 11 338 35
Cal Days between two dates 29 3010 236
Euclid Greatest common divisor (Euclid's) 11 196 24
Find Partitions an array 28 1022 75
Insert Insertion sort on an integer array 14 460 46
Mid Median of three integers 16 183 13
Pat Pattern matching 17 513 61
Quad Real roots of quadratic equation 10 359 31
Trityp Classi�es triangle types 28 951 109
Warshall Transitive closure of a matrix 11 305 35

Table 7: Experimental Programs

5 Results

A principal reason for implementing Equivalencer was to provide a vehicle for detecting equivalent mutants
automatically to improve the mutation testing process. Therefore, a number of experiments have been
performed on several programs to determine the equivalent mutant detection power of Equivalencer. Results
for di�erent combinations of the strategies and combined with di�erent tools in the implementation are
presented. A distribution of detected mutants by type is given. The time to detect equivalent mutants of
these programs is also presented. The results of a comparison with compiler optimization is presented, too.
A test suite of eleven Fortran-77 programs was chosen for these studies. It cannot be claimed that these
programs represent a statistically valid sample of programs. There is no generally accepted way to choose
such a sample of programs, and this thesis does not attempt to solve that problem. However, the eleven
programs (functions) were taken from the literature and chosen to represent di�erent types of problems to
exercise the equivalent mutant detection capabilities in as wide a manner as possible. The eleven programs
are Bsearch, Bub, Cal, Euclid, Find, Insert, Mid, Pat, Quad, Trityp and Warshall. These programs have
been studied by several researchers and include a very carefully created list of equivalent mutants under
Mothra.
Table 7 lists these programs along with a brief description, the number of executable Fortran lines, the
number of mutants generated, and the number of equivalent mutants. The source code for each program
is shown in Appendix A. These programs are small for two reasons. First, mutation analysis is primarily
intended for unit-level (subroutines and functions) testing. Second, this study involved a lot of hand analysis;
for each program and each mutated program studied, equivalent mutants had to be identi�ed.
In Godzilla, every variable in each constraint has a statement number associated with it. Usually, the
statement number for a variable in a constraint is the number of the statement associated with the constraint.
For example, a constraint A < 0 in statement 5 will be expressed as A:5 < 0. But if a variable's value has
not changed from the previous statement, we might have the same statement number for the variable. For
example, using the constraint in the example above, ifA has not changed from statement 4, it might be shown
as A:4 < 0 on statement 5. The tools Transass and Conform in Godzilla are a�ected by these statement
numbers. We describe them below.
There are two options to Transass. Option [-p] propagates assertions through the program so that the
assertions apply to all statements. But it assumes that the variables will not change values, or if the values
have been changed, they will not a�ect the validity of assertion constraints. So Transass with this option
assigns the same statement number, which is 1, to the assertion constraint on each statement. Option
[-sp] propagates assertions through the program, and assigns the corresponding statement line number to
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every statement. If no option is given, Transass assumes that the assertion only applies to the statement
immediately following the assertion.
Another Godzilla tool, Conform, has greatly e�ected our analysis. Conform re-writes constraints to be solely
in terms of the input parameters by symbolically evaluating the program [O�91]. Also, Conform re-writes the
statement numbers in the constraints. Initially, the statement number each variable is the statement where
the constraint appears. Conform re-writes a variable's statement numbers to a previous statement number
if the variable has not been assigned a new value from the previous statement. We refer to this functionality
of Conform as constraints propagation because the statement numbers are \propagated" through the con-
straints. By getting help from Conform to propagate constraints, especially on path expression constraints,
Equivalencer increases its detection ability. Unfortunately, Conform has a design aw that causes it to work
incorrectly on constraints involving loops. If a constraint re-written by Conform is in a loop, it is correct for
the �rst iteration, but usually not correct in the second and subsequent iterations. Since Equivalencer detects
equivalent mutants using constraints, Equivalencer will detect incorrect equivalent mutants if the constraints
are wrong. Unfortunately, �xing the design aw for Conform in the limited time available was impractical.
But in order to show that Conform can help Equivalencer, we present an experiment with Conform in which
we removed the incorrect equivalent mutants by hand, leaving the correct equivalent mutants.
For each experiment, the �rst few steps are the same. All mutants were generated by a tool called Mutmake
inMothra, the path expression constraint for each statement were generated by a tool called Paths inMothra,
and the necessity constraint for each mutant (if it could be generated) were generated by Congen. Then
di�erent steps or options were used for each experiment. We describe the rest of each experiment as follows:
Experiment 1: Transass was run with option [-sp] to generate assertion constraints (if there were any),

then Equivalencer with only the negation strategy was run on every mutant to detect whether it is
equivalent.

Experiment 2: Transass was run with option [-sp], then Equivalencer with the negation and constraint
splitting strategies was run on every mutant to detect whether it is equivalent.

Experiment 3: Transass was run with option [-sp], then Equivalencer with constant comparison strategy
was run on every mutant to detect whether it is equivalent.

Experiment 4: Transass was run with option [-sp], then Equivalencer was run on every mutant to detect
whether it is equivalent by using all three strategies.

Experiment 5: Transass was run with option [-sp], then Equivalencer was run on every mutant to detect
whether it is equivalent by using all three strategies plus array extension. For this experiment, we
captured the starting time fromUnix command\date" just before executing Equivalencer, and captured
the ending time from date just after the execution �nished. We measured the time for this experiment
because it used all three strategies plus array extension.

Experiment 6: This time, Transass was run with option [-p] to generate assertion constraints (if there
were any), then Conform was run to re-write the constraints; and then Equivalencer was run on every
mutant to detect whether it is equivalent by using all three strategies plus array extension.

Table 8 shows the results from experiments 1 through 5. The �rst column in the table gives the names of
program used in experiments. The second column gives the number of equivalent mutants in each program
(as determined by hand analysis). The third through the last columns give the percentage of equivalent
mutants that were detected by using the di�erent combinations just described. S123a is from experiment 5,
S1 is from experiment 1, S12 is from experiment 2, S3 is from experiment 3, and S123 is from experiment 4.
From Table 8, we can see that the average detection percentage is about 30% by using all the strategies plus
array-extension. Among the three strategies (negation, constraint-splitting and constants-comparison), we
found that the constants-comparison strategy is the most powerful.
Table 9 shows that Conform could help Equivalencer, the results from experiment 5 and 6. As in Table 8,
the �rst column in the table gives the names of the program used in the experiments and the second column
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Equiv. S123a S1 S12 S3 S123
Program num. % % % % %

Bsearch 27 25.93 22.22 25.93 14.81 25.93
Bub 35 65.71 45.71 45.71 65.71 65.71
Cal 239 12.55 0.84 0.84 11.72 11.72
Euclid 24 70.83 62.50 70.83 50.00 70.83
Find 75 62.67 12.00 12.00 50.67 62.67
Insert 46 50.00 15.22 15.22 36.96 50.00
Mid 13 0.00 0.00 0.00 0.00 0.00
Pat 61 44.26 1.64 1.64 36.07 44.26
Quad 31 9.68 0.00 0.00 9.68 9.68
Trityp 109 11.93 6.42 6.42 6.42 11.93
Warshall 35 54.29 0.00 0.00 45.71 45.71
Total/Avg. 695 30.07 9.06 9.50 24.46 29.35

Table 8: Detection Percentage by Using Di�erent Strategies

gives the number of equivalent mutants in each program. The third and fourth columns give the number
and percentage of detected equivalent mutants without using Conform. The �fth and sixth columns are the
number and percentage of detected equivalent mutants using Conform. Since the sets of detected equivalent
mutants with and without using Conform intersect, the seventh and eighth columns give the number and
percentage of the union of these two sets. The bugs in Conform cause Equivalencer to erroneously mark
killable mutants as equivalent mutants. Since the bugs in Conform are beyond our control, we removed the
incorrectly detected mutants by hand.
Table 10 shows the time for detecting equivalent mutants on these programs from experiment 5. The �rst
column is the program's names, and the second and third columns are the number of mutants generated for
the program and the number of equivalent mutants. The fourth column is the number of detected equivalent
mutants. The last column is the wall-clock execution time of Equivalencer on each program in seconds.
From Table 10, we can see the longest time to detect one equivalent mutant is less than 6 seconds in the Cal
program. In most programs, the time to detect one equivalent mutant is less than 1 second. We did not try
to optimize these programs, thus, it is likely that a commercial tool could be quite a bit faster.
Table 11 shows the distribution of detected equivalent mutants among the mutant types (based on the
union column of Table 9). The �rst column is the mutant type and the second column is the number of
equivalent mutants. The third column gives the number of detected equivalent mutants by each type, the
fourth gives the percentage of detected equivalent mutants by each type of equivalent mutants, and the last
gives the percentage of detected equivalent mutants on all equivalent mutants. We can see that most of the
detected equivalent mutants belong to mutant type ABS and above 90% have been detected. Since necessity
constraints are not built for every mutant type, only 14 of the 22 mutant types have necessity constraint
templates; the necessity constraint templates are shown Appendix B. Among the programs used in our
experiments, 3 mutant types do not have equivalent mutants.
To compare with compiler optimization techniques [OC94], we chose the same programs that were used
in O�utt and Craft's paper [OC94] and in our experiments. They are Bsearch, Bub, Cal, Euclid, Find,
Insert, Mid, Trityp and Warshall. The results are shown in Table 12. The �rst column is the program
names and the second column is the number of equivalent mutants. The third and fourth columns are
the number of detected equivalent mutants and the percentage of detection by using compiler optimization
detection techniques (Optimization) respectively. The �fth and sixth columns are the number of detected
equivalent mutants and the percentage of detection by using the constraints detection technique (Constraints)
respectively. The data of using compiler optimization techniques is from O�utt and Craft's paper [OC94].
The data on constraints detection is from the union column in Table 9.
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Equiv. without Conform with Conform union
Program num. num. % num. % num. %

bsearch 27 7 25.93 19 70.37 19 70.37
bub 35 23 65.71 4 11.43 24 68.57
cal 239 30 12.55 33 13.81 37 15.48
euclid 24 17 70.83 16 66.67 18 75.00
�nd 75 47 62.67 63 84.00 63 84.00
insert 46 23 50.00 31 67.39 32 69.57
mid 13 0 0.00 3 23.08 3 23.08
pat 61 27 44.26 21 34.43 29 47.54
quad 31 3 9.68 4 12.90 4 12.90
trityp 109 13 11.93 80 73.39 80 73.39
warshall 35 19 54.29 3 8.57 22 62.86
total/avg 695 209 30.07 277 39.86 331 47.63

Table 9: Detection Results of with/without Using Conform

Program Mutants Equivalent Detected Time (s)

Bsearch 299 27 7 4
Bub 338 35 23 10
Cal 3010 236 30 167
Euclid 196 24 17 3
Find 1022 75 47 38
Insert 460 46 23 5
Mid 183 13 0 0
Pat 513 61 27 17
Quad 359 31 3 1
Trityp 951 109 13 27
Warshall 305 35 19 10
Total 7636 695 209 281

Table 10: Detecting Time
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Mut Type Equiv Mut Detected % on Each Type % on All Types

abs 328 303 92.38 43.60
aor 2 1 50.00 0.14
der 6 3 50.00 0.43
csr 7 3 42.86 0.43
svr 31 6 19.35 0.86
ror 25 4 16.00 0.58
sar 7 1 14.29 0.14
scr 49 7 14.29 1.01
asr 8 1 12.50 0.14
rsr 10 1 10.00 0.14
uoi 42 1 2.38 0.14
all others 180 0 0.00 0.00
total/avg. 695 331 47.63 47.63

Table 11: Detected Equivalent Mutants among Mutant Types

Equiv. Optimization Constraints
Program num. num. % num. %

Bsearch 27 0 0.00 19 70.37
Bub 35 5 14.29 24 68.59
Cal 239 0 0.00 37 15.48
Euclid 24 1 4.17 18 75.00
Find 75 1 1.33 63 84.00
Insert 46 10 21.74 32 69.57
Mid 13 1 7.69 3 23.08
Trityp 109 12 11.01 80 73.39
Warshall 35 4 11.43 22 62.86
Total/Avg. 603 30 4.98 298 49.42

Table 12: Comparison on Compiler Optimization and Constraints Detections
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From Table 12, we see that the constraint-based technique is more powerful than the compiler optimization
techniques in detecting equivalent mutants. The average percentage of equivalent mutants detected by the
constraint-based technique is almost 10 times more than the average percentage detected by the compiler
optimization techniques.
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6 Conclusions And Recommendations

In this section, we give the conclusions �rst and then present our recommendations. The recommendations
are both on improving the detection techniques and on improving the software.

6.1 Conclusions

In this thesis, we have presented a partial solution to the problem of equivalent mutant detection. The
solution was proposed, speci�c algorithms were developed and a proof of concept experimental tool was
built. Our results show that our approach is an e�ective solution to this problem.
By using the CBT technique, Equivalencer is able to automatically detect a signi�cant percentage for most
programs, although it is not possible to detect all equivalent mutants. In the experiments, the detection
percentage is over 60% for 7 of the 11 programs and the average detection percentage over all programs is
over 45% (see Table 9 in section 5). With appropriate extensions (see section 6.2), we think the detection
percentages could be even higher. Comparing with the Equalizer [OC94], which uses the compiler optimiza-
tion techniques, Equivalencer is much more powerful at detecting equivalent mutants. Also the detecting
time is reasonably fast, even in our implementation, which was optimized for speed. Considering that every
test case would have to be run against those equivalent mutants, the time saving is large. Considering the
time to detect those equivalent mutants by hand, the time saving is signi�cant.
Since Equivalencer uses constraints to detect equivalent mutants, it needs other tools to generate and modify
constraints. This technique should use the following process to get the best results.

1. Run Parser to parse a program under test

2. Run Mapper to initialize parameter variable's class

3. Run Mutmake to generate mutants for the program

4. Run Transass with the option [-sp] to generate assertion constraints

5. Run Paths to generate path expression constraints

6. Run Congen to generate necessity constraints

7. Run Consat to generate test cases. We need to run consat because we need a side product from it; the
failure information, which gives information about equivalent mutants

8. Run Equivalencer to detect equivalent mutants

9. Run Transass with the option [-p] to generate assertion constraints

10. Run Conform to modify constraints

11. Run Equivalencer to detect equivalent mutants

6.2 Recommendations

In this subsection, we make several recommendations for improving the equivalent mutant detection power.
We divide these into two categories: recommendations for improving the technique, and recommendations
for improving the software.
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6.2.1 Improving the detection techniques

We recommend three ways to improve our techniques. One is a strategy that could recognize infeasible
constraints, another is to have better constraints, and the third one is to analyze the execution after the
mutated statement.
More infeasible constraint recognition strategies
Another strategy we found that could detect equivalent mutants by recognizing infeasible constraints is the
following. Assume we have a constraint X. Suppose we can �nd some other constraints, say C1; C2; :::; Cn,
such that X ^C1^C2^ :::^Cn) Y , and C1; C2; :::; Cn are true. If we can prove that :Y holds, then we
can say :X holds, which means that X is an infeasible constraint. This strategy is proved below:
Given: C1; C2; :::;Cn, and (C1^C2 ^ :::^Cn^X ) Y ),

C1^C2 ^ :::^Cn ^X ) Y | premise
, :(C1^C2 ^ :::^Cn ^X) _ Y | implication
, Y _ :(C1^C2 ^ :::^Cn^X) | commutativity
, :Y ) :(C1 ^C2^ :::^Cn ^X) | implication
, :Y ) :(True ^ True ^ :::^ True ^X) | premise
, :Y ) :X | And simpli�cation

One speci�c case we analyzed is as follows. Constraint X is ((x+y) < 0), and constraints (x > 0); (y < 0) are
true. We can have ((x + y) < 0) ^ (x > 0) ^ (y < 0)) (abs(y) > x) and if we can show that :(abs(y) > x)
holds, then we can say :((x+ y) < 0) holds.
Another speci�c case we analyzed is the following. Constraint X is ((x + y) � 0), and constraints (x �
k1); (y � k2) are true, where k1 and k2 are constants. We have ((x + y) � 0) ^ (x � k1) ^ (y � k2) )
(k1 + k2) � 0. If we can show that :((k1 + k2) � 0) holds, then we know that :((x+ y) < 0) holds.
We could not �nd any equivalent mutants that would be detected using the �rst case among our test
programs. We found only one equivalent mutant that could be detected using the second case among the
programs we used in our experiment. Thus, this technique was not implemented.
Better constraints
Since we use constraints to detect equivalent mutants, good constraints are needed to detect equivalent
mutants. Right now, Congen only generates constraints on certain templates (listed in Appendix B), and
it skips generation of complicated constraints. One limitation we found has to do with array constraints
generation. Right now, Congen generates array constraints without indexes, which is safer when indexes are
variables. But we could have array constraints with indexes when the indexes are constants. We analyzed
the program Cal and found that if we could have array constraints with constant-indexes, Equivalencer could
detect 69 more equivalent mutants, which would increase the detection percentage from 15.48% to 41.42%.
Another thought on improving the constraints is that of using humans to help with di�cult constraints. We
imagine an interactive system that interacts with the tester to get help with di�cult constraints.
Analysis of the execution after the mutated statement
In this thesis, we only analyzed the execution up to and including the mutated statement. Following is a
case where we could detect an equivalent mutant by analyzing the execution after the mutated statement.
Figure 10 shows a segment of a program and a mutant this segment. If the domain of B is not limited to
positive, and we only analyze the execution before the mutated statement, we are not able to detect that
this mutant is equivalent. But by analyzing the execution after the mutated statement, we can detect the
equivalence, since (A � A) is equivalent to (abs(A) � abs(A)). Analysis of the execution after the mutated
statements involves analyzing su�cient conditions for an e�ective test case set. The su�cient condition was
discussed in section 3.1. Currently, Godzilla provides no help with the su�ciency of test data.

6.2.2 Improving the software

Right now, the tool Equivalencer is separate from Conform. Conform originally was implemented to enhance
the ability of generating test cases for Godzilla. Though Conform helps Equivalencer detect equivalent
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A Program Segment A Mutant

... ...

A = B � A = abs(B)
... ...

C = A � A C = A � A

print C print C

Figure 10: Analysis After the Mutated Statement
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mutants by propagating the constraints, it increases the di�culty of detection by throwing away considerable
information that Equivalencer needs, such as internal variables. Also, Conform did not propagate the
assertion constraints. That is why in the process described in section 5, we have to run Transass twice and
Equivalencer twice.
If Conform and Equivalencer could be integrated together, we think it would increase the e�ciency and
e�ectiveness of detecting equivalent mutants. Figure 11 shows the architecture diagram of Godzilla after
integrating Conform and Equivalencer, we refer to this as CTEA (Constraints Transformer & Equivalence
Analyzer) later. Figure 12 shows a diagram of the decomposition of CTEA. The solid line boxes, ovals and
arrows in the �gures have the same meanings as in Figure 8. The dash line boxes represent the sub-functions
under the CTEA. The numbers in the diagram show a process scenario of the CTEA.
First Equivalence Detection takes the original necessity, assertion and path expression constraints to detect
equivalent mutants, (1, 2). Those constraints are shown on the left of the �gure. Constraints Propagation
propagates these constraints and re-writes them, (3, 4). They are shown in the left side within the big
box of the �gure. Then Equivalence Detection uses these propagated constraints to detect more equivalent
mutants, (5, 6). Then, Internal Variable Elimination evaluates the constraints and re-writes them by using
parameter variables instead of internal variables, (7, 8). They are shown in the right side within the big
box of the �gure. Equivalence Detection uses these constraints to detect more equivalent mutants again, (9,
10). Finally, Internal Variable Elimination outputs the necessity, path expression and predicate constraints,
which are shown in the right of the �gure, (11). Note that the necessity, path expression and predicate
constraints outputted are the same as the ones in the right side within the big box. Consat will use these
necessity and path expression constraints, along with the predicate constraints, to generate test cases.
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Appendix

Appendix A: Source Code of Programs

Function Bsearch

LOGICAL Function BSEARCH (LIST, ELEM)

INTEGER LIST (10), ELEM, LOW, HIGH, MID

C Internal variables assertions:

ASSERT (LOW.GT.0 .AND. HIGH.GE.0 .AND. LOW.LE.10 .AND. HIGH.LE.10)

LOW = 1

HIGH = 10

10 MID = (LOW + HIGH) /2

IF (HIGH.LT.LOW) THEN

BSEARCH = .FALSE.

RETURN

ELSE

IF (ELEM.EQ.LIST(MID)) THEN

BSEARCH = .TRUE.

RETURN

ELSE

IF (ELEM.GT.LIST(MID)) THEN

LOW = MID + 1

ELSE

HIGH = MID - 1

ENDIF

GOTO 10

ENDIF

ENDIF

END
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Function Bub

SUBROUTINE BUBBLE (A)

INTEGER A (5)

C= A inout

C Internal variables assertions:

ASSERT (I.GT.0 .AND. J.GT.0 .AND. N.GT.0 .AND.

* I.LE.5 .AND. J.LE.5 .AND. N.LE.5)

C Sort A() using the bubble sort technique.

INTEGER N, ITMP

N = 5

DO 200 J = N-1, 1, -1

DO 100 I = 1, J, 1

IF (A (I).LE.A (I+1)) GOTO 100

ITMP = A (I)

A (I) = A (I+1)

A (I+1) = ITMP

100 CONTINUE

200 CONTINUE

RETURN

END
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Function Cal

INTEGER Function DAYS (DAY1, MONTH1, DAY2, MONTH2, YEAR)

INTEGER DAY1, MONTH1, DAY2, MONTH2, YEAR

C Calculate number of DAYS between the two given days.

C DAY1 and DAY2 must be in same year.

C Taken from Budd's thesis, pg 65, repeated from Geller [Gell78]

C Translated from COBOL by Jeff Offutt, 3/88

C= DAY1 in

C= MONTH1 in

C= DAY2 in

C= MONTH2 in

C= YEAR in

INTEGER DAYSIN (12), I

INTEGER M4, M100, M400

C Start range from 1-10000 for year.

C External parameters assertions:

ASSERT (DAY1.LE.31.AND.DAY2.LE.31.AND.

* MONTH1.LE.12.AND.MONTH2.LE.12 .AND.

* DAY1.GE.1 .AND. DAY2.GE.1 .AND.

* MONTH1.GE.1 .AND. MONTH2.GE.1 .AND. MONTH2.GE.MONTH1 .AND.

* YEAR.GE.1)

C Internal variables assertions:

ASSERT (I.GT.0 .AND. DAYSIN.GE.0 .AND. DAYS.GE.-2 .AND.

* M4.GE.0 .AND. M100.GE.0 .AND. M400.GE.0)

C Internal variables assertions (hard to derive automatically):

ASSERT (M4.LE.4 .AND. M100.LE.100 .AND. M400.LE.400)

C If the dates are in the same month, we can

C compute the number of days between them immediately.

IF (MONTH2.EQ.MONTH1) THEN

DAYS = DAY2 - DAY1

ELSE

DAYSIN (1) = 31

C Are we in a leap year?

M4 = MOD (YEAR, 4)

M100 = MOD (YEAR, 100)

M400 = MOD (YEAR, 400)

IF ((M4.NE.0).OR.((M100.EQ.0).AND.(M400.NE.0))) THEN

DAYSIN (2) = 28

ELSE

DAYSIN (2) = 29

ENDIF

DAYSIN (3) = 31

DAYSIN (4) = 30

DAYSIN (5) = 31

DAYSIN (6) = 30

DAYSIN (7) = 31
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DAYSIN (8) = 31

DAYSIN (9) = 30

DAYSIN (10) = 31

DAYSIN (11) = 30

DAYSIN (12) = 31

C Start with days in the two months.

DAYS = DAY2 + (DAYSIN (MONTH1) - DAY1)

C Add the days in the intervening months

DO 10 I = MONTH1+1, MONTH2-1, 1

DAYS = DAYSIN (I) + DAYS

10 CONTINUE

ENDIF

RETURN

END
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Function Euclid

INTEGER Function Euclid (A, B)

C

C JEFF OFFUTT

C 12-07-89

C Euclid's GCD algorithm.

C= A in

C= B in

C

C Input vars.

INTEGER A, B

C Local vars.

INTEGER Div, Rem

C External parameters assertions:

ASSERT (A .GT. 0 .AND. B .GT. 0)

C Internal variables assertions:

ASSERT (Div.GE.0 .AND. Rem.GE.0)

Rem = 1

C WHILE (Rem .GT. 0) DO

10 CONTINUE

IF (Rem .LE. 0) GOTO 20

Div = A/B

Rem = A - Div*B

A = B

B = Rem

C ENDWHILE

GOTO 10

20 CONTINUE

Euclid = A

END
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Function Find

SUBROUTINE FIND (A, N, F)

INTEGER A (10), N, F

C= A inout

C= N in

C= F in

C F is index into A(). After execution, all elements to the left of

C A(F) are less than or equal to A(F) and all elements to the right of

C A(F) are greater than or equal to A(F).

C Only the first N elements are considered.

C From DeMillo, Lipton, and Sayward [DeMi78], repeated from Hoare's

C paper [Hoar70].

INTEGER M, NS, R, I, J, W

C External parameters assertions:

ASSERT (F.GE.1.AND.F.LE.N.AND.N.GE.1.AND.N.LE.10)

C Internal variables assertions:

ASSERT (I.GE.1.AND.M.GE.1)

C Internal variables assertions (hard to derive automatically):

ASSERT (J.GE.0 .AND. NS.GE.1)

M = 1

NS = N

10 IF (M.GE.NS) GOTO 1000

R = A (F)

I = M

J = NS

20 IF (I.GT.J) GOTO 60

30 IF (A(I).GE.R) GOTO 40

I = I + 1

GOTO 30

40 IF (R.GE.A(J)) GOTO 50

J = J - 1

GOTO 40

50 IF (I.GT.J) GOTO 20

W = A (I)

A (I) = A (J)

A (J) = W

I = I + 1

J = J - 1

GOTO 20

60 IF (F.GT.J) GOTO 70

NS = J

GOTO 10

70 IF (I.GT.F) GOTO 1000

M = I

GOTO 10

1000 RETURN

END
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Function Insert

SUBROUTINE INSERT (L,N)

C Insertion sort on L.

INTEGER L(N),N

INTEGER KEY,I,J

C= L inout

C= N in

C External parameters assertions:

ASSERT (N.EQ.10)

C Internal variables assertions:

ASSERT (I.GE.0 .AND. J.GE.1)

C By default, consat makes all adjustable arrays of length 10;

C use the "-j"

C option to change this default.

J=2

1 IF (J.GT.N) GOTO 99

KEY=L(J)

I=J-1

5 IF (I.LE.0) GOTO 15

IF (L(I).LE.KEY) GOTO 15

L(I+1) = L(I)

I=I-1

GOTO 5

15 L(I+1) = KEY

J=J+1

GOTO 1

99 RETURN

END
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Function Mid

Function MID (X, Y, Z)

INTEGER X, Y, Z

C= X in

C= Y in

C= Z in

MID = Z

IF (Y.LT.Z) THEN

IF (X.LT.Y) THEN

MID = Y

ELSE IF (X.LT.Z) THEN

MID = X

ENDIF

ELSE

IF (X.GT.Y) THEN

MID = Y

ELSE IF (X.GT.Z) THEN

MID = X

ENDIF

ENDIF

RETURN

END
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Function Pat

INTEGER Function PAT (Subjct, Patern, SubLen, PatLen)

INTEGER Subjct (SubLen), Patern (PatLen)

INTEGER SubLen, PatLen

C= Subjct in

C= Patern in

C= SubLen in

C= PatLen in

C This Function decides if the pattern (Patern) is found in

C the subject (Subjct).

C The position in the subject where the pattern starts is returned.

C If the pattern is not in the subject, 0 is returned.

C The pattern must be shorter than the subject.

INTEGER SIndex, PIndex

C External parameters assertions:

ASSERT (PatLen.LE.SubLen .AND. PatLen.LE.10 .AND.

* SubLen.LE.10 .AND. PatLen.GE.1 .AND. SubLen.GE.1)

C Internal variables assertions:

ASSERT (SIndex.GE.1 .AND. PIndex.GE.1 .AND. Pat.GE.0)

C Loop through the subject. If the subject character equals the

C first pattern character, check the rest of the pattern.

Pat = 0

SIndex = 1

C WHILE ( ) DO

20 CONTINUE

IF (Pat .GT. 0 .OR. SIndex+PatLen-1 .GT. SubLen) GOTO 10

IF (Subjct (SIndex) .EQ. Patern (1)) THEN

Pat = SIndex

DO 30 PIndex = 1, PatLen

IF (Subjct (SIndex+PIndex-1) .NE. Patern (PIndex)) THEN

Pat = 0

ENDIF

30 CONTINUE

ENDIF

SIndex = SIndex + 1

GOTO 20

C ENDWHILE

10 CONTINUE

RETURN

END
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Function Quad

C

C JEFF OFFUTT

C 12-02-89

C

C THIS PROGRAM ACCEPTS IN THREE CONSTANTS A, B, AND C THAT

C REPRESENT QUADRATIC EQUATIONS. FOR EACH EQUATION, THE

C ROOTS ARE COMPUTED AND PRINTED IF THEY EXIST.

C

SUBROUTINE ROOTS (CoeffA, CoeffB, CoeffC, Root1, Root2)

C INPUT VARIABLES ...

REAL CoeffA, CoeffB, CoeffC

C= CoeffA in

C= CoeffB in

C= CoeffC in

C OUTPUT VARIABLES ...

REAL Root1, Root2

C= Root1 out

C= Root2 out

C Internal VARIABLES ...

REAL Disc

ASSERT (CoeffA .NE. 0.0)

Disc = CoeffB*CoeffB - (4*CoeffA*CoeffC)

IF (DISC .GE. 0.0) THEN

Root1 = ((-CoeffB) + SQRT(Disc)) / (2*CoeffA)

Root2 = ((-CoeffB) - SQRT(Disc)) / (2*CoeffA)

ELSE

Root1 = 0.0

Root2 = 0.0

ENDIF

STOP

END
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Function Trityp

INTEGER Function TRIANG(I,J,K)

INTEGER I,J,K

C= I in

C= J in

C= K in

C MATCH IS OUTPUT FROM THE ROUTINE:

C TRIANG = 1 IF TRIANGLE IS SCALENE

C TRIANG = 2 IF TRIANGLE IS ISOSCELES

C TRIANG = 3 IF TRIANGLE IS EQUILATERAL

C TRIANG = 4 IF NOT A TRIANGLE

C After a quick confirmation that it's a legal

C triangle, detect any sides of equal length

C Internal variables assertions:

ASSERT (TRIANG.GE.0 .AND. TRIANG.LE.6)

IF (I.LE.0.OR.J.LE.0.OR.K.LE.0) THEN

TRIANG=4

RETURN

ENDIF

TRIANG=0

IF (I.EQ.J) TRIANG=TRIANG+1

IF (I.EQ.K) TRIANG=TRIANG+2

IF (J.EQ.K) TRIANG=TRIANG+3

IF (TRIANG.EQ.0) THEN

C Confirm it's a legal triangle before declaring

C it to be scalene

IF (I+J.LE.K.OR.J+K.LE.I.OR.I+K.LE.J) THEN

TRIANG = 4

ELSE

TRIANG = 1

ENDIF

RETURN

ENDIF

C Confirm it's a legal triangle before declaring

C it to be isosceles or equilateral

IF (TRIANG.GT.3) THEN

TRIANG = 3

ELSE IF (TRIANG.EQ.1.AND.I+J.GT.K) THEN

TRIANG = 2

ELSE IF (TRIANG.EQ.2.AND.I+K.GT.J) THEN

TRIANG = 2
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ELSE IF (TRIANG.EQ.3.AND.J+K.GT.I) THEN

TRIANG = 2

ELSE

TRIANG = 4

ENDIF

END
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Function Warshall

SUBROUTINE WARSHALL (A)

INTEGER A (5,5)

C= A inout

C Calculate the transitive closure of A using Warshall's algorithm.

C External parameters assertions:

ASSERT (A.LE.1.AND.A.GE.0)

C Internal variables assertions:

ASSERT (I.GE.1 .AND. J.GE.1 .AND. K.GE.1 .AND.

* I.LE.5 .AND. J.LE.5 .AND. K.LE.5)

INTEGER I, J, K

DO 100 K = 1, 5

DO 200 I = 1, 5

DO 300 J = 1, 5

IF (A(I, J) .EQ. 0) THEN

A(I, J) = A(I, K) * A(K, J)

ENDIF

300 CONTINUE

200 CONTINUE

100 CONTINUE

RETURN

END
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Appendix B: Template of Constraints

Type Description Constraint
aar array for array replacement A(e1) 6= B(e2)
abs absolute value insertion e1 < 0

e1 > 0
e1 = 0

acr array constant replacement C 6= A(e1)
aor arithmetic operator replacement e1 � e2 6= e1 � e2

e1 � e2 6= e1
e1 � e2 6= e2
e1 � e2 6= Mod(e1; e2)

asr array for variable replacement X 6= A(e1)
car constant for array replacement A(e1) 6= C
cnr comparable array replacement A(e1) 6= B(e2)
csr constant for scalar replacement X 6= C
der DO statement end replacement e2 � e1 � 2

e2 � e1
lcr logical connector replacement e1 � e2 6= e1 � e2
ror relational operator replacement e1 � e2 6= e1 � e2
sar scalar for array replacement A(e1) 6= X
scr scalar for constant replacement C 6= X
svr scalar variable replacement X 6= Y

Table 13: Constraint Templates
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Appendix C: Mutation Operators Used in Mothra

Mutation
Operator Description
AAR array reference for array reference replacement
ABS absolute value insertion
ACR array reference for constant replacement
AOR arithmetic operator replacement
ASR array reference for scalar variable replacement
CAR constant for array reference replacement
CNR comparable array name replacement
CRP constant replacement
CSR constant for scalar variable replacement
DER DO statement end replacement
DSA DATA statement alterations
GLR GOTO label replacement
LCR logical connector replacement
ROR relational operator replacement
RSR RETURN statement replacement
SAN statement analysis
SAR scalar variable for array reference replacement
SCR scalar for constant replacement
SDL statement deletion
SRC source constant replacement
SVR scalar variable replacement
UOI unary operator insertion

Table 14: Mothra Mutation Operators
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