Uninformed and Informed search algorithms

Chapter 3, 4 (Sections 1–2, 4)

Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search
Uniform-cost search
Depth-first search
Depth-limited search
Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

\[\text{QUEUEINGFN} = \text{put successors at end of queue} \]

Properties of breadth-first search

Complete?? Yes (if \(b \) is finite)

Time?? \(1 + b + b^2 + b^3 + \ldots + b^d = O(b^d), \) i.e., exponential in \(d \)

Space?? \(O(b^d) \) (keeps every node in memory)

Optimal?? Yes (if cost = 1 per step); not optimal in general

\(Space \) is the big problem; can easily generate nodes at 1MB/sec so 24hrs = 86GB.
Uniform-cost search

Expand least-cost unexpanded node

Implementation:

$$\text{QUEUEINGFN} = \text{insert in order of increasing path cost}$$
Properties of uniform-cost search

Complete?? Yes, if step cost $\geq \epsilon$

Time?? # of nodes with $g \leq$ cost of optimal solution

Space?? # of nodes with $g \leq$ cost of optimal solution

Optimal?? Yes

Depth-first search

Expand deepest unexpanded node

Implementation:

```
QUEUEINGFN = insert successors at front of queue
```

 AraK
Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space? $O(bm)$, i.e., linear space!

Optimal? No

Depth-limited search

= depth-first search with depth limit l

Implementation:
 Nodes at depth l have no successors
Iterative deepening search

\textbf{function} \textsc{Iterative-Deepening-Search}(\textit{problem}) \textbf{returns} a solution sequence
\textbf{inputs}: \textit{problem}, a problem

\textbf{for} \textit{depth} \leftarrow 0 \textbf{to} ∞ \textbf{do}
\textbf{result} \leftarrow \textsc{Depth-Limited-Search}(\textit{problem}, \textit{depth})
\textbf{if} \textit{result} \neq cut off \textbf{then} return \textit{result} \\
\textbf{end}

Properties of iterative deepening search

\underline{Complete??} Yes

\underline{Time??} $(d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)$

\underline{Space??} $O(bd)$

\underline{Optimal??} Yes, if step cost = 1

Can be modified to explore uniform-cost tree
Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored.

Variety of uninformed search strategies

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms.

Review: General search

function \texttt{GENERAL-SEARCH(} \texttt{problem, QUEUING-FN)} \texttt{returns} a solution, or failure

\texttt{nodes} ← \texttt{MAKE-QUEUE(MAKE-NODE(INITIAL-STATE[problem]))}

loop do
 if \texttt{nodes} is empty then return failure
 \texttt{node} ← \texttt{REMOVE-FRONT(nodes)}
 if \texttt{GOAL-TEST[problem]} applied to \texttt{STATE(node)} succeeds then return \texttt{node}
 \texttt{nodes} ← \texttt{QUEUING-FN(nodes, EXPAND(node, OPERATORS[problem]))}
end

A strategy is defined by picking the order of node expansion

♦ Best-first search, A* search, Heuristics
♦ Hill-climbing, Simulated annealing
Best-first search

Idea: use an *evaluation function* for each node
- estimate of "desirability"

⇒ Expand most desirable unexpanded node

Implementation:

\[
\text{QueueingFn} = \text{insert successors in decreasing order of desirability}
\]

Special cases:
- greedy search
- A* search

Romania with step costs in km

<table>
<thead>
<tr>
<th>Location</th>
<th>Distance to Bucharest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arad</td>
<td>366</td>
</tr>
<tr>
<td>Bucharest</td>
<td>0</td>
</tr>
<tr>
<td>Craiova</td>
<td>160</td>
</tr>
<tr>
<td>Dobrota</td>
<td>242</td>
</tr>
<tr>
<td>Eforie</td>
<td>161</td>
</tr>
<tr>
<td>Fagaras</td>
<td>178</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>77</td>
</tr>
<tr>
<td>Hirsova</td>
<td>151</td>
</tr>
<tr>
<td>Iasi</td>
<td>226</td>
</tr>
<tr>
<td>Lugoj</td>
<td>244</td>
</tr>
<tr>
<td>Mehadia</td>
<td>241</td>
</tr>
<tr>
<td>Neamt</td>
<td>234</td>
</tr>
<tr>
<td>Oradea</td>
<td>380</td>
</tr>
<tr>
<td>Pitei</td>
<td>98</td>
</tr>
<tr>
<td>Rimnicu Vilcea</td>
<td>193</td>
</tr>
<tr>
<td>Sibiu</td>
<td>253</td>
</tr>
<tr>
<td>Timisoara</td>
<td>329</td>
</tr>
<tr>
<td>Urziceni</td>
<td>80</td>
</tr>
<tr>
<td>Vasli</td>
<td>199</td>
</tr>
<tr>
<td>Zerind</td>
<td>374</td>
</tr>
</tbody>
</table>

Straight-line distance to Bucharest:

- Arad: 366 km
- Bucharest: 0 km
- Craiova: 160 km
- Dobrota: 242 km
- Eforie: 161 km
- Fagaras: 178 km
- Giurgiu: 77 km
- Hirsova: 151 km
- Iasi: 226 km
- Lugoj: 244 km
- Mehadia: 241 km
- Neamt: 234 km
- Oradea: 380 km
- Pitei: 98 km
- Rimnicu Vilcea: 193 km
- Sibiu: 253 km
- Timisoara: 329 km
- Urziceni: 80 km
- Vasli: 199 km
- Zerind: 374 km
Greedy search

Evaluation function $h(n)$ (heuristic)
 - estimate of cost from n to goal

E.g., $h_{SLD}(n) = \text{straight-line distance from } n \text{ to Bucharest}$

Greedy search expands the node that *appears* to be closest to goal

◊ Greedy Search Example

Properties of greedy search

Complete?? No–can get stuck in loops, e.g.,

Iasi → Neamt → Iasi → Neamt →

Complete in finite space with repeated-state checking

Time?? $O(b^m)$, but a good heuristic can give dramatic improvement

Space?? $O(b^m)$—keeps all nodes in memory

Optimal?? No
A* search

Idea: avoid expanding paths that are already expensive

Evaluation function \(f(n) = g(n) + h(n) \)

- \(g(n) \) = cost so far to reach \(n \)
- \(h(n) \) = estimated cost to goal from \(n \)
- \(f(n) \) = estimated total cost of path through \(n \) to goal

A* search uses an admissible heuristic
i.e., \(h(n) \leq h^*(n) \) where \(h^*(n) \) is the true cost from \(n \).

E.g., \(h_{SLD}(n) \) never overestimates the actual road distance

Theorem: A* search is optimal

Optimality of A* (standard proof)

Suppose some suboptimal goal \(G_2 \) has been generated and is in the queue. Let \(n \) be an unexpanded node on a shortest path to an optimal goal \(G_1 \).

\[
f(G_2) = g(G_2) \quad \text{since } h(G_2) = 0
\]
\[
> g(G_1) \quad \text{since } G_2 \text{ is suboptimal}
\]
\[
\geq f(n) \quad \text{since } h \text{ is admissible}
\]

Since \(f(G_2) > f(n) \), A* will never select \(G_2 \) for expansion
Optimality of A^* (more useful)

Lemma: A^* expands nodes in order of increasing f value

Gradually adds “f-contours” of nodes (cf. breadth-first adds layers)

Contour i has all nodes with $f = f_i$, where $f_i < f_{i+1}$

Properties of A^*

Complete?? Yes, unless there are infinitely many nodes with $f \leq f(G)$

Time?? Exponential in [relative error in $h \times$ length of soln.]

Space?? Keeps all nodes in memory

Optimal?? Yes—cannot expand f_{i+1} until f_i is finished
Proof of lemma: Pathmax

For some admissible heuristics, \(f \) may decrease along a path

E.g., suppose \(n' \) is a successor of \(n \)

\[
\begin{array}{c}
n \quad g=5 \quad h=4 \quad f=9 \\
1 \\
n' \quad g'=6 \quad h'=2 \quad f'=8
\end{array}
\]

But this throws away information!
\(f(n) = 9 \Rightarrow \text{true cost of a path through } n \text{ is } \geq 9 \)
Hence true cost of a path through \(n' \) is \(\geq 9 \) also

Pathmax modification to A*:
Instead of \(f(n') = g(n') + h(n') \), use \(f(n') = \max(g(n') + h(n'), f(n)) \)

With pathmax, \(f \) is always nondecreasing along any path

Admissible heuristics

E.g., for the 8-puzzle:
\(h_1(n) = \text{number of misplaced tiles} \)
\(h_2(n) = \text{total Manhattan distance} \)
(i.e., no. of squares from desired location of each tile)

\[
\begin{array}{c}
\begin{array}{ccc}
5 & 4 & 0 \\
6 & 1 & 8
\end{array} & \begin{array}{ccc}
1 & 2 & 3 \\
8 & 4
\end{array} \\
\begin{array}{ccc}
7 & 3 & 2 \\
7 & 6 & 5
\end{array}
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\text{Start State} \\
\text{Goal State}
\end{array}
\end{array}
\]

\[h_1(S) = ?? \]
\[h_2(S) = ?? \]
Admissible heuristics

E.g., for the 8-puzzle:

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) =$ total Manhattan distance
 (i.e., no. of squares from desired location of each tile)

\[
\begin{array}{ccc}
5 & 4 & \text{(start state)} \\
6 & 1 & 8 \\
7 & 3 & 2 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 2 & 3 \\
8 & 4 \\
7 & 6 & 5 \\
\end{array}
\]

\[
h_1(S) = 7
\]
\[
h_2(S) = 2 + 3 + 3 + 2 + 4 + 2 + 0 + 2 = 18
\]

Dominance

If $h_2(n) \geq h_1(n)$ for all n (both admissible) then h_2 dominates h_1 and is better for search

Typical search costs:

- $d = 14$ IDS = 3,473,941 nodes
- $A^*(h_1) = 539$ nodes
- $A^*(h_2) = 113$ nodes

- $d = 14$ IDS = too many nodes
- $A^*(h_1) = 39,135$ nodes
- $A^*(h_2) = 1,641$ nodes
Relaxed problems

Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem.

If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then \(h_1(n) \) gives the shortest solution.

If the rules are relaxed so that a tile can move to any adjacent square, then \(h_2(n) \) gives the shortest solution.

For TSP: let path be any structure that connects all cities \(\implies \) minimum spanning tree heuristic.

Iterative improvement algorithms

In many optimization problems, path is irrelevant; the goal state itself is the solution.

Then state space = set of “complete” configurations; find optimal configuration, e.g., TSP
or, find configuration satisfying constraints, e.g., n-queens.

In such cases, can use iterative improvement algorithms; keep a single “current” state, try to improve it.

Constant space, suitable for online as well as offline search.
Example: Travelling Salesperson Problem

Find the shortest tour that visits each city exactly once

![Diagram](image)

Example: \(n\)-queens

Put \(n\) queens on an \(n \times n\) board with no two queens on the same row, column, or diagonal

![Diagram](image)
Hill-climbing (or gradient ascent/descent)

“Like climbing Everest in thick fog with amnesia”

```
function HILL-CLIMBING( problem ) returns a solution state
inputs: problem, a problem
local variables: current, a node
               next, a node
current ← Make-Node( Initial-State[problem] )
loop do
    next ← a highest-valued successor of current
    if Value[next] < Value[current] then return current
    current ← next
end
```

Simulated annealing

Idea: escape local maxima by allowing some “bad” moves
but gradually decrease their size and frequency

```
function SIMULATED-ANNEALING( problem, schedule ) returns a solution state
inputs: problem, a problem
        schedule, a mapping from time to “temperature”
local variables: current, a node
                next, a node
                T, a “temperature” controlling the probability of downward steps
current ← Make-Node( Initial-State[problem] )
for t ← 1 to ∞ do
    T ← schedule[t]
    if T=0 then return current
    next ← a randomly selected successor of current
    ΔE ← Value[next] - Value[current]
    if ΔE > 0 then current ← next
    else current ← next only with probability e^{ΔE/T}
```
Properties of simulated annealing

At fixed “temperature” T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{-\frac{E(x)}{kT}}$$

T decreased slowly enough \implies always reach best state

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.