Data Link Layer, Part 1
Introduction

These slides are created by Dr. Yih Huang of George Mason University. Students registered in Dr. Huang's courses at GMU can make a single machine-readable copy and print a single copy of each slide for their own reference, so long as each slide contains the copyright statement, and GMU facilities are not used to produce paper copies. Permission for any other use, either in machine-readable or printed form, must be obtained from the author in writing.

---

DLL in OSI Model

<table>
<thead>
<tr>
<th>Application</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presentation</td>
<td>Presentation</td>
</tr>
<tr>
<td>Session</td>
<td>Session</td>
</tr>
<tr>
<td>Transport</td>
<td>Transport</td>
</tr>
<tr>
<td>Network</td>
<td>Network</td>
</tr>
</tbody>
</table>

Data Link Layer

Physical

Reliable, error-free bit stream

Unreliable bit stream
Functionalities of DLL

- Framing
  - how does a transmission unit start and end?
- Error detection/correction
- Flow control
- Reliability
  - actions in the presence of transmission errors

Not all these features are present in all DLL protocols

Framing

- character-based framing
- bit-oriented framing
- violations of physical layer encoding
Character–Oriented Framing

- DLE STX --- start of frame
- DLE ETX --- end of text
- SYN --- between frames
- What do we do if DLE appears in the frame?
  - at sending end, insert extra DLE before each DLE in data
  - at receiving end, extra ”stuffed” DLE’s are extracted
  - this is called character stuffing

Bit Oriented Framing

- Start – and stop-frame pattern: 0 1 1 1 1 0
- Bit Stuffing
  - sender inserts 0 after every sequence of five 1’s
  - when the receiver sees five 1’s followed by 0, extracts the 0
  - receiver recognizes the end of the frame when seeing six 1’s.
  - Example: 1 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0
    0 1 1 1 1 1 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 0
Violations of Physical Layer Encoding

- In some physical layer encoding methods, there are unused/illegal states in a bit period.
  - In the Manchester encoding, a legal bit period can be either HL or LH, but never HH and LL
- We can use “illegal bits” to represent the beginning and/or ending of frames.
  - Ethernet uses HH to mark the end of frames.