A Randomized Approximation Algorithm (Vertex Cover)

An Approximation Algorithm (Metric TSP)

A PTAS (Subset-Sum)

Approximation Algorithms for MAX-3-CNF

A Linear Programming Based (Weighted Vertex Cover)
Background
Background

1. **Linear Algebra**
 - Matrices
 - Vectors, inner product
 - etc.

2. **Probability Theory**
 - Expectation, variance
 - Basic distributions (binomial, Poisson, exponential, etc)
 - Markov's inequality
 $\Pr[|X| \geq a] \leq \frac{E(|X|)}{a}$
 - Chebyshev's inequality
 $\Pr[|x - E(x)| \geq k] \leq \frac{\mu^2}{k^2}$
 - etc.

3. **Algorithm Techniques**
 - $O()$ notation
 - Graph algorithms, e.g., breath and depth first search, minimal spanning tree, topological sort, maximum-flow, etc.
 - P, NP, NP-completeness, NP-hard, PTAS
 - Linear programming (duality)
 - etc.
Background

1. **Linear Algebra**
 - Matrices
 - Vectors, inner product
 - etc.

2. **Probability Theory**
 - Expectation, variance
 - Basic distributions (binomial, Poisson, exponential, etc)
 - Markov’s inequality \(\Pr[|X| \geq a] \leq E(|X|)/a \)
 - Chebyshev's inequality \(\Pr[|x - E(x)| \geq k] \leq \mu^2/k^2 \)
 - etc.
Background

1. **Linear Algebra**
 - Matrices
 - Vectors, inner product
 - etc.

2. **Probability Theory**
 - Expectation, variance
 - Basic distributions (binomial, Poisson, exponential, etc)
 - Markov's inequality: \(\Pr[|X| \geq a] \leq E(|X|)/a \)
 - Chebyshev's inequality: \(\Pr[|X - E(X)| \geq k] \leq \mu^2/k^2 \)
 - etc.

3. **Algorithm Techniques**
 - \(O() \) notation
 - Graph algorithms, e.g., breath and depth first search, minimal spanning tree, topological sort, maximum-flow, etc.
 - P, NP, NP-completeness, NP-hard, PTAS
 - Linear programming (duality)
 - etc.
NP-Complete versus NP-Hard

Definition (Optimization problem)
Find a best objective, e.g., Given graph G, find a minimal size vertex cover.

Definition (Decision problem)
Have a yes/no answer, e.g., Given a graph G and integer k, does G have a vertex cover of size $\leq k$?

$P = ? NP$
NP-complete problems are, by definition, decision problems. If they can be solved in polynomial time then $P = NP$.

NP-complete and NP-hard
Problems that have the property that if they can be solved in polynomial time then $P = NP$, but not necessarily vice-versa, are called NP-hard. The optimization versions of NP-complete decision problems are NP-hard.
Performance Ratios for Approximation Algorithms

Let C be the cost of the algorithm, let C^* be the cost of an optimal solution, for any input of size n, the algorithm is called $\rho(n)$-approximation if $\max(C/C^*, C^*/C) \leq \rho(n)$.

Definition (Approximation scheme)
An **approximation scheme** for an optimization problem is an approximation algorithm that takes as input not only an instance of the problem, but also a value $\epsilon > 0$ such that for any fixed ϵ, the scheme is a $(1 + \epsilon)$-approximation algorithm.

Definition (PTAS (Polynomial-Time Approximation Scheme))
We say an approximation scheme is a **polynomial-time approximation scheme** if for any fixed $\epsilon > 0$, the scheme runs in time polynomial in the size n of its input instance.

Definition (FPTAS (Fully Polynomial-Time Approximation Scheme))
We say an approximation scheme is a **fully polynomial-time approximation scheme** if it is an approximation scheme and its running time is polynomial both in $1/\epsilon$ and in the size n of the input instance.
A Randomized Approximation Algorithm (Vertex Cover)

An Approximation Algorithm (Metric TSP)

A PTAS (Subset-Sum)

Approximation Algorithms for MAX-3-CNF

A Linear Programming Based (Weighted Vertex Cover)
Vertex Cover

Definition (Vertex Cover problem)
A vertex cover of an undirected graph \(G = (V, E) \) is a subset of vertices \(V' \subseteq V \) such that if \((u, v) \in E \), then either \(u \in V' \), \(v \in V' \), or both.

Algorithm 1.1: RVC\((G)\)
\[
C = \emptyset; \quad E' = E;
\]
\[
\text{while } (E' \neq \emptyset) \begin{cases}
\text{Pick up } (u, v) \text{ from } E'; \\
C' = C \cup \{u, v\}; \\
\text{Remove every edge touching } u \text{ or } v \text{ from } E';
\end{cases}
\]
\[
\text{return } (C)
\]

Question
How do we analyze it?
Definition (Vertex Cover problem)

A *vertex cover* of an undirected graph $G = (V, E)$ is a subset of vertices $V' \subseteq V$ such that

If $(u, v) \in E$, then either $u \in V'$, $v \in V'$, or both.
Vertex Cover

Definition (Vertex Cover problem)

A vertex cover of an undirected graph $G = (V, E)$ is a subset of vertices $V' \subseteq V$ such that

If $(u, v) \in E$, then either $u \in V'$, $v \in V'$, or both.

Algorithm 1.3: RVC(G)

$C = \emptyset$;
$E' = E$;
while ($E' \neq \emptyset$)
 \begin{align*}
 &\text{Pick up } (u, v) \text{ from } E' \text{ randomly;} \\
 &C' = C \cup \{u, v\}; \\
 &\text{Remove every edge touching } u \text{ or } v \text{ from } E'; \\
 \end{align*}
return (C)
Vertex Cover

Definition (Vertex Cover problem)
A vertex cover of an undirected graph \(G = (V, E) \) is a subset of vertices \(V' \subseteq V \) such that

\[
\text{If } (u, v) \in E, \text{ then either } u \in V', v \in V', \text{ or both.}
\]

Algorithm 1.4: \text{RVC}(G)

\[
\begin{align*}
C &= \emptyset; \\
E' &= E; \\
\text{while } (E' \neq \emptyset) & \quad \text{Pick up } (u, v) \text{ from } E' \text{ randomly; } \\
& \quad \{ C' = C \cup \{u, v\}; \} \\
& \quad \{ \text{Remove every edge touching } u \text{ or } v \text{ from } E'; \} \\
\text{return } (C)
\end{align*}
\]

Question
How do we analyze it?
Approximation

For any graph G, define $RVC(G)$ as the number of vertices chosen by algorithm RVC, $OPT(G)$ as the size of the smallest vertex cover of G.

Theorem RVC runs in time $O(|V| + |E|)$.

Refer to page 1025 of CLRS.

Theorem RVC is polynomial-time 2-approximation algorithm.

$1 \leq \frac{RVC(G)}{OPT(G)} \leq 2$.

Proof. $|OPT(G)| \geq$ the number of edges pick up randomly in the loop, $= |RVC(G)|^2$.
Approximation

For any graph G, define $RVC(G)$ as the number of vertices chosen by algorithm RVC, $OPT(G)$ as the size of the smallest vertex cover of G.

Theorem

RVC runs in time $O(|V| + |E|)$.

Refer to page 1025 of CLRS.

Theorem

RVC is polynomial-time 2-approximation algorithm.

$1 \leq \frac{RVC(G)}{OPT(G)} \leq 2$.

Proof.

$|OPT(G)| \geq$ the number of edges pick up randomly in the loop, $= |RVC(G)|$.
Approximation

For any graph G, define $RVC(G)$ as the number of vertices chosen by algorithm RVC, $OPT(G)$ as the size of the smallest vertex cover of G.

Theorem

RVC runs in time $O(|V| + |E|)$.

Refer to page 1025 of CLRS.
Approximation

For any graph G, define $RVC(G)$ as the number of vertices chosen by algorithm RVC, $OPT(G)$ as the size of the smallest vertex cover of G.

Theorem

RVC runs in time $O(|V| + |E|)$.

Refer to page 1025 of CLRS.

Theorem

RVC is polynomial-time 2-approximation algorithm.

$1 \leq RVC(G)/OPT(G) \leq 2$.

Proof.

\[
|OPT(G)| \geq \text{the number of edges pick up randomly in the loop,} \\
= \frac{|RVC(G)|}{2}.
\]
Question
Is the following algorithm 2-approximation?

Algorithm 1.5: RVC(G)

\[C = \emptyset; \]
\[E' = E; \]
\[\text{while } (E' \neq \emptyset) \]
\[\begin{cases}
\text{Select a vertex of the highest degree } v \in E'; \\
C' = C \cup v; \\
\text{Remove all } v \text{'s incident edges;}
\end{cases} \]
\[\text{return} \ (C) \]

Hint: Try a bipartite graph with vertices of uniform degree on the left and vertices of varying degree on the right.
Consider a **special case** which is not NP-hard.

Theorem

There exists an efficient algorithm (running in polynomial time) to find the optimal vertex cover if $G = (V, E)$ is a tree.

Proof.

Greedy approach.

Theorem

There exists an efficient algorithm (running in polynomial time) to find the optimal weighted vertex cover if $G = (V, E)$ is a tree.

Proof.

Dynamic programming approach.
1. Heuristics
2. Local search
3. Simulated annealing
4. Tabu search
5. Genetic algorithms
6. etc.
A Randomized Approximation Algorithm (Vertex Cover)

An Approximation Algorithm (Metric TSP)

A PTAS (Subset-Sum)

Approximation Algorithms for MAX-3-CNF

A Linear Programming Based (Weighted Vertex Cover)
Three Graph Problems

Let $G = (V, E)$ be a graph. Each $e \in E$ has a cost c_e. The cost of a set of edges $E' \subseteq E$ is $c(E') = \sum_{e \in E'} c_e$. A Hamiltonian cycle is a tour (cycle) in passing through every vertex exactly once.

Definition
Hamiltonian Cycle (HC): Does $G = (V, E)$ contain a Hamiltonian cycle?

Definition
Traveling Salesman Problems (TSP): Find a Hamiltonian cycle, T, with minimal cost $c(T)$ among all cycles.

Definition
Euler Tour (ET): Find a path in the graph G that uses each edge in the graph exactly once (a repeated vertex is used exactly as many times as it appears). An Euler tour can be found in polynomial time $O(|V| + |E|)$.
Metric TSP

Definition
A graph G with cost $c()$ has the triangle inequality if for all vertices $u, v, w \in V$

$$c(u,w) \leq c(u,v) + c(v,w).$$

Algorithm 2.1: Metric-TSP(G)

Find a minimum spanning tree T' of G.
Double every edge in T' to get new graph G'.
Find an Euler tour T' of G'.
Output the vertices of G in the order in which they first appear in T'.
Let T be the Hamiltonian cycle thus created.
return (T)

Lemma
Metric-TSP runs in polynomial time.
Analysis of Metric-TSP

Theorem

Metric-TSP is a 2-approximation algorithm for the TSP problem on metric graphs.

Proof.

Goal:

\[
\begin{align*}
c(T') & \leq OPT(G) \\
c(T') & = 2 \cdot C(T') \\
c(T) & \leq c(T') \\
& = 2 \cdot C(T') \\
& \leq 2 \cdot OPT(T)
\end{align*}
\]
Definition

Matching. Let $G = (V, E)$ be a graph with cost function $c(.)$ on its edges

1. A matching of G is a set of edges $E' \subseteq E$ such that no two edges in E' share a vertex in common

2. A perfect matching is a matching in which $|E'| = \frac{|E|}{2}$. Perfect matching of complete graphs always exist

3. A minimum-cost perfect matching of a complete graph can be found in $O(|V|^3)$ time

What is the relationship between a matching and TSP?
Algorithm 2.2: Chris-TSP\((G) \)

Find a minimum spanning tree \(T' \) of \(G \).
Find a minimal cost perfect matching, \(M \), on the vertices of odd-degree in \(T' \).
Let \(E' \) be the union of \(T' \) and \(M \).
Let \(G' = (V, E') \) be the multi-graph.
(If an edge appears in both \(M \) and \(T' \), we count it twice in \(G' \)).
Find an Euler tour \(T' \) of \(G' \).
Output the vertices of \(G \) in the order in which they first appear in \(T' \).
Let \(T \) be the Hamiltonian cycle thus created.

Lemma

The number of odd-degree vertices in \(T' \) is even.

Proof.
Lemma
Let $V' \subseteq V$ such that $|V'|$ is even and let M be a minimum-cost perfect matching on V'. Then
\[c(M) \leq \frac{\text{OPT}(G)}{2} \]

Proof.
?

\qed
Lemma

Let $V' \subseteq V$ such that $|V'|$ is even and let M be a minimum-cost perfect matching on V'. Then

$$c(M) \leq \frac{\text{OPT}(G)}{2}$$

Proof.

Let \mathcal{T} be a TSP tour of G.

Let \mathcal{T}' be the tour on V' that results by visiting the vertices in V' in the order defined by \mathcal{T}.

$$c(\mathcal{T}') \leq c(\mathcal{T}) = \text{OPT}(G)$$

Note that taking every other edge in \mathcal{T}' yields a perfect matching of V' so \mathcal{T}' is the union of two perfect matchings of V', M', and M''. Since these matchings cannot have cost less than the minimal one

$$2 \cdot c(M) \leq c(M') + c(M'') = c(\mathcal{T}') \leq \text{OPT}(G).$$

$$c(M) \leq \frac{\text{OPT}(G)}{2}.$$
Theorem

Christofide’s algorithm is $\frac{3}{2}$-approximation for Metric TSP.

Proof.

\[
\begin{align*}
 c(T') & \leq \text{OPT}(G) \\
 c(M) & \leq \frac{\text{OPT}(G)}{2} \\
 c(T') &= c(T') + c(M) \leq \frac{3}{2} \cdot \text{OPT}(G) \\
 c(T) & \leq c(T') \leq \frac{3}{2} \cdot \text{OPT}(G)
\end{align*}
\]
A Negative Result

Theorem

If for any $\rho > 1$, there exists a polynomial-time ρ-approximation algorithm for TSP, then there exists a polynomial-time algorithm for solving Hamiltonian cycle (i.e., $P = NP$).

Proof.
Let A be the ρ-approximation algorithm for TSP.
Let $G = (V, E)$ be any instance of Hamiltonian cycle, let G' be the complete graph with the same vertex set as G with

$$c_{(u,v)} = \begin{cases}
1, & (u,v) \in E \\
\rho \cdot |V| + 1, & \text{otherwise}
\end{cases}$$

G' can be constructed in time polynomial in the size of G.
A Negative Result

Theorem

If for any $\rho > 1$, there exists a polynomial-time ρ-approximation algorithm for TSP, then there exists a polynomial-time algorithm for solving Hamiltonian cycle (i.e., $P = NP$).

Proof.

Let A be the ρ-approximation algorithm for TSP.

Let $G = (V, E)$ be any instance of Hamiltonian cycle, let G' be the complete graph with the same vertex set as G with

$$c_{(u,v)} = \begin{cases}
1, & (u,v) \in E \\
\rho \cdot |V| + 1, & \text{otherwise}
\end{cases}$$

(1)

G' can be constructed in time polynomial in the size of G.

If G has a Hamiltonian cycle T, then all edges $e \in T$ have $c_e = 1$ so T is a min-cost tour in G' and $OPT(G') = |V|$. $A(G') \leq \rho \cdot OPT(G') = \rho \cdot |V|$.
A Negative Result

Theorem

If for any $\rho > 1$, there exists a polynomial-time ρ-approximation algorithm for TSP, then there exists a polynomial-time algorithm for solving Hamiltonian cycle (i.e., $P = NP$).

Proof.

Let A be the ρ-approximation algorithm for TSP.
Let $G = (V, E)$ be any instance of Hamiltonian cycle, let G' be the complete graph with the same vertex set as G with

$$c(u,v) = \begin{cases} 1, & (u,v) \in E \\ \rho \cdot |V| + 1, & \text{otherwise} \end{cases}$$

G' can be constructed in time polynomial in the size of G.
If G has a Hamiltonian cycle T, then all edges $e \in T$ have $c_e = 1$ so T is a min-cost tour in G' and $OPT(G') = |V|$. $A(G') \leq \rho \cdot OPT(G') = \rho \cdot |V|$.
If G does not have a Hamiltonian cycle then for every Hamiltonian cycle T, G' contains at least one edge $e \notin E$ so $c_e = \rho \cdot |V| + 1$ and

$$c(T) \geq c_e + |V| - 1 = \rho \cdot |V| + 1 + |V| - 1 > \rho \cdot |V|$$

Thus, $A(G') \geq OPT(G') > \rho \cdot |V|$.
A Negative Result

Theorem
A graph G has a Hamiltonian cycle if and only if $A(G') \leq \rho \cdot |V|$.

Proof.
For any G,
2. Run A on G' and check if $A(G') \leq \rho \cdot |V|$ or not.
Definition
An instance of the *subset-sum decision problem* is \((S, \ t)\) where
\[S = \{x_1, \ x_2, \ldots, \ x_n\} \] a set of positive integers and \(t\) a positive integer.
The decision problem is whether some subset of \(S\) adds up exactly to \(t\).
The optimization problem is to find a subset of \(S\) whose sum is as large as possible but no greater than \(t\).

Definition
An *optimization problem* is a family of algorithms \(\{A_\epsilon\}\) such that for each \(\epsilon > 0\), \(A_\epsilon\) is a \((1 - \epsilon)\)-approximation algorithm which runs in polynomial time in input size for fixed \(\epsilon\). \(A_\epsilon\) runs in time polynomial in \(n\) (and \(\frac{1}{\epsilon}\)).
Subset-Sum

1. Get an exact solution.
2. Round/trim input.
3. Get the approximated solution, based on rounded/trimmed input.

Let \(S = \{x_1, x_2, \ldots, x_n\} \). Let \(S + x := \{x_1 + x, x_2 + x, \ldots, x_n + x\} \).

Algorithm 3.1: Exact-Subset-Sum(\(G \))

\[
\begin{align*}
n &= |S|; \\
L(0) &= \langle 0 \rangle; \\
\text{for } i = 1 \text{ to } n \\
\{ & L(i) \leftarrow \text{Merge-List}(L(i - 1), L(i - 1) + x_i); \\
& \text{Remove from } L(i) \text{ all elements bigger than } t; \\
\} & \text{Return the largest element in } L(n).
\end{align*}
\]
Trimming

Let \(L = \{x_1, x_2, \ldots, x_m\} \) be a list. To trim the list by parameter \(\delta \) means to remove as many elements from \(L \) as possible in such a way that the list \(L' \) of remaining elements

For every removed \(y \in L \) there exists a \(z \in L' \) such that \((1 - \delta) \cdot y \leq z \leq y\).

Algorithm 3.2: TRIM\((L, \delta)\)

\[
L' = < x_1 >; \\
\text{last} = x_1; \\
\text{for } i = 2 \text{ to } m \\
\text{if } \text{last} < (1 - \delta) \cdot x_i \\
\text{append } x_i \text{ onto end of } L'; \\
\text{return } (L)'
\]
Approximate Subset Sum Problem

Algorithm 3.3: APPROXIMATE-SUBSET-SUM(S, t, ϵ)

\[n = |S|; \]
\[L(0) = < 0 >; \]
for $i = 1$ to n
\[
\begin{align*}
L(i) & = \text{Merge-List}(L(i), L(i - 1) + x_i); \\
L(i) & = \text{trim}(L(i), \epsilon/n); \\
\text{remove from } L(i) \text{ all elements bigger than } t;
\end{align*}
\]
return (max)$L(n)$.

Proof.
Let P_i be the set of all values that can be obtained by selecting some subset of $\{x_1, x_2, \ldots, x_i\}$ and summing its members. For every element $y \in P_i$, there exists some $z \in L(i)$ such that $(1 - \epsilon/n)^i \cdot y \leq z \leq y$.

Let \bar{z} be the largest element in $L(n)$. If y^* is a solution to the exact subset-sum problem, then there exists a $z^* \in L(n)$ such that
\[
(1 - \frac{\epsilon}{n})^n \cdot y^* \leq z^* \leq \bar{z} \leq y^*.
\]

\[
\forall n > 1, 1 - \epsilon \leq (1 - \frac{\epsilon}{n})^n, \text{ then } (1 - \epsilon) \cdot y^* \leq \bar{z}.\]
1. Let x_1, x_2, \ldots, x_n be Boolean variables. These variables are set to be either TRUE or FALSE. A variable x_i is TRUE if and only if its negation \bar{x}_i is FALSE and vice versa.

2. A clause is the conjunction of random variables and their negations, e.g., $x_1 \lor \bar{x}_3 \lor x_4$.

3. Given a truth assignment for the x_1, x_2, \ldots, x_n, a clause is satisfied if at least one of its elements is TRUE.

4. Given n Boolean variables, m clauses $C_i, \forall i = 1, 2, \ldots, m$ over those variables and a weight $w_i \geq 0$ for each clause, the MAX-SAT problem is to find a truth assignment for the variables that maximizes the total weight of the clauses satisfied. This problem is NP-hard.
Algorithm 4.1: \textsc{MAX-SAT}(n)

\begin{align*}
\text{for } i = 1 \text{ to } n \quad & \left\{ \begin{array}{l}
\text{flip a fair coin.} \\
\text{If “heads” set } x_i \text{ true.} \\
\text{else set } x_i \text{ false.}
\end{array} \right.
\end{align*}

Lemma

Let OPT be the weight of the optimal assignment and W be the weight of the random assignment. Then

$$E[W] \geq \frac{\text{OPT}}{2}$$

Proof.

?
1. MAX-3SAT is the version of MAX SAT in which every clause C_j has exactly 3 variables in it, i.e., $\forall j, l_j = 3$

2. A theorem due to Hastad says that if there is an approximation algorithm that always returns a solution to the MAX-3SAT that is $\geq \frac{7}{8} \cdot OPT$, then $P = NP$

3. Note that the simple algorithm on the previous page actually returns an assignment whose expectation is $\geq \frac{7}{8} \cdot OPT$ when $\forall j, l_j = 3$. Thus, in some sense, it is a best possible approximation algorithm for MAX-3SAT
A Randomized Approximation Algorithm (Vertex Cover)

An Approximation Algorithm (Metric TSP)

A PTAS (Subset-Sum)

Approximation Algorithms for MAX-3-CNF

A Linear Programming Based (Weighted Vertex Cover)
Weighted Vertex Cover

Definition

Minimum-Weight Vertex Cover Problem. Given an undirected graph \(G = (V, E) \) in which each vertex \(v \in V \) has an associated positive weight \(w_v \). For any vertex cover \(V' \subseteq V \), we define the weight of the vertex cover \(w(V') = \sum_{v \in V'} w_v \). The goal is to find a vertex cover of minimum weight.

Associate each vertex \(v \) a variable \(x_v \in \{0, 1\} \). We interpret \(x_v = 1 \) as \(v \) is chosen in \(V' \) and \(x_v = 0 \) otherwise. For each edge \((u, v)\), at least one of them is chosen, i.e., \(x_u + x_v \geq 1 \).

\[
\begin{align*}
\text{min} & \quad \sum_{v \in V} w_v \cdot x_v \\
\text{subject to} & \quad x_u + x_v \geq 1, \quad \forall (u, v) \in E \\
& \quad x_v \in \{0, 1\}, \quad \forall v \in V
\end{align*}
\]
Rounding Technique for Integer Programs

\[\begin{align*}
\min & \quad \sum_{v \in V} w_v \cdot x_v \\
\text{subject to} & \quad x_u + x_v \geq 1, \quad \forall (u, v) \in E \\
& \quad x_v \in \{0, 1\}, \quad \forall v \in V
\end{align*} \]

\[\begin{align*}
\min & \quad \sum_{v \in V} w_v \cdot x_v \\
\text{subject to} & \quad x_u + x_v \geq 1, \quad \forall (u, v) \in E \\
& \quad x_v \geq 0, \quad \forall v \in V \\
& \quad x_v \leq 1, \quad \forall v \in V
\end{align*} \]
Algorithm 5.1: \textsc{Min-Weight}(G, w)

\[C = \emptyset; \]
compute \(\bar{x} \), an optimal solution to the linear program;
\textbf{for} each \(v \in V \)
\begin{equation*}
\begin{cases}
\text{if } \bar{x}_v \geq 1/2 \\
\text{then } C = C \cup \{v\};
\end{cases}
\end{equation*}
\textbf{return} \(C \)
Weighted Vertex Cover

Theorem

Min-Weight is 2-approximation.

Proof.

Let C^* be an optimal solution to the minimum-weight vertex-cover problem. Let z^* be the value of an optimal solution to the linear program.

\[
\begin{align*}
z^* & \leq w(C^*) \\
z^* & = \sum_{v \in V} w(v) \cdot \bar{x}(v) \\
& \geq \sum_{v \in V: \bar{x}(v) \geq 1/2} w(v) \cdot \bar{x}(v) \geq \sum_{v \in V: \bar{x}(x) \geq 1/2} w(v) \cdot (1/2) \\
& = \sum_{v \in C} w(v) \cdot (1/2) \\
& = (1/2) \cdot \sum_{v \in C} w(v) = (1/2)w(C).
\end{align*}
\]