A heap can be seen as a complete binary tree:

What makes a binary tree complete?
Is the example above complete?

In practice, heaps are usually implemented as arrays:

To represent a complete binary tree as an array:
- The root node is A[1]
- Node i is A[i]
- The parent of node i is A[i/2] (note: integer divide)
- The left child of node i is A[2i]
- The right child of node i is A[2i + 1]
Referencing Heap Elements

• So...
 Parent(i) { return i/2; }
 Left(i) { return 2*i; }
 right(i) { return 2*i + 1; }
• An aside: How would you implement this most efficiently?
• Another aside: Really?

The Heap Property

• Heaps also satisfy the heap property:
 A[Parent(i)] ≥ A[i] for all nodes i > 1
 - In other words, the value of a node is at most the value of its parent
 - Where is the largest element in a heap stored?
• Definitions:
 - The height of a node in the tree = the number of edges on the longest downward path to a leaf
 - The height of a tree = the height of its root

Heap Height

• What is the height of an n-element heap? Why?
• This is nice: basic heap operations take at most time proportional to the height of the heap

Heap Height

• Heapify
• Build-heap
• Heapsort
Heap Operations: Heapify()

- Heapify(): maintain the heap property
 - Given: a node \(i\) in the heap with children \(l\) and \(r\)
 - Given: two subtrees rooted at \(l\) and \(r\), assumed to be heaps
 - Problem: The subtree rooted at \(i\) may violate the heap property (How?)
 - Action: let the value of the parent node “float down” so subtree at \(i\) satisfies the heap property
 - What do you suppose will be the basic operation between \(i\), \(l\), and \(r\)?

Heapify\((A, i)\)

```
Heapify(A, i)
{
    l = Left(i); r = Right(i);
    if (l <= heap_size(A) && A[l] > A[i])
        largest = l;
    else
        largest = i;
    if (r <= heap_size(A) && A[r] > A[largest])
        largest = r;
    if (largest != i)
        Swap(A, i, largest);
    Heapify(A, largest);
}
```
Heapify(A,4) Example

A = [16, 14, 10, 8, 7, 9, 3, 2, 4, 1]

Heapify(A,9) Example

A = [16, 14, 10, 8, 7, 9, 3, 2, 4, 1]

Analyzing Heapify(): Informal

- Aside from the recursive call, what is the running time of `Heapify()`?
- How many times can `Heapify()` recursively call itself?
- What is the worst-case running time of `Heapify()` on a heap of size n?